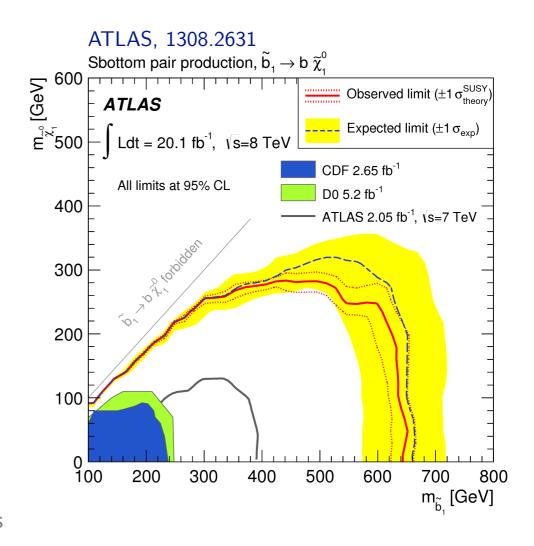
Impact of Jet Veto Resummation on SUSY Searches

Frank Tackmann, Wouter Waalewijn, LZ, [arXiv:1603.03052]

Lisa Zeune

Nikhef, Amsterdam


SCET 2016, DESY 23.03.2016

Introduction

- Several searches for new physics at the LHC require a fixed number of signal jets
- Jet vetoes introduce logarithms in the cross section $\log(p_T^{\mathrm{cut}}/Q)$
- ullet Large effect for SUSY particle production for which Q can easily be 1 TeV
 - → As long as the limits go up the effect is getting larger
- The experimental analyses take the jet-veto cut into account using parton shower Monte Carlos
 - Uncertainty introduced by jet vetoes is not considered in the experimental exclusion limits

Introduction

- Several searches for new physics at the LHC require a fixed number of signal jets
- Jet vetoes introduce logarithms in the cross section $\log(p_T^{\mathrm{cut}}/Q)$
- ullet Large effect for SUSY particle production for which Q can easily be 1 TeV
 - → As long as the limits go up the effect is getting larger
- The experimental analyses take the jet-veto cut into account using parton shower Monte Carlos
 - Uncertainty introduced by jet vetoes is not considered in the experimental exclusion limits

Focussing on slepton searches, we present results for the 0-jet cross section at NLL'+NLO and estimate theory uncertainty associated with the jet veto

New physics searches using jet vetos

Electroweakino and slepton searches typically requiring 0 jets
 ATLAS: 1407.0350, 1403.5294, 1501.07110, 1509.07152, CMS: 1405.7570

Stop and sbottom searches vetoing a third jet

ATLAS: 1308.2631, 1506.08616, CMS: CMS-PAS-SUS-13-018

• Searches for large extra dimensions, unparticles and dark matter: mono-photon, mono-Z, mono-jet

ATLAS: 1209.4625, 1404.0051, CMS: 1408.3583, 1511.09375, CMS-PAS-EXO-12-047

• ...

- Experimentalists define signal regions (sets of selection cuts)
 to increase the signal over background ratio
- Example analysis:
 ATLAS 8TeV 20.3 fb⁻¹
 JHEP 05 (2014) 071

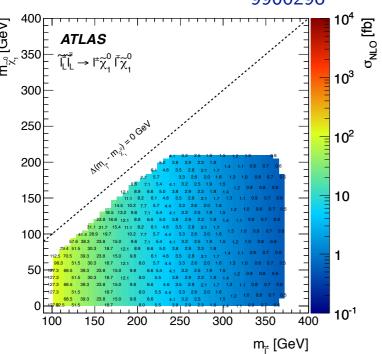
All jets with $p_T > 20 \text{ GeV}$ are vetoed

 Very similar for other analyses, also CMS

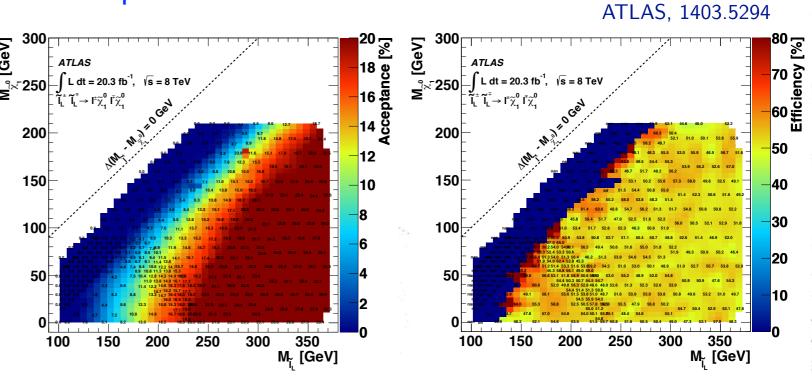
	SR	$m_{ m T2}^{90}$	WWa
	lepton flavour	DF,SF	DF,SF
_	central light jets	0	0
$\left\{ \right.$	central b -jets	0	0
l	forward jets	0	0
	$ m_{\ell\ell} - m_Z $ [GeV]	> 10	> 10
	$m_{\ell\ell} \; [{ m GeV}]$		< 120
	$E_{ m T}^{ m miss,rel} \; { m [GeV]}$		> 80
	$p_{\mathrm{T},\ell\ell} \; [\mathrm{GeV}]$		> 80
	$m_{ m T2} \; [{ m GeV}]$	> 90	
		I	I .

