Transverse momentum spectra at NNLL'+NNLO with CuTe

Thomas Lübbert University of Hamburg

in progress with Thomas Becher, Matthias Neubert, Daniel Wilhelm

SCET Workshop 2016

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Outline

Resummation

- Some technical points
- 2 Phenomenology
 - Confront with data
 - Conclusions

Resummation Some technical points

Observable

Consider: $N_1 + N_2 \rightarrow F(q) + X$

- $F = \gamma^*, Z, W, H, Z', ...$
- Test (B)SM to high precision.
- $d\sigma/dq_T$ in region $q_T^2 \ll M^2$. Large $\log q_T^2/M^2$.
- \Rightarrow Need to **resum** these. Soft/collinear origin.
- $\Rightarrow \text{ Transverse PDFs} \\ (\text{Beam functions}).$
- \Rightarrow *F* recoils against initial state radiation.

< ロ > < 同 > < 回 > < 回 >

Resummation Some technical points

$\frac{d\sigma}{dq_T dy}$ - counting a_s and L

$$\lambda = q_T/M$$
 , $L = \log \lambda$, $a_s = rac{lpha_s}{4\pi}$, PC= power correction.

$$\frac{d\sigma}{dq_{T}dy} = C(a_{s})\exp\left[Lg_{1}(a_{s}L) + g_{2}(a_{s}L) + a_{s}g_{3}(a_{s}L) + a_{s}^{2}g_{4}(a_{s}L) + \dots\right] + \mathcal{O}(\lambda).$$

When expand:

FO∖RES		LL	NLL	NLL'	N^2LL	N ² LL'	N ³ LL		PC	
LO	$a_s^0[$	1]
NLO	$a_s^1[$	L ²	L ¹	1					$\mathcal{O}(\lambda)$]
$N^{2}LO$	a_s^2 [L ⁴	L ³	L ²	L^1	1			$\mathcal{O}(\lambda)$]
N ³ LO	a _s ³ [L ⁶	L ⁵	L ⁴	L ³	L ²	L^1	1	$\mathcal{O}(\lambda)$]
			÷	÷	÷	÷	÷	÷		
In this talk will discuss CuTe 's										
• N^3LL_p * resummation and										

• N²LO matching (\Rightarrow recover PC).

* p=partial: lacking values of Γ_3^i and $F_i^{(3,0)}$.

Selected tools for q_T resummation

Monte Carlo event generators: Sherpa, Herwig, Pythia, ... Matched: Geneva [Alioli, Bauer, Berggren, Tackmann, Walsh].

Analytic resummation:

- CSS type: DYqT, DYRes, HRes [Catani, Cieri, de Florian, Ferrera, Grazzini], γγ: [Cieri, Coradeschi, de Florian], ZZ, W⁺W⁻: [Grazzini, Kallweit, Rathlev, Wiesemann], ResBos [Balazs, Yuan] ...
- SCET: CuTe 1.0 [Becher, Neubert, Wilhelm], [Neill, Rothstein, Vaidya] and [Echevarria, Kasemets, Mulders, Pisano].
- Here: CuTe 2.0 [Becher, TL, Neubert, Wilhelm]_{prog.}. Currently available: γ*, Z, W, H.
- Method can be applied to **all** other processes with color neutral final states: *V*, *H*, *VV'*, *HH*, *Z'*, ...
- For others to include F.O. part.
 VV' at fixed order see e.g. Mainz/Zürich/Karlsruhe-groups
 [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, v.Manteuffel, Pozzorini, Rathlev, Tancredi, Torre, Weihs], [Caola, Henn, Melnikov, Smirnov, Smirnov].

Resummation Some technical points

Cross sections

- Popular: *H*.
- σ much larger for V production.
- For Z/γ^* very clean final state.
- Test SM to high precision.

