The (super)conformal bootstrap program

Madalena Lemos

DESY Theory Fellows Workshop

Nov. 10 2015

Conformal Group

 $ightharpoonup P_{\mu}$, $M_{\mu\nu}$,

Conformal Group

$$\blacktriangleright P_{\mu} \,, \qquad M_{\mu\nu} \,, \qquad D \,,$$

Conformal Group

 $\blacktriangleright P_{\mu}\,, \qquad M_{\mu\nu}\,, \qquad D\,, \qquad K_{\mu}$

Conformal Group

 $ightharpoonup P_{\mu}$, $M_{\mu\nu}$, D, K_{μ}

Conformal field theory defined by

Set of local operators $\mathcal O$ and their correlation functions

Conformal Group

 $ightharpoonup P_{\mu}$, $M_{\mu\nu}$, D, K_{μ}

Conformal field theory defined by

Set of local operators $\mathcal O$ and their correlation functions

Conformal primaries

$$[K_{\mu},\mathcal{O}(0)]=0$$

Conformal Descendant

$$[P_{\mu_1}, \dots [P_{\mu_n}, \mathcal{O}(0)]] = 0$$

Operator Product Expansion

$$\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_k \lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} c(x,\partial)\mathcal{O}_k(0)$$

Operator Product Expansion

$$\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_k \lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} c(x,\partial)\mathcal{O}_k(0)$$

→ Finite radius of convergence

Operator Product Expansion

$$\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_k \lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} c(x,\partial)\mathcal{O}_k(0)$$

- → Finite radius of convergence
- \rightarrow $\it n-$ point function by recursive use of the OPE until $\langle \mathbb{1} \rangle = 1$

Operator Product Expansion

$$\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_k \lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} c(x,\partial)\mathcal{O}_k(0)$$

- → Finite radius of convergence
- ightarrow *n*-point function by recursive use of the OPE until $\langle \mathbb{1}
 angle = 1$

CFT data

$$\{\mathcal{O}_{\Delta,\ell,...}(x)\}$$
, and

Operator Product Expansion

$$\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_k \lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} c(x,\partial)\mathcal{O}_k(0)$$

- → Finite radius of convergence
- ightarrow *n*-point function by recursive use of the OPE until $\langle \mathbb{1}
 angle = 1$

CFT data

$$\{\mathcal{O}_{\Delta,\ell,\dots}(x)\}$$
, and $\{\lambda_{\mathcal{O}_i\mathcal{O}_i\mathcal{O}_k}\}$

Operator Product Expansion

$$\mathcal{O}_1(x)\mathcal{O}_2(0) = \sum_k \lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_k} c(x,\partial)\mathcal{O}_k(0)$$

- → Finite radius of convergence
- ightarrow *n*-point function by recursive use of the OPE until $\langle \mathbb{1}
 angle = 1$

CFT data

$$\{\mathcal{O}_{\Delta,\ell,\dots}(x)\}$$
, and $\{\lambda_{\mathcal{O}_i\mathcal{O}_i\mathcal{O}_k}\}$

CFT data strongly constrained

- Unitarity
- Associativity of the operator product algebra

$$\langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\mathcal{O}_3(x_3)\mathcal{O}_4(x_4)\rangle =$$

Crossing Symmetry

→ Solve crossing equations for all four-point functions

"Solve" theory from crossing symmetry [Polyakov '74]

- "Solve" theory from crossing symmetry [Polyakov '74]
- ▶ Success story in 2*d*

- "Solve" theory from crossing symmetry [Polyakov '74]
- ► Success story in 2*d*
- ▶ Harder in d > 2

- "Solve" theory from crossing symmetry [Polyakov '74]
- ► Success story in 2*d*
- ▶ Harder in d > 2

[Rattazzi, Rychkov, Tonni, Vichi '08]

▶ Solving ⇒ constraining

- "Solve" theory from crossing symmetry [Polyakov '74]
- ► Success story in 2*d*
- ▶ Harder in d > 2

[Rattazzi, Rychkov, Tonni, Vichi '08]

- ▶ Solving ⇒ constraining
 - ightarrow Guess for the spectrum

- "Solve" theory from crossing symmetry [Polyakov '74]
- Success story in 2d
- ▶ Harder in d > 2

[Rattazzi, Rychkov, Tonni, Vichi '08]

- ▶ Solving ⇒ constraining
 - \rightarrow Guess for the spectrum
 - → Can it ever define a consistent CFT?