In each signal region:
 Compare number of events
 from SM background Statistically
 to observed number consistent
 of events

-		$\mathrm{SR} ext{-}m_{\mathrm{T2}}^{90}$	
		SF	DF
•	Expected background		
	Total	38.2 ± 5.1	23.3 ± 3.7
•	Observed events	33	21
	Observed $\sigma_{\rm vis}^{95}$ [fb]	0.63	0.55

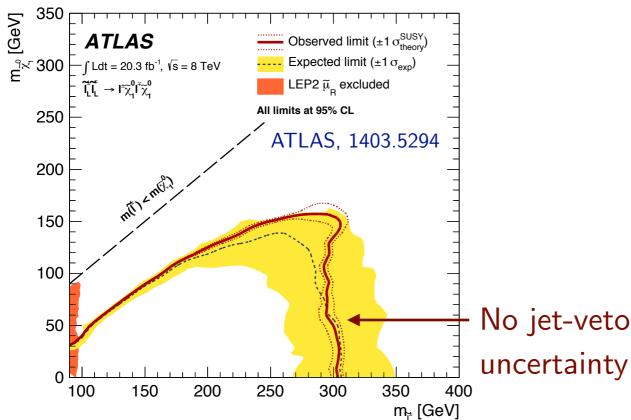

- How many additional new physics (BSM) events are still statistically consistent with the observation? $N_{\rm BSM}^{95} = \sigma_{\rm vis}^{95} \times \mathcal{L}_{\rm int}$
- The reported BSM cross section upper limit, $\sigma_{\mathrm{vis}}^{95}$:
 - Contains the experimental reconstruction efficiencies and acceptance cuts
 - Is model independent

Setting exclusion limits


- One specific SUSY model is considered, typically a simplified model Particle content restricted to the particles appearing in the particular topology considered in a search
- For each parameter point $\sigma_{\rm vis} = \sigma_{\rm SUSY} \times \epsilon_{\rm SUSY}^{\rm (SR)}$ is calculated and compared to $\sigma_{\rm vis}^{95}$ (for the signal region with highest expected sensitivity)

Total SUSY cross section

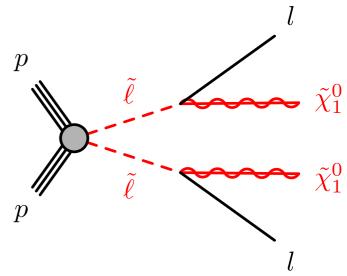
NLO: Prospino Beenakker et al, 9906298



Experimental reconstruction efficiency and acceptance

Setting exclusion limits

- One specific SUSY model is considered, typically a simplified model Particle content restricted to the particles appearing in the particular topology considered in a search
- For each parameter point $\sigma_{\rm vis} = \sigma_{\rm SUSY} imes \epsilon_{\rm SUSY}^{\rm (SR)}$ is calculated and compared to $\sigma_{\rm vis}^{95}$ (for the signal region with highest expected sensitivity)



- Model dependent exclusion limit: $\epsilon_{\rm SUSY}^{\rm (SR)}$ including the jet veto cut is obtained from parton shower Monte Carlo
 - Captures the leading logs
 - → No control over jet-veto uncertainty

uncertainty included

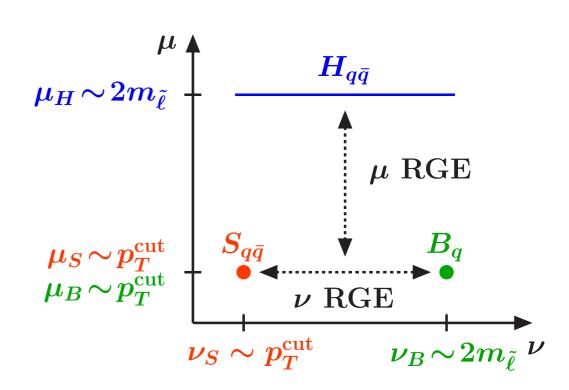
Slepton searches

- We focus on searches for sleptons (selectrons and smuons) $\tilde{\ell}_L$ and $\tilde{\ell}_R$ are the superpartners of left- and right-handed leptons
- Process: $pp \to \tilde{\ell}\tilde{\ell} \to \ell\chi_1^0\ell\chi_1^0$
- Slepton simplified model:
 - All SUSY particles decoupled, except the slepton $\tilde{\ell}$ and the lightest neutralino $\tilde{\chi}_1^0$
 - \longrightarrow Branching ratio: $\mathcal{B}(\tilde{\ell} \to \ell \chi_1^0) = 1$
 - \longrightarrow R-parity conserved, $\tilde{\chi}_1^0$ is stable
- Most important signal region cuts:
 - Two (same-flavour, opposite charge) leptons
 - No jets
 - Stransverse mass: $m_{T2} > 90$, 120 or 150 GeV Lester, Summers, Barr, Stephens, 9906349, 0304226

Factorization formula

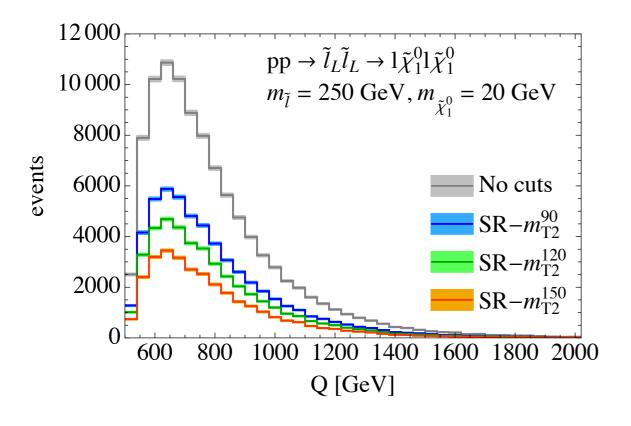
- We calculate the 0-jet slepton cross section at NLL'+NLO
- Utilize the SCET framework developed for Higgs $p_T^{
 m cut}$ resummation
- Factorization formula

