Generic dijet soft functions to two-loop order

Guido Bell || Rudi Rahn || Jim Talbert

Outline

1. Automating SCET

(a) Motivation and starting point
(b) Generic dijet soft functions
(c) Measurement functions
(d) SecDec
2. Advances and new features
(e) SCET $_{\text {II }}$
(f) Improved numerics
(g) Universal analytic structures
3. Results

Motivation

- Resummation in full QCD automated in CAESAR/ARES (NLL / $e^{+} e^{-}$NNLL)
[Banfi, Salam, Zanderighi, '04]
[Banfi, McAslan, Monni, Zanderighi, '14]
- Resummation accuracy in SCET overtaking full QCD
- Yet we proceed observable by observable individually:
- Thrust
[Becher, Schwartz, '08]
- C-Parameter
[Hoang, Kolodrubetz, Mateu, Stewart, '14]
- Angularities
[Bell, Hornig, Lee, Talbert, in 30 min]
- Threshold Drell-Yan
[Becher, Neubert, Xu, '07]
- W/Z/H @ large p_{T}
[Becher, Bell, Lorentzen, Marti, '13,'14]
- Jet veto
[Becher et al. '13, Stewart et al., '13]
- ...

Resummation in SCET $_{\mathrm{i}}$

$\underline{\text { SCET }_{\mathrm{I}}}$

- Collinear and soft scales different
- Jet and soft functions factorisable

$$
\sigma \sim H(Q, \mu) J(Q \lambda, \mu) \otimes S\left(Q \lambda^{2}, \mu\right)
$$

- Solve RG equations for hard, jet and soft functions individually, e.g.

$$
H(Q, \mu)=U_{H}\left(\mu, \mu_{H}\right) H\left(Q, \mu_{H}\right)
$$

- Resummation requires anomalous dimensions, matching corrections

$$
\Gamma_{\text {Cusp }}, \gamma_{H, J, S}, c_{H, J, S}
$$

$\underline{\mathrm{SCET}_{\text {II }}}$

- Collinear and soft scales equal
- Jet and soft function factorisable only with additional rapidity regulator

$$
\sigma \sim H(Q, \mu) J(Q \lambda, \nu, \mu) \otimes S(Q \lambda, \nu, \mu)
$$

- $\quad \nu$-independence enforces exponentiation of rapidity logarithms

$$
J S \sim \underbrace{\left(Q^{2} x_{T}^{2}\right)^{-F\left(x_{T}, \mu\right)}}_{\lambda^{-2}} W\left(x_{T}, \mu\right)
$$

- Resummation requires anomaly exponent, remainder function

Resummation ingredients

To achieve NNLL resummation, we need the soft anomalous dimension or anomaly exponent to two-loop accuracy	Logarithmic accuracy	$\Gamma_{C u s p}$	$\gamma_{H},\left\{\begin{array}{c}\gamma_{J}, \gamma_{S} \\ F\end{array}\right.$	$c_{H},\left\{\begin{array}{c}c_{J}, c_{S} \\ W\end{array}\right.$
	LL	1-loop	tree	tree
	NLL	2-loop	1-loop	tree
	NNLL	3-loop	2-loop	1-loop
	$\mathrm{N}^{3} \mathrm{LL}$	4-loop	3-loop	2-loop

- The missing 2-loop ingredients for NNLL resummation of hadronic event shapes can be obtained from dijet soft functions:
[Becher, Garcia, Piclum, '15]
[Piclum, in 30h 25']
$\left.S(\tau, \mu)=\frac{1}{N_{c}} \sum_{X} \mathcal{M}\left(\tau, k_{i}\right) \operatorname{Tr}\left|\langle 0| S_{\bar{n}}^{\dagger}(0) S_{n}(0)\right| X\right\rangle\left.\right|^{2} \quad S_{n}(x)=P \exp \left(i g_{s} \int_{-\infty}^{0} n \cdot A_{s}(x+s n) d s\right)$

