Generic dijet soft functions to two-loop order

Guido Bell | | Rudi Rahn | | Jim Talbert

Outline

1. Automating SCET

- (a) Motivation and starting point
- (b) Generic dijet soft functions
- (c) Measurement functions
- (d) SecDec

2. Advances and new features

- (e) SCET_{II}
- (f) Improved numerics
- (g) Universal analytic structures

3. Results

Motivation

• Resummation in full QCD automated in CAESAR/ARES (NLL / e+e- NNLL)

[Banfi, Salam, Zanderighi, '04] [Banfi, McAslan, Monni, Zanderighi, '14]

- Resummation accuracy in SCET overtaking full QCD
- Yet we proceed observable by observable individually:
 - Thrust[Becher, Schwartz, '08]
 - C-Parameter
 [Hoang, Kolodrubetz, Mateu, Stewart, '14]
 - Angularities
 [Bell, Hornig, Lee, Talbert, in 30 min]

- Threshold Drell-Yan
 [Becher, Neubert, Xu, '07]
- W/Z/H @ large p_T [Becher, Bell, Lorentzen, Marti, '13,'14]
- Jet veto[Becher et al. '13, Stewart et al., '13]

***** ... ***** .

Resummation in SCET_i

SCET_I

- Collinear and soft scales different
- Jet and soft functions factorisable

$$\sigma \sim H(Q, \mu) J(Q\lambda, \mu) \otimes S(Q\lambda^2, \mu)$$

 Solve RG equations for hard, jet and soft functions *individually*, e.g.

$$H(Q,\mu) = U_H(\mu,\mu_H)H(Q,\mu_H)$$

• Resummation requires anomalous dimensions, matching corrections

 $\Gamma_{Cusp}, \gamma_{H,J,S}, c_{H,J,S}$

SCETII

- Collinear and soft scales equal
- Jet and soft function factorisable only with additional rapidity regulator

$$\sigma \sim H(Q, \mu) J(Q\lambda, \nu, \mu) \otimes S(Q\lambda, \nu, \mu)$$

• ν -independence enforces exponentiation of rapidity logarithms

$$JS \sim \underbrace{\left(Q^2 x_T^2\right)^{-F(x_T,\mu)}}_{\lambda^{-2}} W(x_T,\mu)$$

 Resummation requires anomaly exponent, remainder function

 $\Gamma_{Cusp}, \gamma_H, F, c_H, W$

Resummation ingredients

To achieve NNLL resummation, we need the soft anomalous dimension or anomaly exponent to two-loop accuracy

Logarithmic accuracy	$oxedsymbol{arGamma_{Cusp}}$	$\gamma_H, \left\{egin{array}{c} \gamma_J, \gamma_S \ F \end{array} ight.$	$c_H, \left\{egin{array}{c} c_J, c_S \ W \end{array} ight.$
LL	1-loop	tree	tree
NLL	2-loop	1-loop	tree
NNLL	3-loop	2-loop	1-loop
$ m N^3LL$	4-loop	3-loop	2-loop

• The missing 2-loop ingredients for *NNLL* resummation of *hadronic* event shapes can be obtained from *dijet* soft functions: [Becher, Garcia, Piclum, '15]

[Piclum, in 30h 25']

$$S(\tau,\mu) = \frac{1}{N_c} \sum_{X} \mathcal{M}(\tau,k_i) \operatorname{Tr} |\langle 0|S_{\bar{n}}^{\dagger}(0)S_n(0)|X\rangle|^2 \qquad S_n(x) = Pexp(ig_s \int_{-\infty}^{0} n \cdot A_s(x+sn)ds)$$

Generic dijet soft functions

We consider soft functions of the form:

$$S(\tau,\mu) = \frac{1}{N_c} \sum_{X} \mathcal{M}(\tau,k_i) \operatorname{Tr} |\langle 0|S_{\bar{n}}^{\dagger}(0)S_n(0)|X\rangle|^2 \qquad S_n(x) = Pexp(ig_s \int_{-\infty}^{0} n \cdot A_s(x+sn)ds)$$

- The **matrix element** of soft wilson lines is *independent of the observable*. It contains the universal (implicit) UV/IR-divergences of the function.
- The **measurement function** (*M*) encodes all of the information of the particular observable at hand. It is *independent of the singularity structure*.
- **Idea**: isolate singularities at each order and calculate the associated coefficient numerically:

$$S(\tau,\mu) \sim 1 + \alpha_s \left(\frac{c_2}{\varepsilon^2} + \frac{c_1}{\varepsilon} + c_0\right) + \mathcal{O}(\alpha_s^2)$$

• To avoid distribution valued measurement functions and facilitate renormalisation, we work in *Laplace space*.

