

Transverse Momentum Dependent Parton Distribution Functions

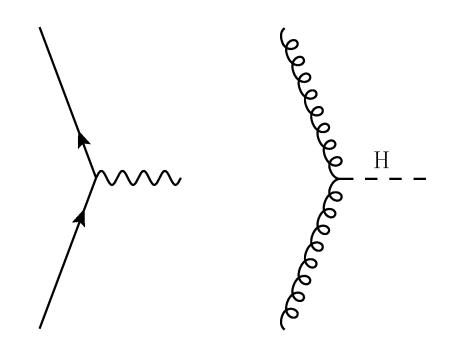
Maarten Buffing

Fellow's meeting DESY, Hamburg November 10, 2015

Part I: motivation

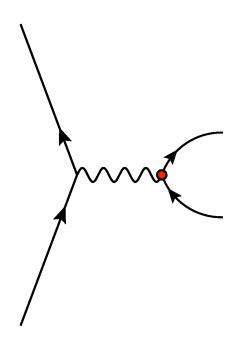
Drell-Yan as an example

• $q\overline{q} \rightarrow \gamma^*$: virtual photon production (or $gg \rightarrow H$)

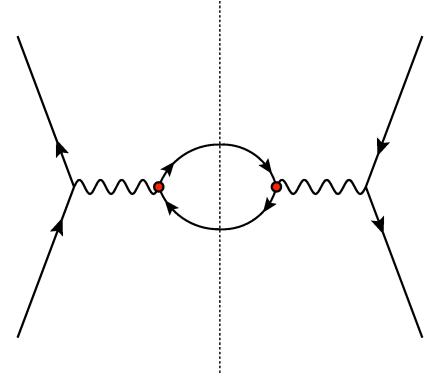


Color Factors!

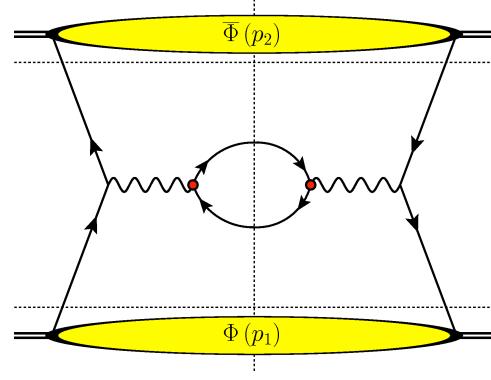
- $q\overline{q} \to \gamma^*$: virtual photon production
- Easily identifiable final state
 - Such as $\mu^+\mu^-$



- $q\overline{q} \rightarrow \gamma^*$: virtual photon production
- Easily identifiable final state
- Complex conjugate



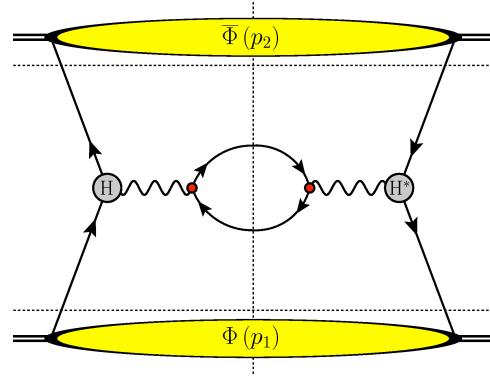
- $q\overline{q} \rightarrow \gamma^*$: virtual photon production
- Easily identifiable final state
- Complex conjugate
- Proton is composite particle



$$\Phi^q \sim \text{F.T.}\langle \text{Proton}|\overline{\psi}(x)\psi(y)|\text{Proton}\rangle$$

For the expert: $u(p_1)\overline{u}(p_1) \to \Phi(p_1, P_1)$

- $q\overline{q} \rightarrow \gamma^*$: virtual photon production
- Easily identifiable final state
- Complex conjugate
- Proton is composite particle
- Hard scattering contribution

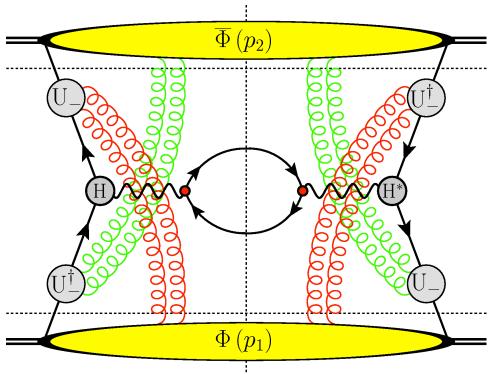


 $\Phi^q \sim \text{F.T.}\langle \text{Proton}|\overline{\psi}(x)\psi(y)|\text{Proton}\rangle$