Generic dijet soft functions

- We consider soft functions of the form:
$\left.S(\tau, \mu)=\frac{1}{N_{c}} \sum_{X} \mathcal{M}\left(\tau, k_{i}\right) \operatorname{Tr}\left|\langle 0| S_{\bar{n}}^{\dagger}(0) S_{n}(0)\right| X\right\rangle\left.\right|^{2} \quad S_{n}(x)=P \exp \left(i g_{s} \int_{-\infty}^{0} n \cdot A_{s}(x+s n) d s\right)$
- The matrix element of soft wilson lines is independent of the observable. It contains the universal (implicit) UV / IR-divergences of the function.
- The measurement function (M) encodes all of the information of the particular observable at hand. It is independent of the singularity structure.
- Idea: isolate singularities at each order and calculate the associated coefficient numerically:

$$
\mathcal{S}(\tau, \mu) \sim 1+\alpha_{s}\left(\frac{c_{2}}{\varepsilon^{2}}+\frac{c_{1}}{\varepsilon}+c_{0}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

- To avoid distribution valued measurement functions and facilitate renormalisation, we work in Laplace space.

Generic dijet soft functions: NLO and NNLO

$$
\mathcal{S}^{(n)}(\tau, \mu)=\frac{\mu^{2 n \varepsilon}}{(2 \pi)^{n(d-1)}}\left(\prod_{i=1}^{n} \int \mathrm{~d}^{d} k_{i} \delta\left(k_{i}^{2}\right) \theta\left(k_{i}^{0}\right) \mathcal{R}_{\alpha}\left(\nu, k_{i}\right)\right) \xlongequal{\left|\mathcal{A}^{(n)}\left(\left\{k_{i}\right\}, \mu\right)\right|^{2}} \underset{\substack{\mathcal{M}\left(\tau,\left\{k_{i}\right\}\right)}}{\text { analytic }} \begin{gathered}
\text { Matrix } \\
\text { regulator }
\end{gathered} \quad \begin{gathered}
\text { measurement } \\
\text { element }
\end{gathered}
$$

- The above structure is generic, use $\mathrm{n}=1$ for $N L O, \mathrm{n}=1,2$ for $N N L O$, and the appropriate matrix elements, analytic regulator (for $\mathrm{SCET}_{\mathrm{II}}$) and measurement function
- Parameterising in terms of total transverse momentum p_{T} and rapidity y of the radiated system, and for NNLO a measure for rapidity differences a, the ratio of transverse momenta b, and the angle θ between emissions, assume:

$$
\begin{aligned}
\mathcal{M}^{(1)}(\tau, k) & =\exp \left(-\tau p_{T} y^{\frac{n}{2}} f\left(y, \vartheta_{k}\right)\right) \\
\mathcal{M}^{(2)}(\tau, k, l) & =\exp \left(-\tau p_{T} y^{\frac{n}{2}} F\left(y, a, b, \theta, \vartheta_{k}, \vartheta_{l}\right)\right)
\end{aligned}
$$

- We assume the observable is measured with respect to an arbitrary axis: $\vartheta_{k}=\angle\left(v_{\perp}, k_{\perp}\right), \vartheta_{l}=\angle\left(v_{\perp}, l_{\perp}\right)$
- This form is both generic enough for a wide range of observables, and can be easily generalised.