Generic dijet soft functions: NLO and NNLO

$$\mathcal{S}^{(n)}(\tau,\mu) = \frac{\mu^{2n\varepsilon}}{(2\pi)^{n(d-1)}} \left(\prod_{i=1}^n \int \mathrm{d}^d k_i \, \delta(k_i^2) \, \theta(k_i^0) \, \mathcal{R}_{\alpha}(\nu,k_i) \right) |\underline{\mathcal{A}^{(n)}(\{k_i\},\mu)}|^2 \, \mathcal{M}(\tau,\{k_i\})$$
 analytic Matrix measurement regulator element function

- The above structure is generic, use n=1 for NLO, n=1,2 for NNLO, and the appropriate matrix elements, analytic regulator (for $SCET_{II}$) and measurement function
- Parameterising in terms of total transverse momentum p_T and rapidity y of the radiated system, and for *NNLO* a measure for rapidity differences a, the ratio of transverse momenta b, and the angle θ between emissions, assume:

$$\mathcal{M}^{(1)}(\tau, k) = \exp\left(-\tau p_T y^{\frac{n}{2}} f(y, \vartheta_k)\right)$$
$$\mathcal{M}^{(2)}(\tau, k, l) = \exp\left(-\tau p_T y^{\frac{n}{2}} F(y, a, b, \theta, \vartheta_k, \vartheta_l)\right)$$

- We assume the observable is measured with respect to an arbitrary axis: $\vartheta_k = \angle(v_\perp, k_\perp), \ \vartheta_l = \angle(v_\perp, l_\perp)$
- This form is both generic enough for a wide range of observables, and can be easily generalised.

Measurement functions: NLO examples

$$\mathcal{M}^{(1)}(\tau, k) = \exp\left(-\tau p_T y^{\frac{n}{2}} f(y, \theta)\right)$$

Observable	n	$f(y, \vartheta)$
Thrust	1	1
Angularities	1-A	1
Recoil-free broadening	0	1/2
C-Parameter	1	1/(1+y)
Threshold Drell-Yan	-1	1+y
W @ large p_T	-1	$1 + y - 2\sqrt{y} \cos \theta$
e^+e^- transverse thrust	1	$\frac{1}{s\sqrt{y}} \left(\sqrt{\left(c\cos\theta + \left(\frac{1}{\sqrt{y}} - \sqrt{y} \right) \frac{s}{2} \right)^2 + 1 - \cos^2\theta} - \left c\cos\theta + \left(\frac{1}{\sqrt{y}} - \sqrt{y} \right) \frac{s}{2} \right \right)$

• For transverse thrust, $s = \sin \theta_B$, $c = \cos \theta_B$, with $\theta_B = \angle$ beam axis, thrust axis

NLO vs. NNLO

NLO is straightforward:

$$|\mathcal{A}(k)|^2 \sim \frac{\alpha_s C_F}{k_+ k_-}$$

• *NNLO* has more colour structures:

• and overlapping divergences, e.g. C_FT_F n_f structure

$$|\mathcal{A}(k,l)|^2 = 128\pi^2 \alpha_s^2 C_F T_F n_f \frac{2k \cdot l(k_- + l_-)(k_+ + l_+) - (k_- l_+ - k_+ l_-)^2}{(k_- + l_-)^2 (k_+ + l_+)^2 (2k \cdot l)^2}$$

Numerical evaluation

- We perform the p_T and most angle integrations analytically, and hand the rest over to the program SecDec
- SecDec was developed for loop integrals with overlapping divergences, and provides interfaces to different integrators. We use the *general* branch of the program.

https://secdec.hepforge.org

Borowka, Heinrich, Jones, Kerner, Schlenk, Zirke

• *SecDec* resolves one overlapping divergence, and calls the *Cuba* library or *BASES* on a 6-dimensional integral

Output: Bare soft functions $\longrightarrow \gamma_s$, finite terms

Limitations

Problems from last year's SCET workshop:

- No independent checks
- Jo independent checks

 three independent approaches are now available $\begin{cases} SecDec \\ C++ \\ Analytic \end{cases}$

- SCET_{II} requires a second regulator, which SecDec doesn't provide
 - → now possible in private code, to be implemented in *SecDec4*
- abysmal convergence for angle dependent observables: 1 week for 10⁻³ accuracy
 - → analytic pre-treatment improves numerics drastically
- We focus on NLO and the C_F C_A and C_F T_F n_f colour structures for NNLO
 - \rightarrow no C_{F^2} -Terms by choice, we assume non-abelian exponentiation (for now)