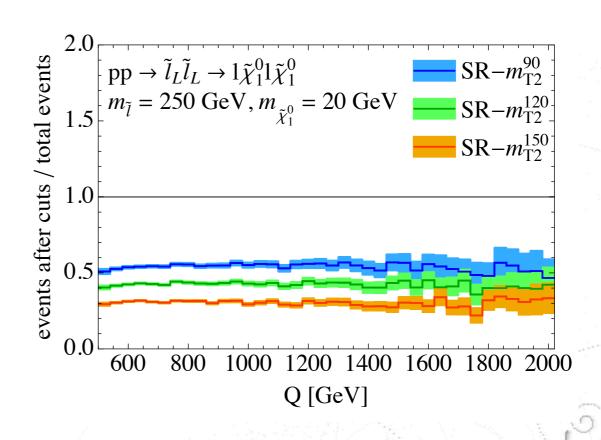
Stewart, Tackmann, Walsh, Zuberi, 1206.4312, 1307.1808; See also: Becher, Neubert, Rothen, 1205.3806, 1307.0025


$$\sigma_0(p_T^{\text{cut}}, m_{\text{SUSY}}, \text{cuts}) = \int dQ^2 dY \, H_{q\bar{q}}(Q^2, Y, m_{\text{SUSY}}, \text{cuts}, \mu)$$

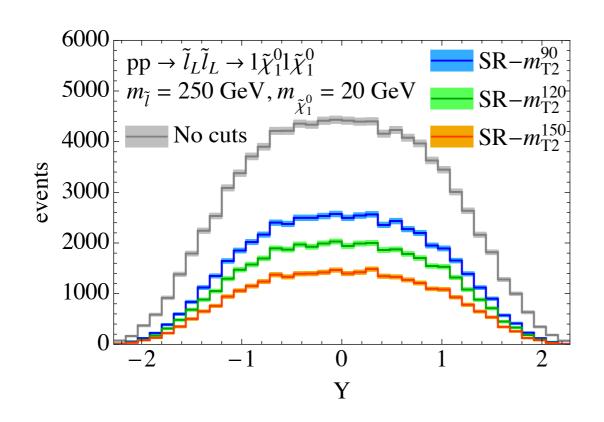
$$\times B_q(p_T^{\text{cut}}, x_a, \mu, \nu) \, B_{\bar{q}}(p_T^{\text{cut}}, x_b, \mu, \nu) \, S_{q\bar{q}}(p_T^{\text{cut}}, \mu, \nu)$$

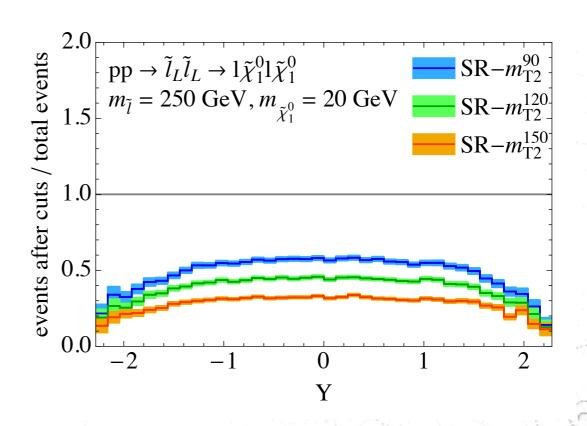
$$+ \sigma_0^{\text{nons}}(p_T^{\text{cut}}, m_{\text{SUSY}}, \text{cuts})$$


 Rapidity renormalised beam and soft functions obtained from Higgs/Drell-Yan


Liu, Petriello, 1210.1906; Stewart, Tackmann, Walsh, Zuberi, 1307.1808

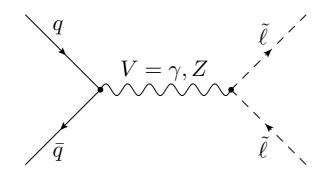
Correlations of jet veto with other cuts


- Beam and soft function depend on jet veto, whereas hard function depends on other cuts
- Correlations via the common variables Q and Y?

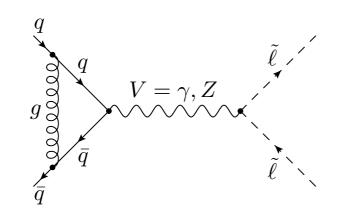


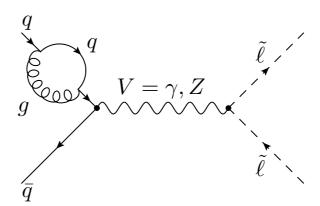
Correlations of jet veto with other cuts

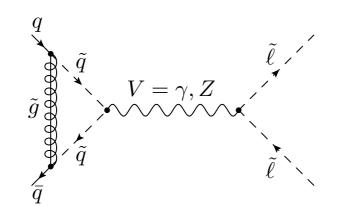
- Beam and soft function depend on jet veto, whereas hard function depends on other cuts
- Correlations via the common variables Q and Y?
 Other cuts do not affect the Q and Y shape
 - ⇒ Factor them out and treat them as Q and Y independent correction