Factorization formula

• [Collins, Soper, Sterman], ..., [Becher, Neubert] for $\Lambda^2_{
m QCD} \ll q_T^2 \ll M^2$:

$$\frac{d^2\sigma_c}{dq_T^2dy} = \sigma_c^{(0)} \sum_{k,j} \int d^2 x_T \ e^{iq_T \cdot x_T} \ \widetilde{\mathsf{C}}_{c \leftarrow kj}(z_1, z_2, x_T^2, M^2, \mu) \otimes f_{k/N_1}(z_1, \mu) \otimes f_{j/N_2}(z_2, \mu) \,,$$

- in impact parameter (x_T) space
- with **perturbative** \checkmark hard collinear&soft \searrow $\widetilde{C}_{c \leftarrow ij}(z_1, z_2, x_T^2, M^2, \mu) = |C_c(-M^2, \mu)|^2 \overline{I}_{i \leftarrow k}(z_1, L_{\perp}, a_s) \overline{I}_{\overline{i} \leftarrow j}(z_2, L_{\perp}, a_s) e^{g_i(M, x_T, \mu)}$, • where i(c) = q, g; $L_{\perp} = \log \frac{x_T^2 \mu^2}{b_0^2}$, $b_0 = 2e^{-\gamma E}$, $a_s = \alpha_s(\mu)/4\pi$ and $g_i(M, x_T, \mu) = 2h_i(L_{\perp}, a_s) - F_i(L_{\perp}, a_s) \log \frac{x_T^2 M^2}{b_0^2}$. Note: $F_i(L_{\perp}, a_s) = \gamma_{B,\nu}^i$ in RRG framework of [Chiu, Jain, Neill, Rothstein] \rightarrow Joel Oredsson's talk.
- Each function depends on single physical scale \Rightarrow Safely determine pert..
- Solving **RGEs** $(\mu) \Rightarrow$ resummation of $L = \log(x_T^2 M^2/b_0^2)$.

In \widetilde{C} suppressed sum over tensor components (i(c) = g) or quark charges (i(c) = q).

Resummation Some technical points

x_T integral and scale choice

• CuTe: Combine everything and numerically evaluate $\otimes f$, x_T , y integrals.

Perform
$$\int d^2 x_T e^{iq_T \cdot x_T} \widetilde{C}_{c \leftarrow ij} = \int_0^\infty dx_T x_T J_0(x_T q_T) \widetilde{C}_c(z_1, z_2, x_T^2, M^2, \mu).$$

- Essentially two kind of logs: $L_M = \log M^2/\mu^2$ and $L_\perp = \log x_T^2 \mu^2/b_0^2$.
- Aim: small L_{\perp} . $b_0 = 2e^{-\gamma_E}$
- $\mu_x = b_0/x_T$: Run into Landau pole.
- Moreover, prefer physical choice $\mu(q_T, M)$.
- $\mu = \mu_* = \mathbf{q}_T + \mathbf{q}_* \exp(-\mathbf{q}_T/\mathbf{q}_*), \ q_* = M_i / \exp(1/(2\Gamma_0^i a_s))$ $\Rightarrow \langle L_\perp \rangle$ small. Set $\mu_{c,s} = \mu, \ \mu_h = M$.
- Thanks to $x_T e^{g_i} \rightarrow \text{Gaussian peak:}$ determines q_* , width $\sim 1/\sqrt{a_s}$.
- Power counting for ∫ dx_T: a_s ~ ε², L_M ~ ε⁻², L_⊥ ~ ε⁻¹ Do up to ε⁵.

