ELBE -Center for High-Power Radiation Sources

Michael Kuntzsch for the ELBE- team

Introduction

- ELBE-accelerator
- Recent upgrade

RF-Infrastructure

- > High-Power RF
- analogue LLRF controller
- µTCA-based solution

Stability analysis

- Diagnostics
- Arrival-time jitter behavior
- Beam based feedback

Summary and Outlook

- Summary
- Further steps regarding µTCA-LLRF

Introduction

- ELBE-accelerator
- Recent upgrade

RF-Infrastructure

- High-Power RF
- analogue LLRF controller
- μTCA-based solution

Stability analysis

- > Diagnostics
- > Arrival-time jitter behavior
- Beam based feedback

Summary and Outlook

- > Summary
- Further steps regarding μTCA-LLRF

ELBE - Center for High-Power Radiation Sources

electron beam energy / MeV	8 – 40
average beam current / μA	1600
bunch charge / pC	
- thermionic injector	100
- SRF photo injector	100 (1000)
minimal Bunch length/ ps	0.2

thermionic DC-Gun

Buncher

superconducting RF-Gun

superconducting accelerator modules

User beams at ELBE

Introduction

- ELBE-accelerator
- Recent upgrade

RF-Infrastructure

- High-Power RF
- analogue LLRF controller
- µTCA-based solution

Stability analysis

- > Diagnostics
- > Arrival-time jitter behavior
- Beam based feedback

Summary and Outlook

- > Summary
- Further steps regarding μTCA-LLRF

Solid State Amplifier

10kW transmitter presented at SRF Berlin October 2009

- 42U cabinet
- WR650 waveguide output on top
- water cooled power modules
- water cooled driver
- built in 24kW 28V power supply

courtesy: Hartmut Büttig, HZDR

Start Development 1/2009; Prototype 9/2009

Installation at ELBE

courtesy: Hartmut Büttig, HZDR

Seite 12

Assembly of two Solid State 10kW PAs

SRF-GUN with one 10 kW SSPA

SIDEVIEW (PRINCIPLE)

Cabinet R106 ELBE

Michael Kuntzsch m.kuntzsch@hzdr.de

Mitglied der Helmholtz-Gemeinschaft www.hzdr.de

Institut für Strahlenphysik

Solid State Amplifier- Bandwidth

courtesy: Hartmut Büttig, HZDR

~ 10 times higher RF bandwidth!Bandwidth RF power at Pin=-3dBm

Michael Kuntzsch | m.kuntzsch@hzdr.de | Institut für Strahlenphysik | www.hzdr.de

SSPA – Bandwidth – and the result

E. Vogel: High gain proportional RF control stability at TESLA cavities, Phys. Rev. S.T.-Acc. and beams, 10,052001 (2007)

LLRF-Controller Modification

- courtesy: Hartmut Büttig, A. Buechner, HZDR
 - Hardware- Redesign of the LLRF-Controller \succ
 - Loop filters with notches in both loops (amplitude, phase)
 - Stable operation with modified controllers

Analogue Controller

Seite 16

Michael Kuntzsch | m.kuntzsch@hzdr.de | Institut für Strahlenphysik | www.hzdr.de

μTCA.4 Controller

Courtesy: C. Schmidt, DESY

- Transition to µTCA.4- based solution
- strong collaboration with DESY (MSK) and ISE
- Four test runs at ELBE since 2012 (Hardware, Software and Firmware)
- ➢ November 2015 "all-µTCA-control" of ELBE LLRF

(4x SRF-cavities, 1.3 GHz-NRF-Buncher, 260 MHz-NRF-Buncher)

Main player: Igor Rutkowski → see talk tomorrow

Introduction

- ELBE-accelerator
- Recent upgrade

RF-Infrastructure

- High-Power RF
- > analogue LLRF controller
- μTCA-based solution

Stability analysis

- Diagnostics
- > Arrival-time jitter behavior
- Beam based feedback

Summary and Outlook

- > Summary
- Further steps regarding μTCA-LLRF

Beam diagnostics

Michael Kuntzsch | m.kuntzsch@hzdr.de

Institut für Strahlenphysik | www.hzdr.de

DC-Gun vs. SRF-Gun – fast arrival jitter **ELBE**.

Institut für Strahlenphysik www.hzdr.de Michael Kuntzsch m.kuntzsch@hzdr.de

Feedback – first attempt

- proof of principle with analogue controller (feedforward-scheme)
 - suppression of 50-Hz-Line
 - reduction from 300 fs RMS to 20 fs RMS

Feedback – future structure

- incorporating compression-, arrival-time-, beam-energy- diagnostic
- changing amplitude and phase of NRF- and SRF- cavities
- NRF-Cavities can be used for high-bandwidth stabilization (suppressing gun-jitter)

PhD-student vacancy for implementing beam-based feedbacks into μTCA

LLRF-control at ELBE

Introduction

- ELBE-accelerator
- Recent upgrade

RF-Infrastructure

- High-Power RF
- > analogue LLRF controller
- μTCA-based solution

Stability analysis

- > Diagnostics
- > Arrival-time jitter behavior
- Beam based feedback

Summary and Outlook

- Summary
- Further steps regarding µTCA-LLRF

Summary

- ELBE is running as a user facility since more than 10 years
- replacement of CW-Klystron by solid state amplifiers
- For highly time resolved experiments improvement of phase and amplitude stability needed
- Fransition from analogue to digital LLRF ongoing
- reliable operation of all 6 cavies (4 SRF and 2 NRF) during test run

in November 2015

DOOCS-Panels while operating all 6 ELBE- cavities in parallel

Outlook

Iong-term test of µTCA.4-system at ELBE during user run (2016) integration into ELBE- control system WinCC (using OPC-UA ???)

training of ELBE staff for μTCA.4 hardware and software!

- integration of beam based feedback systems
- integration of drift compensation module (compensating for drifts in detector path)

· 22 · 22 · 22

... to the ELBE-team...

Thank you...

BREADER IS AC MARKED

1111

...and all partners.

0 0

Mitglied der Helmholtz-Gemeinschaft tut für Strahlenphysik | www.hzdr.de