- $q\overline{q} \rightarrow \gamma^*$: virtual photon production
- Easily identifiable final state
- Complex conjugate
- Proton is composite particle
- Hard scattering contribution
- Gluons give gauge links:

$$U_{[0,\xi]}^{[n]} = \mathcal{P} \exp\left(-i \int_0^{\xi} d\eta \cdot P \ n \cdot A(\eta)\right)$$

- These gluons carry color!

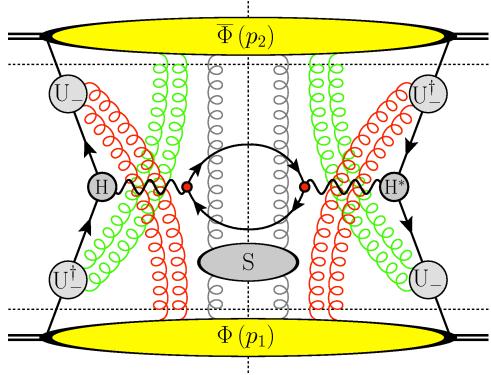


 $\Phi^q \sim \text{F.T.}\langle \text{Proton}|\overline{\psi}(x)U(x,y)\psi(y)|\text{Proton}\rangle$

- $q\overline{q} \rightarrow \gamma^*$: virtual photon production
- Easily identifiable final state
- Complex conjugate
- Proton is composite particle
- Hard scattering contribution
- Gluons give gauge links:

$$U_{[0,\xi]}^{[n]} = \mathcal{P} \exp\left(-i \int_0^{\xi} d\eta \cdot P \ n \cdot A(\eta)\right)$$

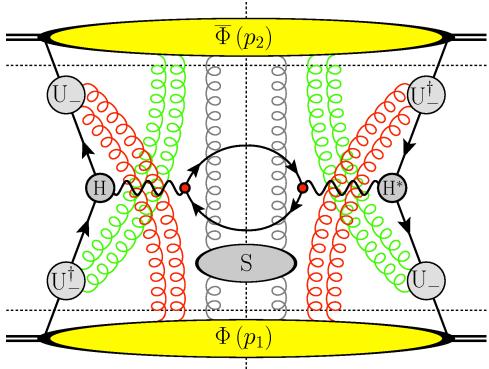
- These gluons carry color!
- Soft factor



- $q\overline{q} \rightarrow \gamma^*$: virtual photon production
- Easily identifiable final state
- Complex conjugate
- Proton is composite particle
- Hard scattering contribution
- Gluons give gauge links:

$$U_{[0,\xi]}^{[n]} = \mathcal{P} \exp\left(-i \int_0^{\xi} d\eta \cdot P \ n \cdot A(\eta)\right)$$

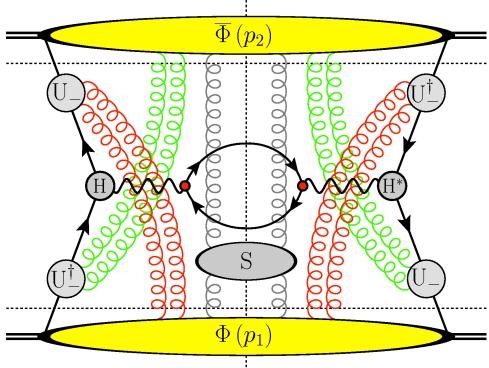
- These gluons carry color!
- Soft factor
- Both the protons and the partons could be polarized



- $q\overline{q} \to \gamma^*$: virtual photon production
- Easily identifiable final state
- Complex conjugate
- Proton is composite particle
- Hard scattering contribution
- Gluons give gauge links:

$$U_{[0,\xi]}^{[n]} = \mathcal{P} \exp\left(-i \int_0^{\xi} d\eta \cdot P \ n \cdot A(\eta)\right)$$