The Superconformal Bootstrap

Add Supersymmetry

→ Conformal families organized in superconformal families

The Superconformal Bootstrap

Add Supersymmetry

- → Conformal families organized in superconformal families
- \rightarrow For $\mathcal{N} \geqslant 2$ in 4d, or $\mathcal{N} = (2,0)$ in 6d There is a solvable subsector of the crossing equations [Beem, ML, Liendo, Peelaers, Rastelli, van Rees '13]
 - [Beem, Rastelli, van Rees '14]

What is the space of consistent SCFTs?

 $4d \mathcal{N} = 2$ SCFTs with SU(2) flavor symmetry

What is the space of consistent SCFTs?

 $4d \mathcal{N} = 2$ **SCFTs with** SU(2) **flavor symmetry** [Beem, ML, Liendo, Peelaers, Rastelli, van Rees '13] [Beem, ML, Liendo, Rastelli, van Rees '14]

Solving the 3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, PRD 86 025022]

Solving the 3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, PRD 86 025022]

 \rightarrow 3d Ising lives at "kink"

3d Ising Model

[Kos, Poland, Simmons-Duffin 1406.4858]

Thank you!

Backup slides

$$rac{1}{\chi_{12}^{2\Delta_{\mathcal{O}}}\chi_{2\mathcal{A}}^{2\Delta_{\mathcal{O}}}}\sum_{\mathcal{O}_{\Delta,\ell}}\lambda_{\mathcal{O}_1\mathcal{O}_2\mathcal{O}_{\Delta,\ell}}\lambda_{\mathcal{O}_3\mathcal{O}_4\mathcal{O}_{\Delta,\ell}}g_{\Delta,\ell}(u,v)=$$

where
$$\Delta_{\mathcal{O}_i}=\Delta_{\mathcal{O}}$$
, $u=rac{x_{12}^2x_{34}^2}{x_{13}^2x_{24}^2}=z\overline{z}$, $v=rac{x_{23}^2x_{14}^2}{x_{13}^2x_{24}^2}=(1-z)(1-\overline{z})$

$$\langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\mathcal{O}_3(x_3)\mathcal{O}_4(x_4)\rangle = 1$$

$$\sum_{\mathcal{O}_{\Delta,\ell}} 1 \qquad \qquad 4$$

$$\sum_{\mathcal{O}_{\Delta,\ell}} 2 \qquad \mathcal{O}_{\Delta,\ell} \qquad 3$$

$$\begin{array}{l} \frac{1}{x_{12}^{2\Delta}\mathcal{O}}\sum_{34}\lambda_{\mathcal{O}_{1}\mathcal{O}_{2}\mathcal{O}_{\Delta,\ell}}\lambda_{\mathcal{O}_{3}\mathcal{O}_{4}\mathcal{O}_{\Delta,\ell}}g_{\Delta,\ell}(u,v) = \\ \frac{1}{x_{14}^{2\Delta}\mathcal{O}}\sum_{23}^{2\Delta}\mathcal{O}}\sum_{\tilde{\mathcal{O}}_{\Delta,\ell}}\lambda_{\mathcal{O}_{1}\mathcal{O}_{4}\tilde{\mathcal{O}}_{\Delta,\ell}}\lambda_{\mathcal{O}_{2}\mathcal{O}_{3}\tilde{\mathcal{O}}_{\Delta,\ell}}g_{\Delta,\ell}(v,u) \end{array}$$

where
$$\Delta_{\mathcal{O}_i} = \Delta_{\mathcal{O}}$$
, $u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} = z \bar{z}$, $v = \frac{x_{23}^2 x_{14}^2}{x_{13}^2 x_{24}^2} = (1-z)(1-\bar{z})$

