Status of the CBM experiment at FAIR

Peter Senger GSI and Univ. Frankfurt

Outline: ➤ Compressed Baryonic Matter: The physics case ➤ Status of experiment preparation ➤ Funding, timeline

CREMLIN Kick-off Meeting, 6-7 October 2015, NRC Kurchatov Institute, Moscow, Russia

Exploring the QCD phase diagram

At very high temperature:

- N of baryons ~ N of antibaryons Situation similar to early universe
- L-QCD finds crossover transition between hadronic matter and Quark-Gluon Plasma
- Experiments: ALICE, ATLAS, CMS at LHC STAR, PHENIX at RHIC

Exploring the QCD phase diagram

Courtesy of K. Fukushima & T. Hatsuda

Baryon Chemical Potential $\mu_{\rm B}$

At high baryon density:

- N of baryons >> N of antibaryons Densities like in neutron star cores
- L-QCD not (yet) applicable
- Models predict first order phase transition with mixed or exotic phases
- Experiments: BES at RHIC, NA61 at CERN SPS, CBM at FAIR, NICA at JINR

Baryon densities in central Au+Au collisions

I.C. Arsene et al., Phys. Rev. C 75, 24902 (2007)

5 A GeV

10 A GeV

Quark matter in massive neutron stars?

Equation-of-state: Non-local SU(3) NJL with vector coupling M. Orsaria, H. Rodrigues, F. Weber, G.A. Contrera, arXiv:1308.1657

The equation-of-state at neutron star core densities

- collective flow of hadrons (driven by pressure)
- > particle production at threshold energies (multi-strange hyperons)

- The equation-of-state at neutron star core densities
 - collective flow of hadrons
 - particle production at threshold energies (multi-strange hyperons)

- Onset of chiral symmetry restoration at high ρ_{B}
 - > in-medium modifications of hadrons ($\rho,\omega,\phi \rightarrow e^+e^-(\mu^+\mu^-)$)
 - > dileptons at intermediate invariant masses: ρ - a_1 chiral mixing

- The equation-of-state at neutron star core densities
 - collective flow of hadrons
 - particle production at threshold energies (multi-strange hyperons)
- Onset of chiral symmetry restoration at high ρ_{B}
 - > in-medium modifications of hadrons ($\rho, \omega, \phi \rightarrow e^+e^-(\mu^+\mu^-)$)
 - \succ dileptons at intermediate invariant masses: ρ -a₁ chiral mixing
- New phases of strongly-interacting matter
 - excitation function and flow of lepton pairs
 - > excitation function and flow of strangeness (K, Λ , Σ , Ξ , Ω)

- The equation-of-state at neutron star core densities
 - collective flow of hadrons
 - particle production at threshold energies (multi-strange hyperons)
- Onset of chiral symmetry restoration at high ρ_{B}
 - > in-medium modifications of hadrons ($\rho, \omega, \phi \rightarrow e^+e^-(\mu^+\mu^-)$)
 - \succ dileptons at intermediate invariant masses: ρ -a₁ chiral mixing
- New phases of strongly-interacting matter
 - excitation function and flow of lepton pairs
 - > excitation function and flow of strangeness (K, Λ , Σ , Ξ , Ω)
- Deconfinement phase transition at high ρ_{B}
 - > excitation function and flow of charm (J/ ψ , ψ ', D⁰, D[±], Λ_c)
 - anomalouus charmonium suppression

- The equation-of-state at neutron star core densities
 - collective flow of hadrons
 - particle production at threshold energies (multi-strange hyperons)
- Onset of chiral symmetry restoration at high ρ_{B}
 - > in-medium modifications of hadrons ($\rho,\omega,\phi \rightarrow e^+e^-(\mu^+\mu^-)$)
 - > dileptons at intermediate invariant masses: ρ -a₁ chiral mixing
- New phases of strongly-interacting matter
 - excitation function and flow of lepton pairs
 - > excitation function and flow of strangeness (K, Λ , Σ , Ξ , Ω)
- Deconfinement phase transition at high ρ_{B}
 - \succ excitation function and flow of charm (J/ ψ , ψ ', D⁰, D[±], Λ_c)
 - anomalouus charmonium suppression

Strange matter

- (double-) lambda hypernuclei
- strange meta-stable objects (e.g. strange dibaryons)

Unheberrechtlich geschütztes Materia

Bengt L. Friman Claudia Höhne Jörn E. Knoll Stefan K.K. Leupold Jorgen Randrup Ralf Rapp Peter Senger *Editors*

LECTURE NOTES IN PHYSICS 814

The CBM Physics Book

Compressed Baryonic Matter in Laboratory Experiments

The CBM Physics Book

Foreword by Frank Wilczek

Springer Series: Lecture Notes in Physics, Vol. 814 1st Edition., 2011, 960 p., Hardcover ISBN: 978-3-642-13292-6

Liebebeerechtlich geschübztes Materi

Electronic Authors version: http://www.gsi.de/documents/DOC-2009-Sep-120-1.pdf

D Springer

Messengers from the dense fireball: CBM at SIS100

UrQMD transport calculation Au+Au 10.7 A GeV π, Κ, Λ, ...

