

Kinematic Analysis of t-tbar events in CMS

Chris Parkinson DESY Summer Student

Supervisor: Prof. Dr. J. Mnich

Talk Contents

- Introduction
 - Top physics
 - → LHC and CMS
 - Event reconstruction
- > Analysis Techniques
- Results
- Summary (& Questions)

Kinematic Analysis of t-tbar events in CMS

Two quarks approach IP

momenta: x_1P and x_2P' — tî — (bW+)(bW=) — 2bjets + 2quarkjets + *Cm*

 $x_2 P'$

 A Gluon is radiated from each parton

"Gluon Fusion"

 Dominant production mechanism at LHC

Top pair
 produced in
 interaction

Lifetime:
 ~ 10²⁴ s

- Top particles decay to bottoms and W[±].
- CKM element
 |V|_{tb} ~ 1

- W [±] decay into particle antiparticle pair.
 - Hadronically
 - → Semi-Leptonic
 - Fully Leptonic

 Individual quarks cannot exist and quickly form jets

CMS

- All-purpose detector for the LHC
 - High segmentation and (almost) fully hermetic
 - → High B fields
 - Relatively compact detector
 - Fast response time
 - Particle ID, momentum and energy resolution

Interactions at the LHC

- At LHC:
 - Not fundamental particles
 - Mainly Gluon fusion interactions
 - Not a symmetric collider!
 - → Boosted system → particles not created in rest frame!

η and ΔR

γ n is a rapidity-like quantity "pseudo-rapidity"

$$\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right)$$

ΔR gives measure of angular separation

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

η and ΔR remove boost effects

Event Reconstruction I

- Techniques for event reconstruction (a simplified list):
 - → Particle ID
 - → Jet algorithms
 → b (and c) tagging
 - \rightarrow p_t and η cuts
 - → Missing energy & p_t
 - Jet N & type cutting
 - Event shape
 - Angular separations

What was in the event?

What event was it?

Event Reconstruction II

Event reconstruction is very difficult!

Consider a typical top physics event:

TOP PHYSICS

Event Reconstruction III

- Event reconstruction is very difficult!
 - Unknown CMS energy & position
 - Neutrino & Combinatoric effects
 - Detector & analysis effects

Analysis Techniques and Results

Method I : Angular Separation (ΔR)

- Look at AR for various particles in the event
 - for particles from same initial particle (red)
 - for same particles from different initial particles (blue)
 - Two momentum cuts (25 GeV, 40 GeV)

Method I : Angular Separation (ΔR)

- However, quarks are not seen in the detector system
 - Change generator to create jets, not quarks
 - → Less well defined events → does difference still exist?

Method II : Event Shape (halfSpace)

- Separate event into two halves
 - Use momentum vector of observable particles
 - → Are the decays contained within the halfSpace?
 → Containment Quality

$$\hat{n} = (\bar{n}_x, \bar{n}_y, \bar{n}_z)$$

$$\theta$$

$$\bar{v} = (\bar{v}_x, \bar{v}_y, \bar{v}_z)$$

$$\begin{cases} \cos(\theta = 270 \rightarrow 90) = +ve \\ \cos(\theta = 90 \rightarrow 270) = -ve \end{cases}$$

Result Summary

- Angular Separation (ΔR) & Event Shape
 - Good possibility for use in event reconstruction
 - Input for likelihood function
 - → Improved results for high momentum jets → loss of statistics
 - Improvement with further study!

Further Studies

- Improvement of cuts?
 - With consideration of detector effects and other cuts
- More halfSpace studies?
 - More halfSpace configurations, multiple spaces
 - → Which particles leave the spaces under which conditions → look for correlations

Talk Summary

- Introduction
 - Top physics
 - → LHC and CMS
 - Event reconstruction
- > Analysis Techniques
- Results
- Summary (& Questions)