Measurement functions: NLO examples

$$
\mathcal{M}^{(1)}(\tau, k)=\exp \left(-\tau p_{T} y^{\frac{n}{2}} f(y, \vartheta)\right)
$$

Observable	n	$f(y, \vartheta)$
Thrust	1	1
Angularities	$1-A$	1
Recoil-free broadening	0	$1 / 2$
C-Parameter	1	$1 /(1+y)$
Threshold Drell-Yan	-1	$1+y$
W @ large p_{T}	-1	$1+y-2 \sqrt{y} \cos \theta$
$e^{+} e^{-}$transverse thrust	1	$\frac{1}{s \sqrt{y}}\left(\sqrt{\left(c \cos \theta+\left(\frac{1}{\sqrt{y}}-\sqrt{y}\right) \frac{s}{2}\right)^{2}+1-\cos ^{2} \theta}-\left\|c \cos \theta+\left(\frac{1}{\sqrt{y}}-\sqrt{y}\right) \frac{s}{2}\right\|\right)$

- For transverse thrust, $s=\sin \theta_{B}, c=\cos \theta_{B}$, with $\theta_{B}=\angle$ beam axis, thrust axis

NLO vs. NNLO

- NLO is straightforward: $\quad|\mathcal{A}(k)|^{2} \sim \frac{\alpha_{s} C_{F}}{k_{+} k_{-}}$
- NNLO has more colour structures:

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)
- and overlapping divergences, e.g. $C_{F} T_{F} n_{f}$ structure

$$
|\mathcal{A}(k, l)|^{2}=128 \pi^{2} \alpha_{s}^{2} C_{F} T_{F} n_{f} \frac{2 k \cdot l\left(k_{-}+l_{-}\right)\left(k_{+}+l_{+}\right)-\left(k_{-} l_{+}-k_{+} l_{-}\right)^{2}}{\left(k_{-}+l_{-}\right)^{2}\left(k_{+}+l_{+}\right)^{2}(2 k \cdot l)^{2}}
$$

Numerical evaluation

- We perform the p_{T} and most angle integrations analytically, and hand the rest over to the program SecDec
- SecDec was developed for loop integrals with overlapping divergences, and provides interfaces to different integrators. We use the general branch of the program.
https://secdec.hepforge.org
Borowka, Heinrich, Jones, Kerner, Schlenk, Zirke
- \quad SecDec resolves one overlapping divergence, and calls the Cuba library or BASES on a 6-dimensional integral

Output: Bare soft functions $\longrightarrow \gamma_{s}$, finite terms

Limitations

Problems from last year's SCET workshop:

- No independent checks
\rightarrow three independent approaches are now available $\left\{\begin{array}{l}\operatorname{SecDec} \\ C++ \\ \text { Analytic }\end{array}\right.$
- $\mathrm{SCET}_{\text {II }}$ requires a second regulator, which SecDec doesn't provide
\rightarrow now possible in private code, to be implemented in SecDec4
- abysmal convergence for angle dependent observables: 1 week for 10^{-3} accuracy
\rightarrow analytic pre-treatment improves numerics drastically
- We focus on NLO and the $C_{F} C_{A}$ and $C_{F} T_{F} n_{f}$ colour structures for NNLO
\rightarrow no $C_{F}{ }^{2}$-Terms by choice, we assume non-abelian exponentiation (for now)
- While support for a second regulator is being added to SecDec4, we didn't want to wait \rightarrow C++ program developed specifically for SCET $_{\text {II }}$
- We use a variation of the analytic regulator in [Becher, Bell, '12]:

$$
R_{\alpha}\left(\nu ; k_{i}\right)=\frac{\nu}{k_{i}^{+}+k_{i}^{-}}
$$

- This form is symmetric under $k_{i}^{+} \leftrightarrow k_{i}^{-}$exchange and parton relabelling, and easy to implement in a program.
- The subtractions are performed manually, and we integrate everything using the Cuba library
- We are a bit slower for $\mathrm{SCET}_{\mathrm{I}}$ observables than SecDec, but have improved error estimates, and can compute SCET $_{\text {II }}$ observables, and a few problematic SCET $_{\text {I }}$ ones.
- The $\mathrm{SCET}_{\text {II }}$ branch computes all α, ε-divergent and -finite terms