Sum rule: identical scalars ϕ

Sum rule: identical scalars ϕ

$$1 = \sum_{\substack{\mathcal{O}_{\Delta_{\ell}} \neq \mathbb{1} \\ \mathcal{O} \in \phi\phi}} \lambda_{\phi\phi\mathcal{O}}^2 \underbrace{\frac{u^{\Delta_{\phi}} g_{\Delta,\ell}(v,u) - v^{\Delta_{\phi}} g_{\Delta,\ell}(u,v)}{v^{\Delta_{\phi}} - u^{\Delta_{\phi}}}}_{F_{\Delta,\ell}}$$

- \rightarrow Guess for the spectrum
- → Can it ever define a consistent CFT?

Sum rule: identical scalars ϕ

$$1 = \sum_{\substack{\mathcal{O}_{\Delta_{\ell}} \neq \mathbb{1} \\ \mathcal{O} \in \phi\phi}} \lambda_{\phi\phi\mathcal{O}}^2 \underbrace{\frac{u^{\Delta_{\phi}} g_{\Delta,\ell}(v,u) - v^{\Delta_{\phi}} g_{\Delta,\ell}(u,v)}{v^{\Delta_{\phi}} - u^{\Delta_{\phi}}}}_{F_{\Delta,\ell}}$$

- → Guess for the spectrum
- → Can it ever define a consistent CFT?
 - Find Functional Ψ such that
 - $\hookrightarrow \psi \cdot 1 < 0 \ (1)$
 - $\hookrightarrow \psi \cdot F_{\Delta,\ell}(u,v) \geq 0$ for all $\{\Delta,\ell\}$ in spectrum

Sum rule: identical scalars ϕ

$$1 = \sum_{\substack{\mathcal{O}_{\Delta_{\ell}} \neq \mathbb{1} \\ \mathcal{O} \in \phi\phi}} \lambda_{\phi\phi\mathcal{O}}^2 \underbrace{\frac{u^{\Delta_{\phi}} g_{\Delta,\ell}(v,u) - v^{\Delta_{\phi}} g_{\Delta,\ell}(u,v)}{v^{\Delta_{\phi}} - u^{\Delta_{\phi}}}}_{F_{\Delta,\ell}}$$

- → Guess for the spectrum
- → Can it ever define a consistent CFT?
- Find Functional Ψ such that
 - $\hookrightarrow \psi \cdot 1 < 0 \ (1)$
 - $\hookrightarrow \psi \cdot F_{\Delta,\ell}(u,v) \ge 0$ for all $\{\Delta,\ell\}$ in spectrum
- \rightarrow Spectrum is inconsistent \Rightarrow rule out CFT

Sum rule

▶ Truncate

$$\psi = \sum_{m,n \leq \Lambda}^{m,n \leq \Lambda} a_{mn} \partial_z^m \partial_{\bar{z}}^n |_{z=\bar{z}=\frac{1}{2}}$$

Sum rule

▶ Truncate

$$\psi = \sum_{m,n}^{m,n \leqslant \Lambda} a_{mn} \partial_z^m \partial_{\bar{z}}^n |_{z=\bar{z}=\frac{1}{2}}$$

 \rightarrow Increase $\Lambda \Rightarrow$ bounds get stronger

Sum rule

Truncate

$$\psi = \sum_{m,n}^{m,n \leqslant \Lambda} a_{mn} \partial_z^m \partial_{\bar{z}}^n |_{z=\bar{z}=\frac{1}{2}}$$

- \rightarrow Increase $\Lambda \Rightarrow$ bounds get stronger
- \rightarrow Always true bounds