Integrability & Scattering Amplitudes as a Key to Gauge Theory

Till Bargheer

DESY Fellows Meeting, Nov 10, 2015

Collaborators: Niklas Beisert, Wellington Galleas, Nikolay Gromov, Song He, Yu-tin Huang, Florian Loebbert, Tristan McLoughlin, Carlo Meneghelli, Joe Minahan, Raul Pereira, Masahito Yamazaki, . . .

Motivation

Understand features of gauge theory

- At weak coupling
- At strong coupling
- Non-perturbatively

Two attack vectors:

- AdS/CFT and integrability
- Structures in scattering amplitudes

Integrability

A miraculous property of certain models *in two dimensions*Occurs for very specific systems, but sometimes really models reality:

Results for KCuF3

Integrability in a Nutshell

In two dimensions:

If
$$Q_1 = \sum_j p_j \,, \quad Q_2 = \sum_j p_j^2$$
 are conserved

 \implies two momenta conserved: $\{p_1, p_2\} = \{p_1', p_2'\}$

Further conserved charge:

$$Q_3 = \sum_j p_j^3 \implies \{p_1, p_2, p_3\} = \{p_1', p_2', p_3'\}$$

Higher conserved charges \Longrightarrow factorized scattering, $\{p_i\} = \{p_i'\}$

S-matrix obeys **Yang–Baxter equation**:

$$= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 2 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 2 & 3 & 1 \end{bmatrix}$$

⇒ In two dimensions, an interacting theory can be integrable (solvable)

Gauge Theory

Simplest gauge theory: $\mathcal{N}=4$ super Yang-Mills theory in d=4

- Cancellations (susy), conformal symmetry, finiteness
- Planar limit: Integrability → powerful techniques. Solvable?!

Why is planar $\mathcal{N}=4$ SYM integrable?

- Planar limit: Leading piece in t'Hooft large N_c expansion
- Two-dimensionality in color space

AdS/CFT: Dual to string theory in AdS Worldsheet is two-dimensional Family of flat connections Higher charges: Holonomy $T(x) = \sum_i x^j Q_i$

→ Integrable charges form an infinite-dimensional Yangian algebra

$\mathcal{N}=4$ SYM: The Spectrum

AdS/CFT picture for two-point functions:

Spin chain of single-trace operators:

$$\operatorname{Tr}(ZZ\phi Z\dots Z\phi Z\phi)\sim$$

Large volume:

Weak coupling: Bethe ansatz Strong coupling: Spectral curve

Finite-size corrections: Wrapping

Finite size, exact:

Thermodynamic Bethe Ansatz, FinLIE, Quantum spectral curve

⇒ Anomalous dimensions can now be computed (numerically) for any operator at finite coupling

Scattering Amplitudes

Zoo of interesting structures

- Duality to polygon Wilson loops
- Dual superconformal symmetry
- Twistors / momentum twistors
- Grassmannian integral / on-shell recursion for trees & integrands
- Differential equations for loop integrals
- Amplitude bootstrap program

Relation to integrability only gradually uncovered

→ Room for fruitful interplay

Integrability for Amplitudes

What is the map to 2d integrable system for scattering amplitudes?

Key: Look at Wilson loop as a flux tube

Decomposition: pentagon transition functions

Flux tube states \leftrightarrow large spin operators

$$\mathcal{O} = \text{Tr}(ZDD\dots DD \overrightarrow{F}DD\dots DD \overrightarrow{F}DD\dots DDZ)$$

Exact spectrum $E(p_i)$ and scattering phases $S(p_1,p_2)$ from integrability

Proposal for pentagon transitions: $P \sim \sqrt{S(p,q)/S(p,q^{\gamma})}$

Physics: Regge Limit & BFKL

- Transverse momenta ≪ rapidities
- Hierarchy of rapidities:

$$s = s_{3,n} \gg s_{3,n-1}, s_{4,n} \gg \dots$$
$$\dots \gg s_{i,i+2} \gg s_i \gg -t_i$$

- Large logarithms: $\log(s_i) \gg 1$
- Double expansion in $\log(s_i)$ and coupling $g_{
 m YM}$
- Very generic: Applies to general gauge theory
- Useful in practical computations

Physics: Regge Limit & BFKL

Resum perturbation theory, "Reggeization"

- Large-log approximation, but all orders in $g_{
 m YM}$
- Schematically,

$$R_n \xrightarrow{\mathrm{MRL}} \sum$$
 (Regge poles) $+ \sum$ (Regge cuts)

■ Sum over $\mathfrak{sl}(2)$ representations (ν, n) :

(Regge cut)
$$\sim \sum_{n=-\infty}^{\infty} \int d\nu \, \Phi_{\nu,n}^* \, s_i^{\omega(\nu,n)} \, \Phi_{\nu,n}$$

Ingredients:

- Energies $\omega(\nu, n)$
- Impact factors $\Phi_{\nu,n}$
- Production vertices (at higher points)

Energies $\omega(\nu,n)$ are eigenvalues of

BFKL Hamiltonian of $\mathfrak{sl}(2)$ spin chain \rightarrow integrable!

Apply Integrability!

Goal: Extract BFKL data (eigenvalues, impact factors, production vertices) from newly discovered structures in amplitudes; make use of integrability!

- Six points: understood (analytic structure, BFKL data from Wilson loop OPE)
- A lot of structure beyond six points that needs to be understood
 - ► Analytic structure in different regions
 - ▶ BFKL data

Plan:

- Step 1: Extract MRL data from known amplitude data (from bootstrap: two loops, any n; three loops, n = 7)
- Step 2: Apply Wilson loop OPE to obtain all-order or even exact BFKL data beyond n=6
- (Step 3: Data can be used for practical computations)