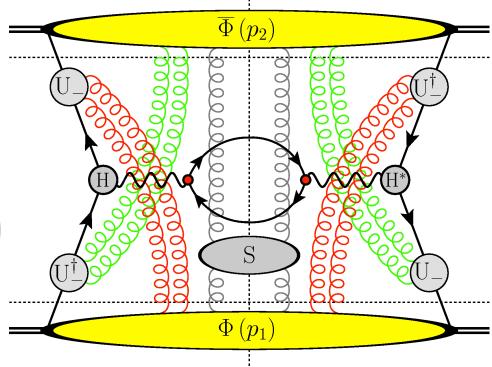
- These gluons carry color!
- Soft factor
- Both the protons and the partons could be polarized
- •



- $q\overline{q} \rightarrow \gamma^*$: virtual photon production
- Easily identifiable final state
- Complex conjugate
- Proton is composite particle
- Hard scattering contribution
- Gluons give gauge links:

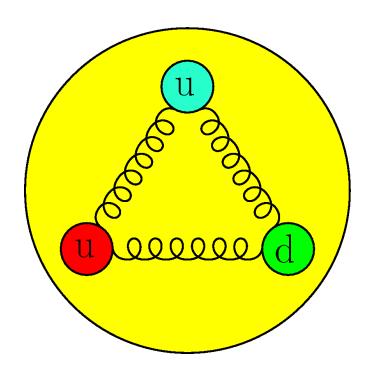
$$U_{[0,\xi]}^{[n]} = \mathcal{P} \exp\left(-i \int_0^{\xi} d\eta \cdot P \ n \cdot A(\eta)\right)$$

- These gluons carry color!
- Soft factor
- Both the protons and the partons could be polarized
- •



My work: interplay between color, spin and transverse momentum

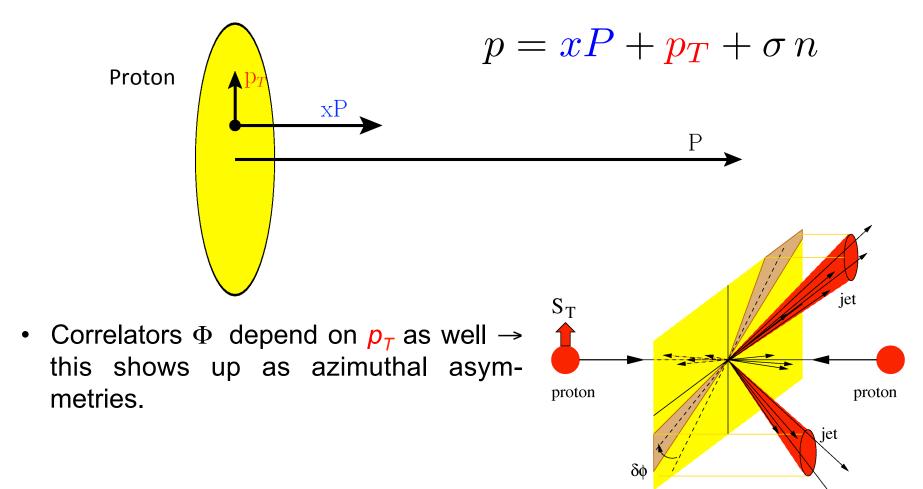
Part II: the proton as composite particle



One has to take care of the composite nature of the proton!

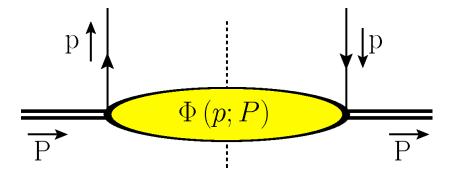
Decomposition of momentum

Decomposition of quark momentum into collinear and transverse parts:



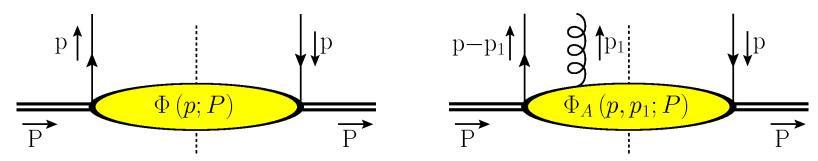
Quarks and gluons in a proton

• The proton is described by a correlator Φ .



Matrix elements

Quark correlators can be written as matrix elements



$$\Phi_{ij}(p;P) = \Phi_{ij}(p|p) = \text{F.T.} \langle P|\overline{\psi}_{j}(0)\psi_{i}(\xi)|P\rangle$$

$$\Phi_{A;ij}^{\alpha}(p-p_1|p) = \text{F.T.} \langle P|\overline{\psi}_j(0)A^{\alpha}(\eta)\psi_i(\xi)|P\rangle$$

The field combination is non-local → what about gauge invariance?