SCETII

- While support for a second regulator is being added to SecDec4, we didn't want to wait \rightarrow C++ program developed specifically for SCET_{II}
- We use a variation of the analytic regulator in [Becher, Bell, '12]:

$$R_{\alpha}(\nu; k_i) = \frac{\nu}{k_i^+ + k_i^-}$$

- This form is symmetric under $k_i^+ \leftrightarrow k_i^-$ exchange and parton relabelling, and easy to implement in a program.
- The subtractions are performed manually, and we integrate everything using the *Cuba* library [Hahn, '04]
- We are a bit slower for SCET_I observables than SecDec, but have improved error estimates, and can compute SCET_{II} observables, and a few problematic SCET_I ones.
- The SCET_{II} branch computes all α , ε -divergent and -finite terms

Advances: precision

- **Problem**: Logarithmic and square root divergences at the integration boundaries slowed the integral convergence, and upset the error estimate.
- **Solution**: Substitute wisely

- These also work for plus distributions of the form $\left[\frac{\log^n x}{x}\right]_+$
- With these substitutions, we get 10⁻⁷ precision for SCET_I observables in <1h on an 8 core desktop machine

Hitting machine precision

Transverse Thrust cannot be computed using SecDec, due to its structure:

$$\frac{1}{\sqrt{x}} \left(\sqrt{\frac{1}{x} + 2\Delta} - \sqrt{\frac{1}{x}} \right)''$$
, but
$$\lim_{x \to 0} \frac{1}{\sqrt{x}} \left(\sqrt{\frac{1}{x} + 2\Delta} - \sqrt{\frac{1}{x}} \right) = \Delta$$

- For the actual *NNLO* function, for all input variables at 10^{-8} , the two roots differ in the **75th digit** Fortran and C++ double type variables evaluate to 0
- So any +-distribution of the form $\frac{\log F(x) \log F(0)}{x}$ is seen as $\frac{\log 0 \log \Delta}{x}$,

rather than
$$\frac{\log(\Delta+\epsilon)-\log\Delta}{x}$$
 , for small x .

- **Solution**: Add a branch to our program, using the *cpp_dec_float_100* variables defined in the *boost* library to provide enough digits for this type of calculation
- The program becomes slower (10⁻⁴ accuracy after a few hours), but at least we get results.

Universal analytic structures

- We found a phase space parameterisation that resolves *all* overlapping divergences
- The NLO/NNLO measurement functions are linked via infrared and collinear safety

$$F(y, a, b, \theta, \vartheta_k, \vartheta_l) \xrightarrow{a \to 1, \vartheta_k \to \vartheta_l} f(y, \vartheta_l)$$

$$F(y, a, b, \theta, \vartheta_k, \vartheta_l) \xrightarrow{b \to 0} f(y, \vartheta_l)$$

- This allows us to derive analytic formulae for anomalous dimensions
- Example: Angularities

$$\gamma_{1}^{C_{A}}(A) = -\frac{808}{27} + \frac{11\pi^{2}}{9} + 28\zeta_{3}$$

$$-\int_{0}^{1} \int_{0}^{1} da \, db \, \frac{32a^{2} \left(1 + ab + b^{2}\right) \left(a \left(1 + b^{2}\right) + (a + b) \left(1 + ab\right)\right)}{b \left(1 - a\right) \left(1 + a\right) \left(a + b\right)^{2} \left(1 + ab\right)^{2}} \, \ln \left(\frac{\left(a^{A} + ab\right) \left(a + ba^{A}\right)}{a^{A} \left(1 + ab\right) \left(a + b\right)}\right)$$

$$\gamma_{1}^{n_{f}}(A) = \frac{224}{27} - \frac{4\pi^{2}}{9} - \int_{0}^{1} \int_{0}^{1} da \, db \, \frac{64a^{2} \left(1 + b^{2}\right)}{\left(1 - a\right) \left(1 + a\right) \left(a + b\right)^{2} \left(1 + ab\right)^{2}} \ln \left(\frac{\left(a^{A} + ab\right) \left(a + ba^{A}\right)}{a^{A} \left(1 + ab\right) \left(a + b\right)}\right)$$

Results - Systematics

• For SCET_I the soft function fulfils the RG equation

$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu}S(\tau,\mu) = -\frac{1}{n} \Big[4\Gamma_{Cusp}(\alpha_s)\ln(\mu\bar{\tau}) - 2\gamma^S(\alpha_s) \Big] S(\tau,\mu) \qquad \bar{\tau} = \tau e^{\gamma_E}$$

Anomalous dimension
$$\gamma^S(\alpha_s) = \sum_{n=0}^{\infty} \gamma_n^S \left(\frac{\alpha_s}{4\pi}\right)^{n+1}$$
 Log independent part
$$c^S(\alpha_s) = \sum_{n=0}^{\infty} c_n^S \left(\frac{\alpha_s}{4\pi}\right)^n$$