・ 同 ト ・ ヨ ト ・ ヨ ト

Matching to fixed order

Restoring power (qT/M) suppressed contributions.

$$\begin{aligned} \frac{d\sigma^{\text{matched}}}{dq_{T}} &= \frac{d\sigma^{\text{res}}}{dq_{T}} + \frac{d\sigma^{\text{MC}}}{dq_{T}} \Big|_{\text{MS}}, \\ \frac{d\sigma^{\text{MC}}}{dq_{T}} \Big|_{\text{MS}} &= R_{\text{ms}} \left(\frac{d\sigma^{\text{FO}}}{dq_{T}} - \frac{d\sigma^{\text{res}}}{dq_{T}} \Big|_{\text{expanded to FO}} \right) \end{aligned}$$

with $H(-M^2,\mu_h,\mu)=U_H(\mu,\mu_h)\cdot|C_i(-M^2,\mu_h)|^2$ and

$$\begin{aligned} R_{\rm add} &= R_{\rm ms}(\mu_h) = 1, \\ R_{\rm ms}(\mu_*) = H(-M^2, \mu_h, \mu_*) \cdot H^{-1}(-M^2, \mu_*, \mu_*), \\ R_{\rm ms}(q_T) = H(-M^2, \mu_h, q_T) \cdot H^{-1}(-M^2, q_T, q_T). \end{aligned}$$

 $H(-M^2, \mu, \mu)$ corresponds to the FO expansion of resummed $H(-M^2, \mu_h, \mu)$. $R_{\rm ms} = 1 + \mathcal{O}(a_s^3)$ but **can supply Sudakov suppression** to $d\sigma^{\rm MC}$. Model our ignorance of power suppressed but log enhanced terms beyond NNLO.

FO results: $V \rightarrow [Gonsalves, Pawlowski, Wai], H \rightarrow [Glosser, Schmid] \square \lor (=) (=) = ()$

Resummation Some technical points

Matching schemes - numerical effects

- For Drell-Yan:
 - Small matching corrections.
 - Negligible matching scheme dependence.
- For H larger uncertainties
- Will use q_T -MS.

Image: A image: A

Resummation Some technical points

Non-perturbative effects

- Modeling leading NPE beyond $B_{i/N} = \sum_k I_{i/k}^{\text{pert}} \otimes f_{k/N}$.
- TPDFs must vanish rapidly at $x_T > r_{\text{proton}}$. Ansatz:

$$B_{i/N}(z,x_T^2,\mu) = f_{ ext{hadr}}(x_T \Lambda_{ ext{NP}}) \, B_{i/N}^{ ext{pert}}(z,x_T^2,\mu) \; ,$$

with

$$f_{
m hadr}^{
m enhanced}(x_{\mathcal{T}}\Lambda_{
m NP}) = \exp\left[-\Lambda_{
m NP}^2 \, x_{\mathcal{T}}^2 \log(x_{\mathcal{T}}^2 M^2/b_0^2)
ight] \quad [{
m Becher, \ Bell}] \,.$$

- $\Lambda_{\rm NP} = 0 GeV$: no correction.
- Effect: Suppression at very small q_T . Peak shifted.

/□ ▶ < 글 ▶ < 글

Resummation Some technical points

CuTe: old vs new version

CuTe: handle all of this for γ^*, Z, W and H.

CuTe 1.1

- Public C⁺⁺-code.
- LHAPDF 5.
- N²LL resummation.

NLO matching.

 Power counting for very small q_T: O(ε²). Now up to $N^2LO + N^3LL_p$ precision.

CuTe 2.0

- Not yet public.
- Linked to LHAPDF 6, Cuba.
- Full N³LL implementation:
 - 2-loop beam-functions
 - Unknown Γ_3^i and $F_i^{(3,0)}$ $\Rightarrow N^3 LL_p$ (partial)

▲□ ► < □ ► </p>

N²LO matching.

• $\mathcal{O}(\epsilon^5)$.

Phase space cuts y, p^l_T, η^l.
 narrow width approx.