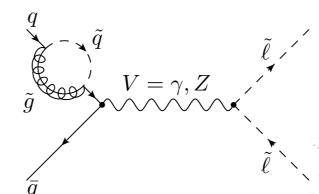


Slepton production


• Now $\mathcal{B}(\tilde{\ell} \to \ell \chi_1^0) = 1$ allows us to consider slepton production without decay


Tree-level:


QCD corrections are clearly bigger than SUSY-QCD corrections, especially in simplified model


NLO QCD:

NLO SUSY-QCD:

At NLO other production modes are possible, but negligible

Hard function

$$H_{q\bar{q}}(Q^2, m_{\text{SUSY}}, \mu) = \sigma_B(1+V)$$

• Born cross section (s = L, R):

$$\sigma_B = \frac{\alpha_{\rm em}^2 \pi}{9Q^2} \frac{1}{E_{\rm cm}^2} \left(1 - \frac{4m_{\tilde{\ell}_s}^2}{Q^2} \right)^{3/2} h_{\tilde{\ell}_s \tilde{\ell}_s}$$

For right-handed sleptons cross-section is smaller ⇒ exclusion weaker

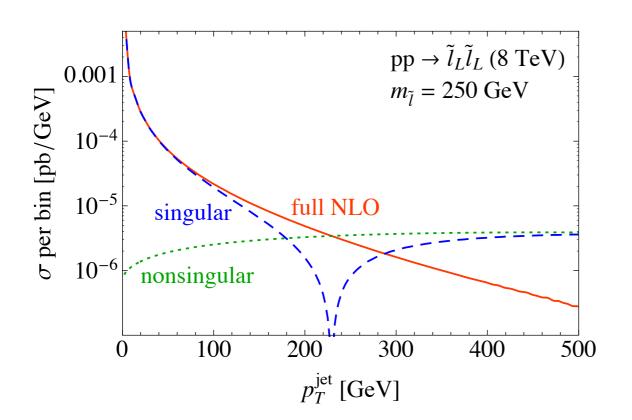
$$h_{\tilde{\ell}_s\tilde{\ell}_s} = Q_q^2 Q_\ell^2 + Q_q Q_\ell \frac{(g_q^- + g_q^+)(g_\ell^- \delta_{sL} + g_\ell^+ \delta_{sR})}{1 - m_Z^2/Q^2} + \frac{(g_q^{-2} + g_q^{+2})(g_\ell^{-2} \delta_{sL} + g_\ell^{+2} \delta_{sR})}{2(1 - m_Z^2/Q^2)^2}$$
 electric charges fermion-Z-couplings

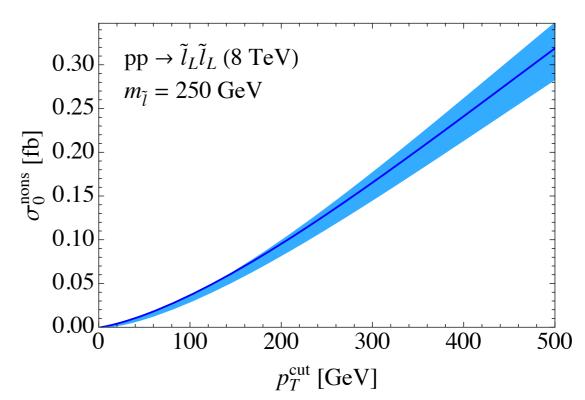
fermion-Z-couplings

• Virtual corrections:
$$V = \frac{\alpha_s(\mu)C_F}{4\pi} (V_{\text{QCD}} + V_{\text{SUSY}}) + h.c.$$

$$V_{\text{QCD}} = -\ln^2\left(\frac{Q^2}{\mu^2}\right) + 3\ln\left(\frac{Q^2}{\mu^2}\right) - 8 + \frac{7\pi^2}{6}$$

 $V_{
m SUSY}$ has no IR divergencies, hence no explicit μ dependence

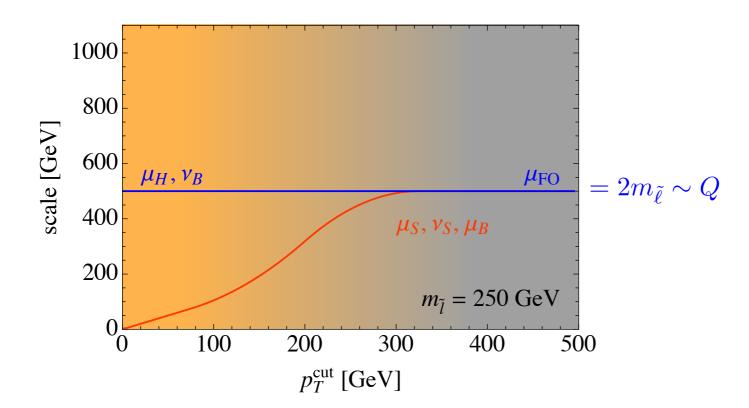

$$V_{\text{SUSY}} = -\text{Im} \left(\frac{1}{\mu^2}\right) + 3\text{Im} \left(\frac{1}{\mu^2}\right) - 3 + \frac{1}{6}$$