 $\rho \rightarrow e^+e^-, \mu^+\mu^-$

Ξ-, Ω-, φ

 \overline{p} , $\overline{\Lambda}$, Ξ^+ , Ω^+ , J/ψ

 $\rho \rightarrow e^+e^-, \mu^+\mu^-$

 $\rho \rightarrow e^+e^-, \mu^+\mu^-$

resonance decays

Experimental challenges

Particle yields in central Au+Au 4 A GeV Multiplicity **xBR**

Experiments exploring dense QCD matter

Experimental requirements

10⁵ - 10⁷ Au + Au reactions/sec determination of displaced vertices ($\sigma \approx 50 \ \mu m$) identification of leptons and hadrons fast and radiation hard detectors free-streaming readout electronics high speed data acquisition and high performance computer farm for online event selection **4-D event reconstruction**

Hyperons in CBM at SIS100 Running scenario: Au+Au, C+C at 4, 6, 8, 10 A GeV Example: Au+Au at 8 A GeV, 10⁶ central collisions

- In addition:
 K*,Λ*,Σ*,Ξ*,Ω*
- Event rate:
 100 kHz to 1 MHz

Open charm in CBM at SIS100

- Charm production cross sections at threshold energies
- Charm propagation in cold nuclear matter

Leptons in CBM at SIS100

Simulation: Signal yields from HSD, Background from UrQMD

central Au+Au at 8 A GeV:2×10⁶ ω in 2 weeks

CBM Technical Design Reports

CBM time line

CBM time line

Facility for Antiproton & Ion Research

CBM beams

- 10⁹/s Au up to 11 GeV/u
- 10⁹/s C, Ca, ... up to 14 GeV/u
- 10¹¹/s p up to 29 GeV

FAIR phase 1 FAIR phase 2

The CBM Collaboration: 60 institutions, 530 members

Croatia: Split Univ. China: CCNU Wuhan Tsinghua Univ. USTC Hefei CTGU Yichang Czech Republic: CAS, Rez Techn. Univ.Prague France: IPHC Strasbourg Hungary: KFKI Budapest Budapest Univ.

Germany: Darmstadt TU FAIR Frankfurt Univ. IKF Frankfurt Univ. FIAS Frankfurt Univ. ICS **GSI** Darmstadt Giessen Univ. Heidelberg Univ. P.I. Heidelberg Univ. ZITI H7 Dresden-Rossendorf **KIT Karlsruhe** Münster Univ. Tübingen Univ. Wuppertal Univ. **7IB** Berlin

India:

Aligarh Muslim Univ. Bose Inst. Kolkata Panjab Univ. Rajasthan Univ. Univ. of Jammu Univ. of Kashmir Univ. of Calcutta B.H. Univ. Varanasi VECC Kolkata IOP Bhubaneswar IIT Kharagpur IIT Indore Gauhati Univ. Korea: Pusan Nat. Univ. Romania: NIPNE Bucharest Univ. Bucharest Poland: AGH Krakow Jag. Univ. Krakow Silesia Univ. Katowice Warsaw Univ. Warsaw TU Russia:

IHEP Protvino INR Troitzk ITEP Moscow Kurchatov Inst., Moscow LHEP, JINR Dubna LIT, JINR Dubna MEPHI Moscow Obninsk Univ. PNPI Gatchina SINP MSU, Moscow St. Petersburg P. Univ. Ioffe Phys.-Tech. Inst. St. Pb.

Ukraine:

T. Shevchenko Univ. Kiev Kiev Inst. Nucl. Research

Scientist fraction, CBM

Summary

- <u>CBM scientific program at SIS100:</u> Exploration of the QCD phase diagram in the region of neutron star core densities \rightarrow large discovery potential.
- First measurements with CBM: High-precision multi-differential measurements of hadrons incl. multistrange hyperons, hypernuclei and dileptons for different beam energies and collision systems → terra incognita.
- <u>Status of experiment preparation:</u>
 Prototype detector performances fulfill CBM requirements.
 7 TDRs approved, 4 TDRs in preparation.
- <u>Funding</u>: Substantial part of the CBM start version is financed (+ EoI).
- <u>CBM time line:</u>

Resource loaded schedules for most of the detectors. Ready to take first beam end of 2020.