 $[{\sf Becher}, {\sf Neubert}, {\sf TL}, {\sf Wilhelm}]_{\sf pgr.}$

Confront with data Conclusions

Phenomenology Apply CuTe

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Settings

- $\epsilon^5 \text{ N}^3 \text{LL}_{\rho} + \text{N}^2 \text{LO}$ precision.
- $\mu = q_T + q_* \exp(-q_T/q_*), \ q_* = M_i / \exp(1/2\Gamma_0^i a_s).$ $q_*^Z \sim 2GeV, \ q_*^H \sim 8GeV.$
- q_T matching scheme.
- Smooth transit to pure fixed order for q_T between $\frac{M_i}{2}$ and $\frac{3M_i}{4}$.
- HERA PDF 15 NNLO.
- π^2 resummation.
- Γ_3 Pade approximation.
- Uncertainty bands: vary μ by factor 2, $F^{(3,0)}$ between $\pm 2(4\pi)F^{(2,0)}$.

- 同 ト - ヨ ト - - ヨ ト

Confront with data Conclusions

VS Z D0 data

 Upper plots: left linear; right log-log. Lower plots: ratio. Experimental bins. [Becher, TL, Neubert, Wilhelm]pgr.

▲ 同 ▶ → 三 ▶

- Very good agreement with data:
 - D0, hep-ex/9909020, Z at 1.8TeV.
 - Cuts for $d\sigma_{
 m fiducial}/dq_T$: 60 $< M_{II}/GeV <$ 120,

 $p_{T,l} > 25 ext{GeV}$, $|\eta_{l,1}| < 1.1$, $|\eta_{l,2}| < 2.4$, excluding $1.11 < |\eta_{l,2}| < 1.5$

- Effect of cuts: Normalization and shift peak to the right.
- In theory prediction, symmetrized lepton cuts.

Confront with data Conclusions

VS Z ATLAS 7 TeV data

• Good agreement with data:

[Becher, TL, Neubert, Wilhelm]pgr.

< 日 > < 同 > < 三 > < 三 >

- ATLAS hep-ex/1406.3660 Z/γ^* 4.7 fb⁻¹ at 7TeV.
- Cuts for $d\sigma_{
 m fiducial}/dq_T$: 66 $< M_{\rm H}/GeV <$ 116,
- $p_{T,l} > 20 \text{GeV}$, $|\eta_l| < 2.4$, excluding $1.37 < |\eta_l| < 1.52$
- Uncertainty band: $\mu \& F^{(3,0)}$ variation.
- Tail FO. On-shell approx. less accurate.

-

Confront with data Conclusions

VS Z ATLAS 8 TeV

• Good agreement with data:

[Becher, TL, Neubert, Wilhelm]pgr.

- ATLAS hep-ex/1512.0219 Z/γ^* 20.3 fb⁻¹ at 8TeV.
- Cuts for $d\sigma_{
 m fiducial}/dq_T$: 66 $< M_{\rm H}/GeV <$ 116,
- $p_{T,l} > 20 \text{GeV}, \ |\eta_l| < 2.4$, excluding $1.37 < |\eta_l| < 1.52$
- Suppressed tail and overshoot $\sigma_{Z/\gamma^* \rightarrow l^+ l^-}^{\exp} = 537.10 \text{pb}$ by $\sim +6\%$.

At this precision, potentially relevant λ^n and $\lambda^0 \log^0 \lambda \ \alpha_s^3$ contributions: $K_{qT/GeV \in [10.20]} \sim 0.9$, $K_{qT/GeV \in [20,40]} \sim 0.95$

[Gehrmann-De Ridder, Gehrmann, Glover, Huss, Morgan].

All three experiments well described. No specific tuning.

Confront with data Conclusions

Estimated impact of unknown N³LL ingredients

• Vary unknowns Γ_3 , $F^{(3,0)}$:

- Deviation plots w.r.t. $f_{\Gamma}, f_F = 0$.
- $\Gamma_3 = f_{\Gamma} \Gamma_3^{\text{Pade}}, \quad \rightarrow \text{tiny.}$
- $F^{(3,0)} = f_F(4\pi)F^{(2,0)}$, \rightarrow few percent.
- Largest impact at small q_T .

