Single-top production at the LHC as a standard candle process

Sven-Olaf Moch

Universität Hamburg

LHC discussion: New results from Top Physics Hamburg, Nov 02, 2015

Work done in collaboration with:

 Iso-spin asymmetry of quark distributions and implications for single top-quark production at the LHC
 S. Alekhin, J. Blümlein, S. M. and R. Plačakytė arXiv:1508.07923

QCD factorization

- Factorization at scale μ
 - separation of sensitivity to dynamics from long and short distances
- Hard parton cross section $\hat{\sigma}_{ij \to X}$ calculable in perturbation theory
 - cross section $\hat{\sigma}_{ij \to k}$ for parton types i, j and hadronic final state X
- Non-perturbative parameters: parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, ...

Sven-Olaf Moch

Parton kinematics at LHC

Information on proton structure depends on kinematic coverage

• LHC run at $\sqrt{s} = 7/8$ TeV

 parton kinematics well covered by HERA and fixed target experiments

• Parton kinematics with $x_{1,2} = M/\sqrt{S}e^{\pm y}$

- forward rapidities sensitive to small-x
- Cross section depends on convolution of parton distributions
 - small-x part of f_i and large-x PDFs f_j

$$\sigma_{pp\to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \left[\dots \right]$$

Single-top production at the LHC as a standard candle process – p.4

Benchmark measurements at LHC

- Complete NNLO QCD corrections available for
 - W[±]- and Z-boson production
 Hamberg, van Neerven, Matsuura '91; Harlander, Kilgore '02
 - hadro-production of top-quark pairs Czakon, Fiedler, Mitov '13
 - single top-quark production (*t*-channel) Brucherseifer, Caola, Melnikov '14

W^{\pm} - and Z-boson production

- High precision data from LHC ATLAS, CMS, LHCb and Tevatron D0
 - statistically significant NDP = 112
- Differential distributions extend to forward region
 - sensitivity to light quark flavors at $x \simeq 10^{-4}$
 - leading order kinematics $\sigma(W^+) \simeq u(x_2)\bar{d}(x_1)$ $\sigma(W^-) \simeq d(x_2)\bar{u}(x_1)$ $\sigma(Z) \simeq Q_u^2 u(x_2)\bar{u}(x_1) + Q_d^2 d(x_2)\bar{d}(x_1)$ cf. $\sigma(\text{DIS}) \simeq q_u^2 u(x) + q_d^2 d(x)$

Experiment	ATLAS	CMS	D0		LHCb	
\sqrt{s} (TeV)	7	7	1.96		7	8
Final states	$W^+ \rightarrow l^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow e^+ \nu$	$W^+ ightarrow \mu^+ \nu$	$Z \rightarrow e^+ e^-$
	$W^- ightarrow l^- \nu$	$W^- \rightarrow \mu^- \nu$	$W^- ightarrow \mu^- \nu$	$W^- \rightarrow e^- v$	$W^- ightarrow \mu^- \nu$	
	$Z \rightarrow l^+ l^-$				$Z \rightarrow \mu^+ \mu^-$	
Reference	1109.5141	1312.6283	1309.2591	1412.2862	1505.07024	1503.00963
Cut on the lepton P_T	$P_T^l > 20 \text{ GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^e > 25 \text{ GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^e > 20 \text{ GeV}$
Luminosity (1/fb)	0.035	4.7	7.3	9.7	1.	2.
NDP	30	11	10	13	31	17

Tevatron charged lepton asymmetry

- Do data for $p\bar{p} \rightarrow W^{\pm} + X \rightarrow l^{\pm}\nu$ (electrons and muons) at $\sqrt{s} = 1.96 \text{ TeV}$
- Charged lepton asymmetry as function of pseudo-lepton rapidity η_l
- NNLO QCD predictions with FEWZ (version 3.1)
- Comparison with ABM12 (including combined PDF+ α_s uncertainty), CT10, CT14, MMHT, and NN3.0

Muon charge asymmetry from LHC

- CMS and LHCb data for $pp \to W^{\pm} + X \to \mu^{\pm} \nu$ at $\sqrt{s} = 7$ TeV
- Problematic data points at $\eta_{\mu} = 3.375$ in LHCb data are omitted in fit