Feynman diagrams

Summation of collinear gluons emitted by the colliding protons nicely yields objects that are color gauge invariant.

$$\Phi^q \sim \text{F.T.}\langle \text{proton}|\overline{\psi}(0)U_{[0,\xi]}\psi(\xi)|\text{proton}\rangle$$

Color gauge invariance

Fields transform under local gauge transformations

$$\overline{\psi}(x) \to \overline{\psi}(x) e^{-i\alpha(x)}$$

$$\psi(y) \to e^{i\alpha(y)} \psi(y)$$

$$U(x,y) \to e^{i\alpha(x)} U(x,y) e^{-i\alpha(y)}$$

The gauge link ensures gauge invariance for a combination of fields.

$$\overline{\psi}(x)U(x,y)\psi(y) \to \overline{\psi}(x)U(x,y)\psi(y)$$

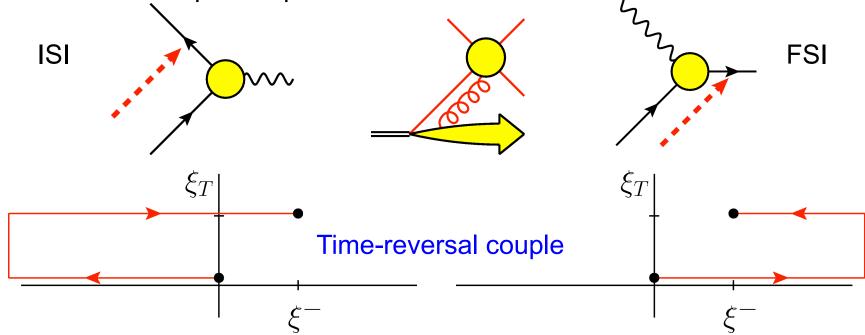
- - → the U(x,y) depends on the color flow in the hard process (in case of transverse momentum)

Gauge invariance for quark TMDs

Gauge links make the nonlocal combinations of fields gauge invariant

$$U_{[0,\xi]} = \mathcal{P} \exp\left(-ig \int_0^{\xi} ds^{\mu} A_{\mu}\right)$$

Introduce a path dependence



A.V. Belitsky, X. Ji, F. Yuan, NP B 656, (2003) 165 D. Boer, P.J. Mulders & F. Pijlman, NP B 667 (2003) 2012

TMD PDFs

- Correlator Φ cannot be calculated from first principles: use parton distribution functions (TMDs)
- Depending on polarization(s), different contributions are required

$$\Phi^{[U]}(x, p_T) = \left[f_1^{[U]}(x, p_T^2) + ih_1^{\perp [U]}(x, p_T^2) \frac{p_T}{M} + \dots \right] \frac{p_T}{2}$$

quark polarization

		U	L	Т
pol.	U	f_1		h_1^{\perp}
nucleon pol.	L		g_{1L}	h_{1L}^{\perp}
nnc	Т	f_{1T}^{\perp}	g_{1T}	$h_{1T},\!h_{1T}^{\perp}$

TMD PDFs

- Correlator

 cannot be calculated from first principles: use parton distribution functions (TMDs)
- Depending on polarization(s), different contributions are required

$$\Phi^{[U]}(x, p_T) = \left[f_1^{[U]}(x, p_T^2) + ih_1^{\perp [U]}(x, p_T^2) \frac{p_T}{M} + \dots \right] \frac{p}{2}$$

quark polarization

		U	L	T
pol.	U	f_1		h_1^{\perp}
nucleon pol.	L		g_{1L}	h_{1L}^{\perp}
nnc	Т	f_{1T}^{\perp}	g_{1T}	h_{1T}, h_{1T}^{\perp}

Observable at LHC (unpolarized protons)

TMD PDFs

- Correlator Φ cannot be calculated from first principles: use parton distribution functions (TMDs)
- Depending on polarization(s), different contributions are required

$$\Gamma^{[U]}(x, p_T) = \frac{1}{2x} \left(-g_T^{\mu\nu} f_1^g(x, p_T^2) + \left(\frac{p_T^{\mu} p_T^{\nu} - \frac{1}{2} p_T^2 g_T^{\mu\nu}}{M^2} \right) h_1^{\perp g[U]}(x, p_T^2) + \dots \right)$$

gluon polarization

		U	L	Lin.
ool.	U	f_1^g		$h_1^{\perp g}$
nucleon pol.	L		g_{1L}^g	$h_{1L}^{\perp g}$
nuc	Т	$f_{1T}^{\perp g}$	g_{1T}^g	$h_{1T}^g,\!h_{1T}^{\perp g}$