$$V_{\text{SUSY}} = 1 + \frac{2m_{\tilde{g}}^2 - 2m_{\tilde{q}}^2}{Q^2} \left[B_0(Q^2, m_{\tilde{q}}^2, m_{\tilde{q}}^2) - B_0(0, m_{\tilde{g}}^2, m_{\tilde{q}}^2)\right] + B_0(Q^2, m_{\tilde{q}}^2, m_{\tilde{q}}^2)$$

$$+ 2\frac{m_{\tilde{g}}^4 + (Q^2 - 2m_{\tilde{q}}^2) m_{\tilde{g}}^2 + m_{\tilde{q}}^4}{Q^2} C_0(0, 0, Q^2, m_{\tilde{q}}^2, m_{\tilde{g}}^2, m_{\tilde{q}}^2)$$

$$- B_0(0, m_{\tilde{g}}^2, m_{\tilde{q}}^2) + (m_{\tilde{q}}^2 - m_{\tilde{g}}^2) B_0'(0, m_{\tilde{g}}^2, m_{\tilde{q}}^2)$$

Nonsingular contributions


• We include $\mathcal{O}(p_T^{\mathrm{cut}}/Q)$ suppressed non singular contributions to reproduce the full NLO result at large p_T^{cut}

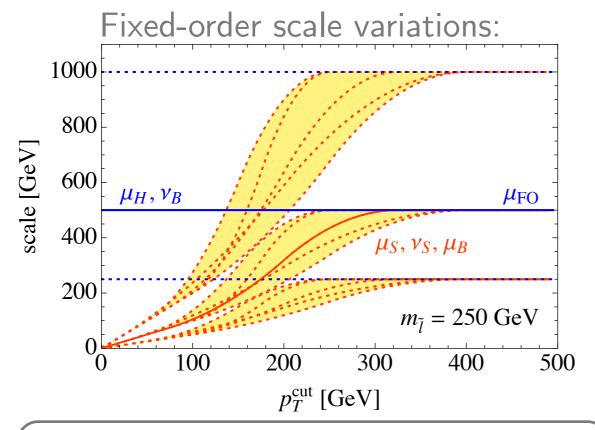
$$\sigma_0^{\rm nons}(p_T^{\rm cut}) = \int_{\epsilon \to 0}^{p_T^{\rm cut}} \mathrm{d}p_T^{\rm jet} \left(\frac{\mathrm{d}\sigma_0^{\rm FO}}{\mathrm{d}p_T^{\rm jet}} - \frac{\mathrm{d}\sigma_0^{\rm sing}}{\mathrm{d}p_T^{\rm jet}} \right)$$

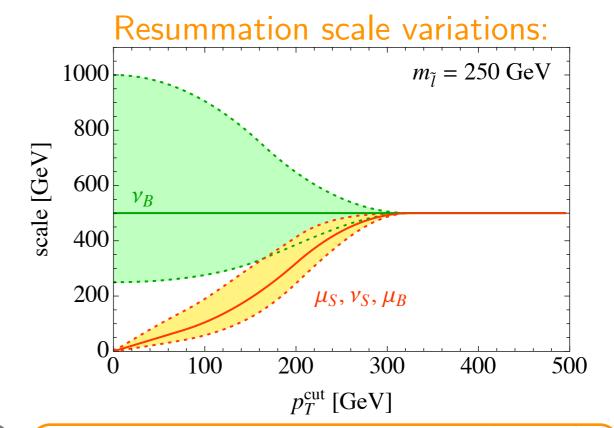
Set all scales in NLL' result equal to the fixed-order scale Generate $pp \to \tilde{\ell}\tilde{\ell} + j$ events in Madgraph

$$\text{Fit: } \frac{\mathrm{d}\sigma_0^{\mathrm{nons}}}{\mathrm{d}p_T^{\mathrm{jet}}} = a \ln \frac{p_T^{\mathrm{jet}}}{2m_{\tilde{\ell}}} + b + c \frac{p_T^{\mathrm{jet}}}{2m_{\tilde{\ell}}} \ln \frac{p_T^{\mathrm{jet}}}{2m_{\tilde{\ell}}} + d \frac{p_T^{\mathrm{jet}}}{2m_{\tilde{\ell}}}$$

Profile scales

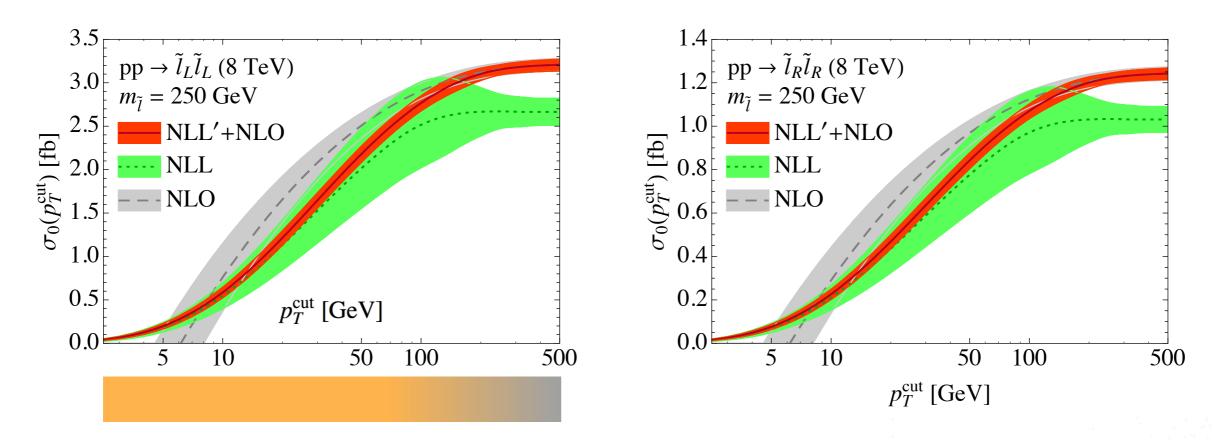
- Resummation region: canonical scales (minimizing logarithms)
- Fixed-order region: common fixed order scale (resummation turned off)
- Smooth transition between resummation and fixed order region using profile scales:


Ligeti, Stewart, Tackmann, 0807.1926; Abbate, Fickinger, Hoang, Mateu, Stewart, 1006.3080


$$\mu_H = \nu_B = \mu_{\text{FO}},$$

$$\mu_B = \mu_S = \nu_S = \mu_{\text{FO}} \times f_{\text{run}} \left(p_T^{\text{cut}} / (2m_{\tilde{\ell}}) \right)$$

Stewart, Tackmann, Walsh, Zuberi, 1307.1808


Theory uncertainties

- Overall variation of the FO scale by factors 1/2 and 2
- Variation of the transition points
 14 variations ⇒ take the maximum
- Independent variations of beam and soft scales. Combinations within canonical restrictions.
 - 35 variations ⇒ take the maximum
- Fixed-order as well as resummation uncertainties estimated by profile scale variations Stewart, Tackmann, Walsh, Zuberi, 1307.1808
- Fixed-order and resummation uncertainties added in quadrature

Results at 8 TeV

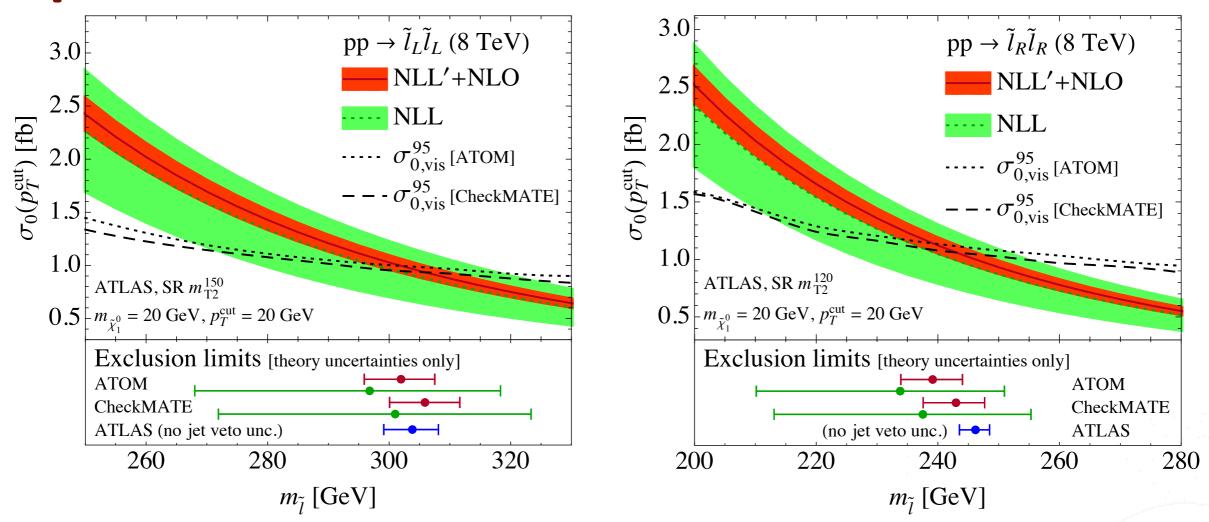
- Parameter point at the edge of the current exclusion limit: $m_{\tilde{\ell}} = 250 \; {\rm GeV}$
- Fixed order uncertainties estimated with ST method
- Experimental value $p_T^{\rm cut}=20$ GeV deep in resummation region
- Comparing NLL'+NLO to NLL:
 Good convergence and substantial reduction of theory uncertainties

Impact on current exclusion limits

- Analysis gives $\sigma_{\rm vis}^{95}$ which is compared to $\sigma_{\rm vis} = \sigma_{\rm SUSY} \times \epsilon_{\rm SUSY}^{\rm (SR)}$
- Define the <u>upper limit on the 0-jet cross section</u>:

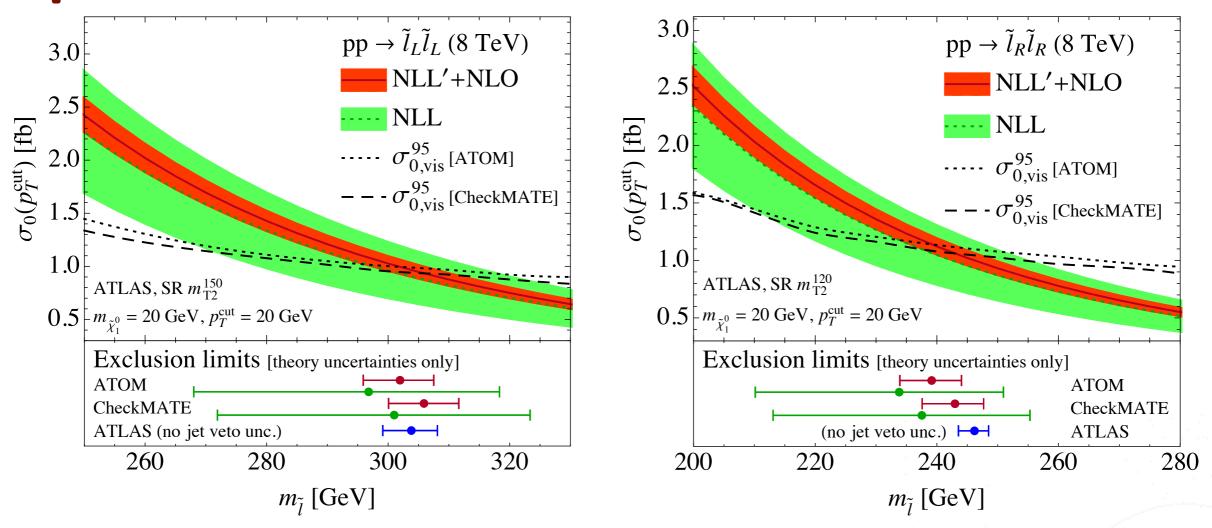
$$\sigma_{0,\mathrm{vis}}^{95} = \frac{\sigma_{\mathrm{vis}}^{95}}{\epsilon_{\mathrm{SUSY}}^{(\mathrm{SR-noJV})}}$$