< 日 > < 同 > < 三 > < 三 >

-

Confront with data Conclusions

μ variation

 μ uncertainties:

- In tail: \sim 8%, pure FO.
- Towards peak: $< 1\% (\epsilon^5 \text{ N}^3 \text{LL}_p + \text{N}^2 \text{LO} \dots)$
- At very small q_T : increases again (huge logs).

- 4 同 2 4 日 2 4 日 2

э

Confront with data Conclusions

PDF uncertainties

Various NNLO pdf sets.

 μ variation for each.

Sizeable pdf uncertainty.

Not fully reflected by $1-\sigma$ pdf uncertainty. Here for HERA 15.

Thomas Lübbert

Confront with data Conclusions

Uncertainties

- CuTe accurately describes precise data sets over large *q_T* range.
- Uncertainties \sim 7% for Z/γ^* .
- Discussed above:
 - Higher order in QCD: $F^{(3,0)}$ (& Γ_3) (~ 2%, medium q_T); μ -variations (~ 5%, tail).
 - Pdf uncertainty ($\sim 2\%^{++}$).
 - Non-perturbative effects ($\sim 2\%$, $q_T < 3$ GeV, $M_{II} > 66 GeV$).
- Not discussed here:
 - Off-shell effects.
 - Electro-weak effects.
 - Quark mass effects.
 - New physics.
 - ...

Conclusions

- **Resummation** essential for small q_T/M .
- Generic framework to obtain precise $d\sigma/dq_T(/dy)$ for large class of processes at hadron colliders.
- Implemented to $N^2LO+N^3LL_p$ precision for γ^* , Z, W, H in **CuTe** 2.0.
- Obtain very accurate description of q_T spectrum.
- Code will become public.

Appendix

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 \Rightarrow n = 1 sufficient if C_{gg} does not mix I' & I. (E.g. for Higgs.)

Resummation *H* production

Resummation

• RGEs
$$\Rightarrow$$
 Dependence on μ

$$i=i(c)$$
,

$$\begin{split} & \frac{d}{d \log \mu} \log C_c(-M^2,\mu) = \ \Gamma^i(a_s) \log \frac{-M^2 - i0^+}{\mu^2} + 2\gamma^i(a_s) \,, \\ & \frac{d}{d \log \mu} F_i(L_{\perp},a_s) = \ 2 \ \Gamma^i(a_s) \,, \\ & \frac{d}{d \log \mu} h_i(L_{\perp},a_s) = \ \Gamma^i(a_s) L_{\perp} - 2\gamma^i(a_s) \,, \\ & \frac{d}{d \log \mu} \overline{I}_{i/j}(z,L_{\perp},\mu) = -2 \sum_k \overline{I}_{i/k}(z,L_{\perp},a_s) \otimes P_{k/j}(z,a_s) \,, \\ & \frac{d}{d \log \mu} f_{i/j}(z,\mu) = \ 2 \sum_k P_{ik}(z,\mu) \otimes f_{k/j}(z,\mu) \,. \end{split}$$

 \Rightarrow Resum logarithms. E.g.:

$$\begin{split} |C_c(-M^2,\mu)|^2 = & |C_c(-M^2,\mu_h)|^2 \exp\left\{2\mathrm{Re}[\mathrm{E}_{\mathrm{C}_c}(-\mathrm{M}^2,\mu,\mu_h)]\right\} \,,\\ \mathsf{E}_{C_c}(-M^2,\mu,\mu_h) = \int_{\mu_h}^{\mu} \frac{d\mu'}{\mu'} \left(\Gamma^i \log \frac{-M^2 - i0^+}{\mu'^2} + 2\gamma^i\right) \,. \end{split}$$

• Log indep. parts and anom. dims. from pert. calc..