Observable at LHC (unpolarized protons)

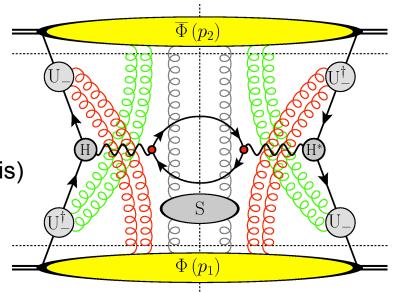
Relevant for Higgs physics

See e.g. Boer, den Dunnen, Pisano, Schlegel and Vogelsang, Phys. Rev. Lett. 108 (2012) 032002

Summary and outlook

- Transverse directions are required
 - TMDs
 - Polarizations

- Gauge links are required
 - Process dependence for TMDs
 (in a calculable way → see e.g. my thesis)
 - Universality

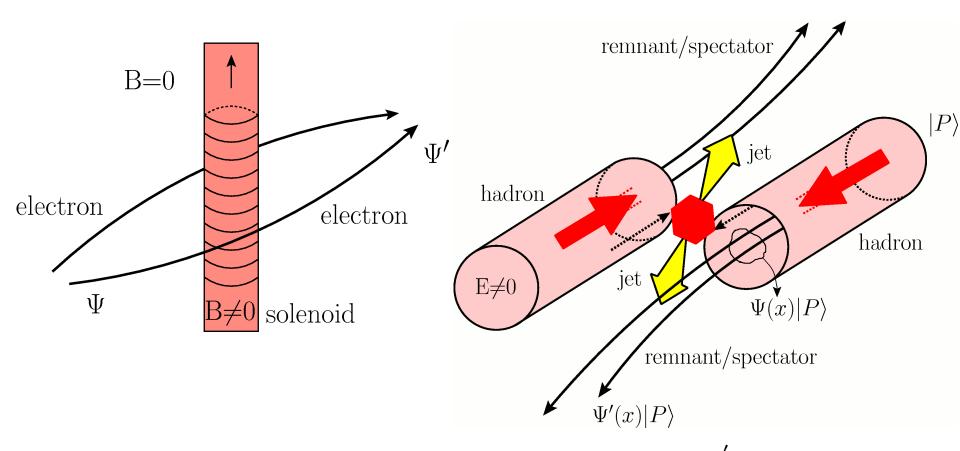


- Outlook: double parton distributions
 - Multiple hard scattering exchanges simultaneously

Backup slides

Theory: phases

Gauge links are phases



$$\Psi = \mathcal{P}e^{ie\int ds \cdot A}\Psi \qquad \qquad \Psi(x)|P\rangle = \mathcal{P}e^{-ig\int_x^{x'} ds_\mu A^\mu}\Phi(x')|P\rangle$$

Depending on the process, multiple paths are possible

Quark TMD PDFs

- Correlator Φ cannot be calculated from first principles: use parton distribution functions (TMDs)
- Depending on polarization(s), different contributions are required

$$\Phi^{[U]}(x, p_T) = \left[f_1^{[U]}(x, p_T^2) + ih_1^{\perp [U]}(x, p_T^2) \frac{p_T}{M} + \dots \right] \frac{p}{2}$$

quark polarization

		U	L	Т
pol.	U	f_1		h_1^{\perp}
nucleon	L		g_{1L}	h_{1L}^{\perp}
nnc	Т	f_{1T}^{\perp}	g_{1T}	h_{1T}, h_{1T}^{\perp}

T-odd

Quark TMD PDFs

- Correlator

 cannot be calculated from first principles: use parton distribution functions (TMDs)
- Depending on polarization(s), different contributions are required

$$\Phi^{[U]}(x, p_T) = \left[f_1^{[U]}(x, p_T^2) + ih_1^{\perp [U]}(x, p_T^2) \frac{p_T}{M} + \dots \right] \frac{p}{2}$$

quark polarization

		U	L	Т
pol.	U	f_1		h_1^{\perp}
nucleon pol.	L		g_{1L}	h_{1L}^{\perp}
nnc	Т	f_{1T}^{\perp}	g_{1T}	h_{1T} h_{1T}

Process dependent

Pretzelocity is T-even and process dependent