$$\sigma_{0,\mathrm{vis}}^{95} = \frac{\sigma_{\mathrm{vis}}^{95}}{\epsilon_{\mathrm{SUSY}}^{(\mathrm{SR-noJV})}} \qquad \qquad \epsilon_{\mathrm{SUSY}}^{(\mathrm{SR})} = \epsilon_{\mathrm{SUSY}}^{(\mathrm{JV})} \times \epsilon_{\mathrm{SUSY}}^{(\mathrm{SR-noJV})} \\ \qquad \qquad \qquad \uparrow \qquad \qquad \uparrow \\ \text{Jet veto efficiency} \qquad \qquad \text{Signal region efficiency} \\ \qquad \qquad \qquad \text{excluding the jet veto}$$


- $\sigma_{0,\mathrm{vis}}^{95}$ is defined without reconstruction efficiencies and acceptance cuts
- $\epsilon_{ ext{SUSY}}^{(ext{SR-noJV})}$ is calculated with the codes

ATOM Kim, Papucci, Sakurai, Weiler (in preparation)

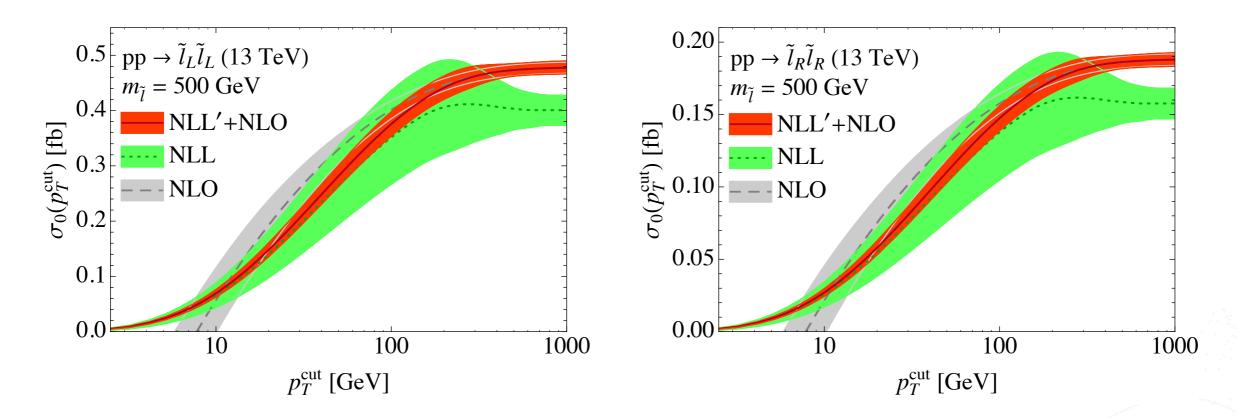
and CheckMATE: Drees, Dreiner, Kim, Schmeier, Tattersall, 1312.2591


- Codes to estimate efficiencies taking detector effects into account
- Many implemented and validated analyses

Impact on current exclusion limits

- Exclusion limit by ATLAS takes into account theory uncertainty on total cross section (including PDF uncertainty), but not the jet veto uncertainty
- Parton showers at best NLL:
 Jet veto uncertainty could easily be as large as our NLL uncertainty
- Even our NLL'+NLO result (without PDF uncertainty) has larger uncertainty than ATLAS