Z-boson production from LHC

- LHCb data for $pp \to Z + X \to l\bar{l}$ (muon and electron) at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV
- Comparison with ABM12 (including combined PDF+ α_s uncertainty), CT14, MMHT, and NN3.0

Fit quality

Exp	eriment	ATLAS	CMS	D0		LHCb	
\sqrt{s}	\sqrt{s} (TeV)		7	1.96		7	8
Final states		$W^+ \rightarrow l^+ \nu$	$W^+ \to \mu^+ \nu$	$W^+ \to \mu^+ \nu$	$W^+ \to e^+ \nu$	$W^+ \to \mu^+ \nu$	$Z \rightarrow e^+ e^-$
		$W^- \rightarrow l^- \nu$	$W^- \rightarrow \mu^- \nu$	$W^- ightarrow \mu^- \nu$	$W^- \rightarrow e^- v$	$W^- \rightarrow \mu^- \nu$	
		$Z \rightarrow l^+ l^-$				$Z \rightarrow \mu^+ \mu^-$	
Reference		1109.5141	1312.6283	1309.2591	1412.2862	1505.07024	1503.00963
NDP		30	11	10	13	31	17
	this work	29.8	22.5	16.9	18.0	44.1	18.2
χ^2	this work ^a	32.3	$19.5(13.5^b)$	13.5	9.5	34.7	19.1
	ABM12	34.5	_	_	_	_	_
	CT14	42	_ <i>c</i>	_	34.7	_	_
	HERAFitter	_	_	13	19	_	_
	MMHT14	39	_	21	_	_	_
	NN3.0	35.4	18.9	_	_	_	_

^{*a*}Variants with all collider DY and W^{\pm} -boson data excluded except the one given.

^bValue obtained assuming systematic uncertainties to be uncorrelated.

^cStatistically less significant data with the cut of $P_T^{\mu} > 35$ GeV are used.

Light flavor PDFs

- Light flavor decomposition not well constrained in DIS data
 - ratio d/u at large x from fixed target Drell-Yan data E-605, E-866 at the price of modelling nuclear corrections
- Iso-spin asymmetry of sea $I(x) = \overline{d} \overline{u}$
 - Regge theory arguments for small x predict $I(x) \simeq 0$
 - I(x) at small x constrained by new Tevatron and LHC data
- Upshot: non-vanishing I(x) at small $x \simeq 10^{-4}$

Sven-Olaf Moch

Comparision with other PDFs

- Iso-spin asymmetry of sea I(x) at small x and ratio d/u at large x with 1σ uncertainty band
- Comparison with CT14, MMHT14, NN3.0
 - CT14 finds non-vanishing I(x) from fit to Tevatron charged lepton asymmetry (D0 data), but with large uncertainties

Single top-quark production

- Study of charged-current weak interaction of top quark
- *s*-channel production

- *t*-channel production
 - sensitivity to light flavor PDFs
 - bg-channel at NLO enhanced by gluon luminosity

- *Wt*-production
 - contributes at LHC (small at Tevatron)

QCD corrections at NNLO

- Computation of NNLO QCD corrections Brucherseifer, Caola, Melnikov '14
 - fully differential, with cuts on p_T
- QCD corrections treated in structure function approach
 - non-factorizable contributions neglected (neglected diagrams $\mathcal{O}(1/N_c^2)$ supressed)

QCD corrections to t-channel single top quark production at LHC8

p_{\perp}	$\sigma_{ m LO},{\sf pb}$	$\sigma_{ m NLO},{\sf pb}$	$\delta_{ m NLO}$	$\sigma_{ m NNLO}, {\sf pb}$	$\delta_{ m NNLO}$
0 GeV	$53.8^{+3.0}_{-4.3}$	$55.1^{+1.6}_{-0.9}$	+2.4%	$54.2^{+0.5}_{-0.2}$	-1.6%
20 GeV	$46.6^{+2.5}_{-3.7}$	$48.9^{+1.2}_{-0.5}$	+4.9%	$48.3^{+0.3}_{-0.02}$	-1.2%
40 GeV	$33.4^{+1.7}_{-2.5}$	$36.5^{+0.6}_{-0.03}$	+9.3%	$36.5^{+0.1}_{+0.1}$	-0.1%
60 GeV	$22.0^{+1.0}_{-1.5}$	$25.0^{+0.2}_{+0.3}$	+13.6%	$25.4_{\pm 0.2}^{-0.1}$	+1.6%

