The electroweak phase transition, baryogenesis and implications for collider searches

Gláuber Carvalho Dorsch

DESY Fellows Workshop Hamburg – November 10, 2015

Outline

- The problem of baryogenesis
- Electroweak phase transition and baryogenesis at the EW scale
- A practical example: The two-Higgs-doublet model
 - ▶ Electroweak phase transition in the 2HDM
 - ▶ $A_0 \rightarrow ZH_0$ as a "smoking gun" signature
 - Collider analysis for two benchmark scenarios
 Promising discovery prospects at LHC 13 TeV
- Conclusions and Outlook

• SM cannot account for observed baryon asymmetry of the Universe:

$$\frac{n_B}{s} \approx 6.75 \times 10^{-10}.$$

- Sakharov conditions: C, CP and B violation occurring out of equilibrium. In SM:
 - ✓ B violation via B + L anomaly and SU(2) instantons:

- * at T=0, tunneling amplitude $\sim e^{-8\pi^2/g^2} \sim 10^{-185}$ (!)...
- \star ... but unsuppressed at $T \gtrsim \text{EW}$ scale (sphalerons).

• SM cannot account for observed baryon asymmetry of the Universe:

$$\frac{n_B}{s} \approx 6.75 \times 10^{-10}.$$

- Sakharov conditions: C, CP and B violation occurring out of equilibrium. In SM:
 - ▶ CP violation from CKM matrix.

 Displacement from equilibrium could be provided by a first order (i.e. discontinuous) EW phase transition.

Morrisey and Ramsey-Musolf, New J. Phys. 14 (2012) 125003

• SM cannot account for observed baryon asymmetry of the Universe:

$$\frac{n_B}{s} \approx 6.75 \times 10^{-10}.$$

- Sakharov conditions: C, CP and B violation occurring out of equilibrium. In SM:
 - X CP violation from CKM matrix insufficient!

 Displacement from equilibrium could be provided by a first order (i.e. discontinuous) EW phase transition.

Morrisey and Ramsey-Musolf, New J. Phys. 14 (2012) 125003

• SM cannot account for observed baryon asymmetry of the Universe:

$$\frac{n_B}{s} \approx 6.75 \times 10^{-10}.$$

- Sakharov conditions: C, CP and B violation occurring out of equilibrium. In SM:
 - **✗** CP violation from CKM matrix insufficient!

➤ Displacement from equilibrium could be provided by a first order (i.e. discontinuous) EW phase transition.

 To freeze out the generated BAU inside the bubble, EWPT must be strongly first order (supercooling):

$$v_c/T_c \gtrsim 1.0$$

Not realized in the SM for $m_h \gtrsim m_W$.

Morrisey and Ramsey-Musolf, New J. Phys. 14 (2012) 125003

• SM cannot account for observed baryon asymmetry of the Universe:

$$\frac{n_B}{s} \approx 6.75 \times 10^{-10}.$$

- Sakharov conditions: C, CP and B violation occurring out of equilibrium. In SM:
 - X CP violation from CKM matrix insufficient!
 - ✗ Displacement from equilibrium could be provided by a first order (i.e. discontinuous) EW phase transition.

Baryogenesis requires BSM physics!

- New particles must have mass \sim EW scale.
- Must have significant interactions with scalar sector.
- Therefore, the mechanism is testable at present and near future colliders!

Two-Higgs-doublet model

- Two-Higgs-doublet models are optimal candidates:
 - One of the simplest extensions of SM: Two $SU(2)_L$ scalar doublets: Φ_1 and Φ_2 .
 - ▶ Various heavy scalars (h_0, H_0, A_0, H^{\pm}) increase EWPT strength.
 - Additional source of CP violation (explicit or spontaneous).
 - ▶ Motivated by many SM extensions (e.g. SUSY, Composite Higgs).
- Scan over parameter space, imposing:
 - tree-level unitarity, perturbativity (quartics $< 2\pi$);
 - electroweak precision observables ($\Delta \rho$ most relevant);
 - flavour constraints ($b \to s\gamma$ and $B^0 \overline{B^0}$ mixing most relevant);
 - collider bounds with HiggsBounds and HiggsSignals;
 - ▶ stability of electroweak vacuum at 1-loop up to $\Lambda = 10$ TeV.
 - ▶ If all constraints are passed, the point is deemed **physical**.

2HDM and the EWPT

- SM-like light scalar favoured (alignment limit).
- $m_{A_0} \gtrsim 300 \text{ GeV}$, with $m_{A_0} \gtrsim m_{H_0} + m_Z$.

- Current heavy Higgs searches tend to be motivated by SUSY, where mass splittings are dictated by gauge couplings and do not exceed m_Z .
- \bullet Searches focus mainly on heavy Higgs \to SM particle.
- In our scenario, $m_{A_0} m_{H_0} \gtrsim m_Z$ and $\alpha \sim \beta \implies A_0 \to ZH_0$ as a smoking gun signature!

Collider analysis

Benchmark scenarios

$$m_{H_0} = 180 \text{ GeV}, \, m_{A_0} = m_{H^{\pm}} = 400 \text{ GeV}, \, \mu = 100 \text{ GeV}, \, \tan \beta = 2$$

A: $\alpha - \beta = 0.001\pi$ (alignment)
B: $\alpha - \beta = 0.1\pi$ (non-alignment)

- Clear preference for $b\bar{b}$ and WW in respective scenarios.
- Final states (with leptonic decays of Z and W):

A: $b\bar{b}\ell\ell$.

B: $WW\ell\ell \rightarrow 4\ell 2\nu$.

Results

$b\bar{b}\ell\ell$ (alignment case)

LHC 13 TeV, 5σ significance for $\mathcal{L} = 20 \text{ fb}^{-1}$.