э

イロト イポト イヨト イヨト

Relation to framework by Collins, Soper, Sterman

$$\widetilde{C}_{q\bar{q}\leftarrow ij}(z_1,z_2,x_T^2,q^2,\mu)$$

$$= |C_V(-q^2,\mu)|^2 \left(\frac{x_T^2 q^2}{b_0^2}\right)^{-F_{q\bar{q}}(x_T^2,\mu)} I_{q\leftarrow i}(z_1,x_T^2,\mu) I_{\bar{q}\leftarrow j}(z_2,x_T^2,\mu),$$

compare this to [Collins, Soper, Sterman]:

$$= \exp\left\{-\int_{\mu_b}^{q^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[\log\frac{q^2}{\bar{\mu}^2} A(\alpha_s(\bar{\mu})) + B(\alpha_s(\bar{\mu}))\right]\right\} \\ \times C_{qi}(z_1, \alpha_s(\mu_b)) C_{\bar{q}j}(z_2, \alpha_s(\mu_b)),$$

 x_T dependence via $\mu_b = b_0 x_T^{-1}$.

Relations:

•
$$C_{qi}(z, \alpha_s(\mu_b)) = |C_V(-\mu_b^2, \mu_b)| I_{q/i}(z, x_T^2, \mu_b),$$

• A & B related to F and anomalous dimensions.

Resummation H production

Dictionary CSS vs BN

Using
$$b_0 = 2e^{-\gamma_e}$$
, $\mu_b = b_0 x_T^{-1}$ and $\bar{x}_T = b_0 \bar{\mu}^{-1}$:

$$C_{qi}(z,\alpha_{s}(\mu_{b})) = \left| C_{V}(-\mu_{b}^{2},\mu_{b}) \right| I_{q/i}(z,\bar{x}_{T}^{2},\mu_{b}),$$

$$A(\alpha_{s}(\bar{\mu})) = \Gamma^{q}(\alpha_{s}) - \bar{\mu}^{2} \frac{dF_{q\bar{q}}(\bar{x}_{T},\bar{\mu})}{d\bar{\mu}^{2}},$$

$$B(\alpha_{s}(\bar{\mu})) = 2\gamma_{q}(\alpha_{s}) + F_{q\bar{q}}(\bar{x}_{T},\bar{\mu}) - \bar{\mu}^{2} \frac{d \log |C_{V}(-\bar{\mu}^{2},\bar{\mu})|^{2}}{d\bar{\mu}^{2}}$$

 \Rightarrow Apply results in preferred resummation framework.

Can reconstruct $\mathcal{H}_{q\bar{q}\leftarrow i\bar{j}}^{DY}$, $\mathcal{H}_{gg\leftarrow i\bar{j}}^{H}$, ... in [Catani, Cieri, de Florian, Ferrera, Grazzini].

同 ト イ ヨ ト イ ヨ ト

Resummation *H* production

Vs H ATLAS 8 TeV

• Sizeable uncertainties. Mainly from FO part.

- Low statistics for data:
 - ATLAS, hep-ex/1504.05833, H 20.3 fb⁻¹ at 8TeV .
 - Cuts unfolded.
- Can we trust fist experimental bin?

< /□ > < 3

Resummation *H* production

H 13 TeV vs HqT

- CuTe (μ as μ_{*} and <u>M</u>/₂) vs HqT 2.0.
- Very similar shape.
- Integrated σ

$$\begin{split} \sigma_{\rm CuTe} &= 44 {\rm pb} \pm 8\%, \\ \sigma_{\rm HqT} &= 40 {\rm pb} \pm 6\%, \\ \sigma_{\rm nnlo} &= 43 {\rm pb} \pm 9\%, \\ \sigma_{\rm nnnlo} &= 44.31 {\rm pb}_{-2.64\%}^{+0.31\%}. \end{split}$$

[Anastasiou, Duhr, Dulat, Herzog, Mistlberger]. π^2 resummation in CuTe.

< 🗇 > < 🖃 >