Sven-Olaf Moch

Single-top production at the LHC as a standard candle process - p.14

QCD corrections at NNLO

- Computation of NNLO QCD corrections Brucherseifer, Caola, Melnikov '14
 - fully differential, with cuts on p_T
- QCD corrections treated in structure function approach

QCD corrections to t-channel single anti-top quark production at LHC8

p_{\perp}	$\sigma_{ m LO},{\sf pb}$	$\sigma_{ m NLO}$, pb	$\delta_{ m NLO}$	$\sigma_{ m NNLO}, {\sf pb}$	$\delta_{ m NNLO}$
0 GeV	$29.1^{+1.7}_{-2.4}$	$30.1^{+0.9}_{-0.5}$	+3.4%	$29.7^{+0.3}_{-0.1}$	-1.3%
20 GeV	$24.8^{+1.4}_{-2.0}$	$26.3^{+0.7}_{-0.3}$	+6.0%	$26.2^{-0.01}_{-0.1}$	-0.4%
40 GeV	$17.1^{+0.9}_{-1.3}$	$19.1^{+0.3}_{+0.1}$	+11.7%	$19.3_{\pm 0.1}^{-0.2}$	+1.0%
60 GeV	$10.8^{+0.5}_{-0.7}$	$12.7^{+0.03}_{+0.2}$	+17.6%	$12.9^{-0.2}_{+0.2}$	+1.6%

Sven-Olaf Moch

Single-top production at the LHC as a standard candle process – p.14

Inclusive cross sections (I)

- Cross sections for t-channel production of single (anti)top-quarks at LHC with 1σ PDF uncertainties
 - computation of hard cross section to NLO in QCD with Hathor for $\overline{\text{MS}}$ mass $m_t(m_t) = 163 \text{ GeV}$ at scale $\mu_R = \mu_F = m_t(m_t)$
- Data at $\sqrt{s} = 7$ TeV from ATLAS
 - inner (yellow) band for statistical uncertainty and outer (green) band for combined statistics and systematics uncertainty

Inclusive cross sections (II)

- Cross sections for t-channel production of single (anti)top-quarks at LHC with 1σ PDF uncertainties
 - computation of hard cross section to NLO in QCD with Hathor for $\overline{\text{MS}}$ mass $m_t(m_t) = 163 \text{ GeV}$ at scale $\mu_R = \mu_F = m_t(m_t)$
- Data at $\sqrt{s} = 8$ TeV from CMS
 - inner (yellow) band for statistical uncertainty and outer (green) band for combined statistics and systematics uncertainty

Cross section ratio

• Cross section ratio $R_t = \sigma_t / \sigma_{\bar{t}}$ is very sensitive probe

- data from ATLAS and CMS dominated by inner (yellow) band for statistical uncertainty, systematics largey cancel
- Theory predictions sensitive to ratio d/u of PDFs
 - 1σ PDF uncertainties in R_t small

Upshot

 Production of single top-quarks at LHC can serve as standard candle for the light quark flavor content of proton

Summary

Parton distributions, α_s and all that

- PDFs and $\alpha_s(M_Z)$ well constrained by existing data
- Complementary information from benchmark measurements at LHC
 - W^{\pm} and Z-bosons, top-quark pairs, single top-quark
 - iso-spin asymmetry of sea $I(x) = \overline{d} \overline{u}$
 - top-quark mass m_t
- Experimental precision of < 1% puts pressure on accuracy of theoretical predictions
 - NNLO QCD differential distributions

Single Top at the LHC

- Radiative corrections at higher orders in QCD well under control
- High statistics measurements at Run II of LHC can provide constraints on light quark PDFs