With 10% uncertainty on background: $\mathcal{L} = 40 \text{ fb}^{-1}$.

$WW\ell\ell$ (non-alignment)

LHC 13 TeV, 5σ significance for $\mathcal{L} = 60 \text{ fb}^{-1}$

With 10% uncertainty on background: $\mathcal{L} = 200 \text{ fb}^{-1}$.

Conclusions and Outlook

- Baryogenesis can be explained by BSM physics at the electroweak scale.
- For this purpose, the study of the electroweak phase transition is crucial.
- Cosmological observables can point to particular signatures at colliders.
- In particular, in the 2HDM:
 - ▶ A strongly first order phase transition is favored by a large splitting $m_{A_0} m_{H_0} \gtrsim m_Z$ close to alignment limit.
 - ▶ This points to an exotic phenomenology, having $A_0 \to ZH_0$ as a "smoking gun" signature.
 - ▶ Introducing CP violation in the scalar sector opens the window for even more interesting and exotic phenomenology!

Thank you!

Appendix: Prospects with 8 TeV data

- A new search by the CMS collaboration in the channel proposed here (as well as in $H_0 \to ZA_0$) appeared shortly after this work CMS-PAS-HIG-15-001
- 8 TeV data is already sensitive. New exclusions!
- Further investigation of the data granted. To appear soon!

Appendix: $b\bar{b}\ell\ell$ and $WW\ell\ell$

$b\bar{b}\ell\ell$

- Kinematical cuts:
- Leptons should reconstruct m_Z .
- Cuts on total $H_T = \Sigma P_T$.
- ΔR between $b\bar{b}$ and $\ell\ell$.
- m_{bb} in $(m_{H_0} 20) \pm 30$ GeV $m_{bb\ell\ell}$ in $(m_{A_0} 20) \pm 30$ GeV.

$WW\ell\ell$

- Some information about the momenta of the two neutrinos cannot be fully deduced.
- Construct transverse mass variables sensitive to the two scalar masses.

K-factor 1.6 1.5 1.4

	Signal	$tar{t}$	$Z b ar{b}$	ZZ	Zh
Event selection	14.6	1578	424	7.3	2.7
$80 < m_{\ell\ell} < 100~{\rm GeV}$	13.1	240	388	6.6	2.5
$H_T^{ m bb} > 150{ m GeV}$ $H_{\ell}^{\ell\ell { m bb}} > 280{ m GeV}$	8.2	57	83	0.8	0.74
$\Delta R_{bb} < 2.5, \Delta R_{\ell\ell} < 1.6$	5.3	5.4	28.3	0.75	0.68
$m_{bb}, m_{\ell\ell bb}$ signal region	3.2	1.37	3.2	< 0.01	< 0.02

$$\begin{split} (m_T^{\ell\ell})^2 &= (\sqrt{p_{T,\ell\ell}^2 + m_{\ell\ell}^2} + \not\!p_T)^2 - (\vec p_{T,\ell\ell} + \not\!p_T)^2 \\ m_T^{4\ell} &= \sqrt{p_{T,\ell'\ell'}^2 + m_{\ell'\ell'}^2} + \sqrt{p_{T,\ell\ell}^2 + (m_T^{\ell\ell})^2} \end{split}$$

Appendix: 2HDM

• In CP conserving, softly broken Z_2 symmetric case:

$$\begin{split} V_{\rm tree}(\Phi_1, \Phi_2) &= -\mu_1^2 \Phi_1^{\dagger} \Phi_1 - \mu_2^2 \Phi_2^{\dagger} \Phi_2 - \frac{1}{2} \left(\mu^2 \Phi_1^{\dagger} \Phi_2 + H.c. \right) + \\ &+ \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \\ &+ \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) + \frac{1}{2} \left[\lambda_5 \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + H.c. \right]. \end{split}$$

- No quartic mixing terms $\Phi_1^{\dagger}\Phi_2!$
- In principle μ and λ_5 can be complex: **explicit CP violation!**
- Physical states:

$$\begin{split} G^+ &= \cos\beta \; \varphi_1^+ + \sin\beta \; \varphi_2^+ & \text{(charged Goldstone)}, \\ H^+ &= -\sin\beta \; \varphi_1^+ + \cos\beta \; \varphi_2^+ & \text{(charged Higgs)}, \\ G^0 &= \cos\beta \; \eta_1 + \sin\beta \; \eta_2 & \text{(neutral Goldstone)}, \\ A^0 &= -\sin\beta \; \eta_1 + \cos\beta \; \eta_2 & \text{(CP-odd Higgs)}, \\ h^0 &= \cos\alpha \; h_1 + \sin\alpha \; h_2 & \text{(lightest CP-even Higgs)}, \\ H^0 &= -\sin\alpha \; h_1 + \cos\alpha \; h_2 & \text{(heaviest CP-even Higgs)}. \end{split}$$

Appendix: \mathbb{Z}_2 symmetry

• Yukawa Lagrangean has the form

$$\mathcal{L}_{\mathrm{Yukawa}} \supset -\overline{Q_L} \left(Y_1^n \Phi_1 + Y_2^n \Phi_2 \right) n_R$$

• Avoid FCNC $\implies \mathbb{Z}_2$ symmetry: Each fermion type couples to one doublet only.

S. L. Glashow and S. Weinberg, Phys. Rev. D 15 (1977) 1958.

	u_R	d_R	e_R
Type I	+	+	+
Type II	+	_	_
Type X	+	+	_
Type Y	+	_	+

$$\begin{split} & \Phi_1 \to -\Phi_1, \\ & \Phi_2 \to \Phi_2 \ . \end{split}$$

- For PT, only top-quark needs to be considered, so all types give indistinguishable results.
- Difference appears in phenomenological constraints only.