Laser Data from Oxford

Luigi Vigani

Infrared Laser on HVStripV1

- Infrared laser (1060 nm)
- \odot Pixel (10,0), enclosed transistor
- ullet Absorber on laser and power to 72.5%
 - This to reduce the signals at level of Iron55
- Bias scan
- VNBF set to 60
 - Low noise
 - Short pulses (400ns)

Signal Maps

X position [microns]

Bias 80V

Amplitude vs Rise-time

Selecting pure signal

Selecting "extended" signal

Amplitude distribution

Noise: amplitude < 0.014V

Increase in number of these signals: charge drift/sharing?

Infrared Laser on Chessl

- DAC setting to default
- Laser at full power
- APA8

Channel 30

Still lot of superimposition...

Infrared Laser on Chessl

- DAC setting to default
- Absorber mounted and power to 69%
- APA8

Finally distinction between pixels!

Structures as expected

Some problems in misalignment visible: need for correction.

Infrared on Chess1

APA1

APA4 (2 pixels)