Advances: precision

- Problem: Logarithmic and square root divergences at the integration boundaries slowed the integral convergence, and upset the error estimate.
- Solution: Substitute wisely
- $\int_{0}^{1} \mathrm{~d} y \log y \xrightarrow{y \rightarrow x^{2}} \int_{0}^{1} \mathrm{~d} x 4 x \log x$
- $\int_{0}^{1} \mathrm{~d} v \frac{\log v}{\sqrt{v}} \xrightarrow{v \rightarrow w^{4}} \int_{0}^{1} \mathrm{~d} w 16 w \log w$
- $\int_{0}^{1} \mathrm{~d} u \frac{1}{\sqrt{1-u} \sqrt{u}} \xrightarrow{u \rightarrow 1-\left(1-z^{4}\right)^{4}} \int_{0}^{1} \mathrm{~d} z \frac{16 z\left(1-z^{4}\right)}{\sqrt{2-z^{4}} \sqrt{2-2 z^{4}+z^{8}}}$
- These also work for plus distributions of the form $\left[\frac{\log ^{n} x}{x}\right]_{+}$
- With these substitutions, we get 10^{-7} precision for $\mathrm{SCET}_{\mathrm{I}}$ observables in <1 h on an 8 core desktop machine

Hitting machine precision

- Transverse Thrust cannot be computed using SecDec, due to its structure:

$$
\left.\frac{1}{\sqrt{x}}\left(\sqrt{\frac{1}{x}+2 \Delta}-\sqrt{\frac{1}{x}}\right)^{"} \right\rvert\, \text {, but } \quad \lim _{x \rightarrow 0} \frac{1}{\sqrt{x}}\left(\sqrt{\frac{1}{x}+2 \Delta}-\sqrt{\frac{1}{x}}\right)=\Delta
$$

- For the actual NNLO function, for all input variables at 10^{-8}, the two roots differ in the 75 th digit \rightarrow Fortran and $C++$ double type variables evaluate to 0

So any +-distribution of the form $\left|\frac{\log F(x)-\log F(0)}{x}\right|$ is seen as $\frac{\log 0-\log \Delta}{x}$, rather than $\frac{\log (\Delta+\epsilon)-\log \Delta}{x}$, for small x.

- Solution: Add a branch to our program, using the cpp_dec_float_100 variables defined in the boost library to provide enough digits for this type of calculation
- The program becomes slower (10^{-4} accuracy after a few hours), but at least we get results.

Universal analytic structures

- We found a phase space parameterisation that resolves all overlapping divergences
- The NLO/NNLO measurement functions are linked via infrared and collinear safety

$$
\begin{aligned}
& F\left(y, a, b, \theta, \vartheta_{k}, \vartheta_{l}\right) \xrightarrow{a \rightarrow 1, \vartheta_{k} \rightarrow \vartheta_{l}} f\left(y, \vartheta_{l}\right) \\
& F\left(y, a, b, \theta, \vartheta_{k}, \vartheta_{l}\right) \xrightarrow{b \rightarrow 0} f\left(y, \vartheta_{l}\right)
\end{aligned}
$$

- This allows us to derive analytic formulae for anomalous dimensions
- Example: Angularities

$$
\begin{aligned}
\gamma_{1}^{C_{A}}(A) & =-\frac{808}{27}+\frac{11 \pi^{2}}{9}+28 \zeta_{3} \\
& -\int_{0}^{1} \int_{0}^{1} \mathrm{~d} a \mathrm{~d} b \frac{32 a^{2}\left(1+a b+b^{2}\right)\left(a\left(1+b^{2}\right)+(a+b)(1+a b)\right)}{b(1-a)(1+a)(a+b)^{2}(1+a b)^{2}} \ln \left(\frac{\left(a^{A}+a b\right)\left(a+b a^{A}\right)}{a^{A}(1+a b)(a+b)}\right) \\
\gamma_{1}^{n_{f}}(A) & =\frac{224}{27}-\frac{4 \pi^{2}}{9}-\int_{0}^{1} \int_{0}^{1} \mathrm{~d} a \mathrm{~d} b \frac{64 a^{2}\left(1+b^{2}\right)}{(1-a)(1+a)(a+b)^{2}(1+a b)^{2}} \ln \left(\frac{\left(a^{A}+a b\right)\left(a+b a^{A}\right)}{a^{A}(1+a b)(a+b)}\right)
\end{aligned}
$$