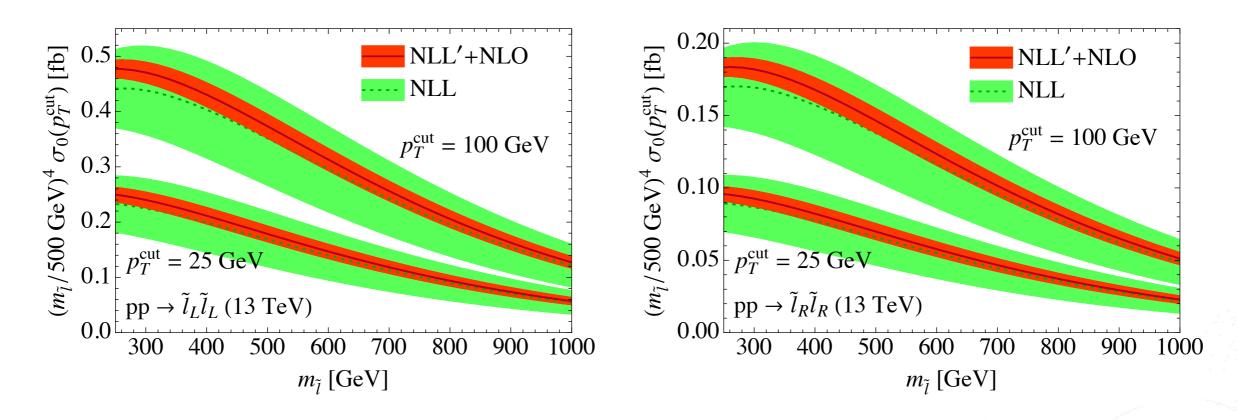
Impact on current exclusion limits



- At NLL the exclusion limits would be noticeably weaker:
 - ightharpoonup Down to \sim 270 GeV for left-handed sleptons (compared to \sim 305 GeV)
 - ightharpoonup Down to \sim 210 GeV for right-handed sleptons (compared to \sim 245 GeV)
- Central values are similar

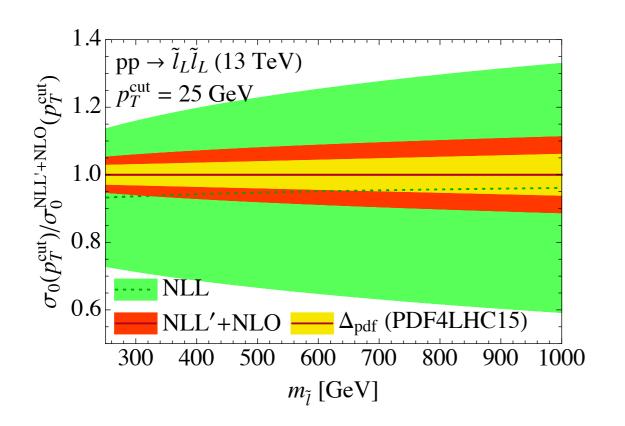
Caution: 5-10% uncertainty on central value from ATOM and CheckMATE

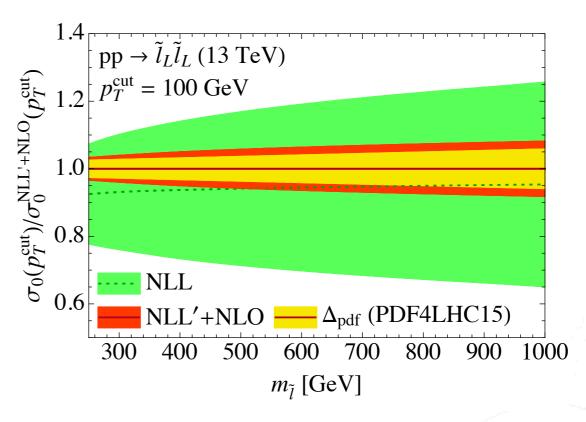
Results at 13 TeV


 p_T^{cut} dependence for a slepton mass of 500 GeV:

- Higher slepton mass leads to larger logarithms in the cross section
 - \longrightarrow Increase of perturbative uncertainties compared to $m_{\tilde{\ell}}=250$ GeV (8 TeV)

Results at 13 TeV


Slepton mass dependence for two fixed values of p_T^{cut} :



Perturbative uncertainties increase with slepton mass

Results at 13 TeV

Slepton mass dependence for two fixed values of p_T^{cut} :

- Perturbative uncertainties increase with slepton
- PDF uncertainties:
 - → PDF4LHC15 recommendations
 - Perturbative uncertainties still larger but become comparable for $p_T^{\rm cut}=100~{
 m GeV}$

Uncertainties for $p_T^{cut} = 25 \text{ GeV}$

The same of the sa	$300~{\rm GeV}$	$1000~{ m GeV}$
NLL	24 %	38 %
NLL'+NLO	6 %	11 %

Summary

- Several LHC searches for new physics use jet vetoes
- First predictions of a SUSY cross section including jet-veto resummation
 - → Slepton production at NLL'+NLO
- Significant impact on the current exclusion limits
- Impact of the jet veto increases further for higher SUSY masses
- Importance of jet vetoes increase when a new particle is discovered, allowing clean measurements
 - Accurate theory predictions important to precisely determine the properties and reveal the nature of any new particle

Summary

- Several LHC searches for new physics use jet vetoes
- First predictions of a SUSY cross section including jet-veto resummation
 - → Slepton production at NLL'+NLO
- Significant impact on the current exclusion limits
- Impact of the jet veto increases further for higher SUSY masses
- Importance of jet vetoes increase when a new particle is discovered, allowing clean measurements
 - Accurate theory predictions important to precisely determine the properties and reveal the nature of any new particle

Note:

Fuks, Klasen, Lamprea, Rothering, 1304.0790, 1310.2621; Broggio, Neubert, Vernazza, 1111.6624; Bozzi, Fuks, Klasen, 0701202

Threshold resummation for the total slepton production cross section has been studied - small effect for currently tested values of slepton masses

Summary

- Several LHC searches for new physics use jet vetoes
- First predictions of a SUSY cross section including jet-veto resummation
 - → Slepton production at NLL'+NLO
- Significant impact on the current exclusion limits
- Impact of the jet veto increases further for higher SUSY masses
- Importance of jet vetoes increase when a new particle is discovered, allowing clean measurements
 - Accurate theory predictions important to precisely determine the properties and reveal the nature of any new particle

Next step:

Extend our analysis to other new physics processes, including also those with final-state jets