• For SCET_{II}, the anomaly exponent fulfils the equation

$$\frac{\mathrm{d}F(\tau,\mu)}{\mathrm{d}\ln\mu} = 2\,\Gamma_{Cusp}(\alpha_s)$$

Log independent part
$$d = \sum_{i=0}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^n d_n$$

Results: SCET_I

Soft function	$\gamma_1^{C_A}$	$\gamma_1^{n_f}$	$c_2^{C_A}$	$c_2^{n_f}$
Thrust [Kelley et al, '11] [Monni et al, '11]	15.7945 (15.7945)	3.90981 (3.90981)	$ \begin{array}{c c} -56.4992 \\ (-56.4990) \end{array} $	43.3902 (43.3905)
C-Parameter [Hoang et al, '14]	15.7947 (15.7945)	3.90980 (3.90981)	$-57.9754 \\ [-58.16 \pm 0.26]$	$43.8179 \\ [43.74 \pm 0.06]$
Threshold Drell-Yan [Belitsky, '98]	15.7946 (15.7945)	3.90982 (3.90981)	6.81281 (6.81287)	$ \begin{array}{c c} -10.6857 \\ (-10.6857) \end{array} $
W @ large p_T [Becher et al, '12]	15.7947 (15.7945)	3.90981 (3.90981)	$ \begin{array}{c} -2.65034 \\ (-2.65010) \end{array} $	$ \begin{array}{c} -25.3073 \\ (-25.3073) \end{array} $
Transverse Thrust [Becher, Garcia, Piclum, '15]	$ \begin{array}{c} -158.278 \\ [-148 \pm_{30}^{20}] \end{array} $	19.3955 $[18\pm^{2}_{3}]$	$\begin{array}{c} parameter \\ dependent \end{array}$	$\begin{array}{c} parameter \\ dependent \end{array}$

$$\gamma_1 = \gamma_1^{C_A} C_F C_A + \gamma_1^{N_f} C_F T_F n_f$$

$$c_2 = c_2^{C_A} C_F C_A + c_2^{N_f} C_F T_F n_f + \frac{1}{2} (c_1)^2$$

- Derived in few hours on an 8 core desktop machine
- Deviations from analytic results compatible with 1σ error estimate

Results: Angularities

Results: Hemisphere masses

 Multi-differential functions can be computed by keeping the ratio of Laplace variables fixed, e.g. here

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d} M_L \, \mathrm{d} M_R} \to \frac{\mathrm{d}^2 \sigma}{\mathrm{d} \tau_L \mathrm{d} \tau_R} \qquad \tau = \tau_L + \tau_R \qquad u = \frac{\tau_L}{\tau_L + \tau_R}$$

• Dots are numerical, lines analytic ([Kelley, Schwartz, Schabinger, Zhu, '11])

Results: SCET_{II}

Observable	$d_2^{C_A}$	$d_2^{n_f}$
p_T -Resummation [Becher, Neubert, '07]	$ \begin{array}{c c} -3.73389 \\ (-3.73167) \end{array} $	-8.29610 (-8.29630)
Recoil free broadening [Becher, Bell, '12]	7.03595 (7.03605)	$ \begin{array}{c} -11.5393 \\ (-11.5393) \end{array} $
E_T -Resummation [Grazzini et al. '14]	$15.9804 \\ [below]$	-18.7370 $[below]$

• E_T -Resummation

[Grazzini, Papaefstathiou, Smillie, Webber, '14]:

$$B_g^{(2)} = -5.1 \pm 1.6$$

Our result:

$$B_g^{(2)} = 33.0$$

$$\left(B_g^{(2)} = 2\gamma_1^g + d_2^g + \beta_0 e_1^g\right)$$

Analytic result for E_T Resummation in Higgs production:

$$d_2^{C_A} = \frac{760}{27} + \frac{22\pi^2}{3} + 8\zeta_3 - \left(\frac{512}{9} + 8\pi^2\right) \log 2$$
$$d_2^{n_f} = -\frac{128}{27} - \frac{8\pi^2}{3} + \frac{160}{9} \log 2$$

Conclusion

- We have developed a framework to systematically compute generic NNLO dijet soft functions for SCET_I and SCET_{II} observables
- These are the missing puzzle pieces for *NNLL* resummation of (hadronic) dijet observables
- We have multiple independent methods to derive soft anomalous dimensions and anomaly exponents, both numerical and analytic
- The numerical code is now usable on non-cosmological time scales
- Our setup facilitates the computation of the missing NNLO ingredients needed for NNLL and NNLL' resummation

That's all folks!

Thank you!