Results - Systematics

- For $\mathrm{SCET}_{\mathrm{I}}$ the soft function fulfils the RG equation

$$
\frac{\mathrm{d}}{\mathrm{~d} \ln \mu} S(\tau, \mu)=-\frac{1}{n}\left[4 \Gamma_{C u s p}\left(\alpha_{s}\right) \ln (\mu \bar{\tau})-2 \gamma^{S}\left(\alpha_{s}\right)\right] S(\tau, \mu) \quad \bar{\tau}=\tau e^{\gamma_{E}}
$$

Anomalous dimension $\quad \gamma^{S}\left(\alpha_{s}\right)=\sum_{n=0}^{\infty} \gamma_{n}^{S}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n+1}$
Log independent part $\quad c^{S}\left(\alpha_{s}\right)=\sum_{n=0}^{\infty} c_{n}^{S}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n}$

- For $\mathrm{SCET}_{\mathrm{II}}$, the anomaly exponent fulfils the equation

$$
\frac{\mathrm{d} F(\tau, \mu)}{\mathrm{d} \ln \mu}=2 \Gamma_{C u s p}\left(\alpha_{s}\right)
$$

Log independent part $\quad d=\sum_{i=0}^{\infty}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n} d_{n}$

Results: SCET $_{\text {I }}$

Soft function	$\gamma_{1}^{C_{A}}$	$\gamma_{1}^{n_{f}}$	$c_{2}^{C_{A}}$	$c_{2}^{n_{f}}$
Thrust	15.7945	3.90981	-56.4992	43.3902
[Kelley et al, '11]	(15.7945)	(3.90981)	(-56.4990)	(43.3905)
[Monni et al, '11]	15.7947	3.90980	-57.9754	43.8179
C-Parameter	(15.7945)	(3.90981)	$[-58.16 \pm 0.26]$	$[43.74 \pm 0.06]$
[Hoang et al, '14]	15.7946	3.90982	6.81281	-10.6857
Threshold Drell-Yan	(15.7945)	(3.90981)	(6.81287)	(-10.6857)
[Belitsky, '98]	15.7947	3.90981	-2.65034	-25.3073
W @ large p_{T}	(15.7945)	(3.90981)	(-2.65010)	(-25.3073)
[Becher et al,'12]	-158.278	19.3955	parameter	parameter
Transverse Thrust	$\left[-148 \pm{ }_{30}^{20}\right]$	$\left[18 \pm{ }_{3}^{2}\right]$	dependent	dependent
[Becher, Garcia, Piclum, '15]				

$$
\gamma_{1}=\gamma_{1}^{C_{A}} C_{F} C_{A}+\gamma_{1}^{N_{f}} C_{F} T_{F} n_{f} \quad c_{2}=c_{2}^{C_{A}} C_{F} C_{A}+c_{2}^{N_{f}} C_{F} T_{F} n_{f}+\frac{1}{2}\left(c_{1}\right)^{2}
$$

- Derived in few hours on an 8 core desktop machine
- Deviations from analytic results compatible with 1σ error estimate

Results: Angularities

Results: Hemisphere masses

- Multi-differential functions can be computed by keeping the ratio of Laplace variables fixed, e.g. here

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} M_{L} \mathrm{~d} M_{R}} \rightarrow \frac{\mathrm{~d}^{2} \sigma}{\mathrm{~d} \tau_{L} \mathrm{~d} \tau_{R}} \quad \tau=\tau_{L}+\tau_{R} \quad u=\frac{\tau_{L}}{\tau_{L}+\tau_{R}}
$$

- Dots are numerical, lines analytic ([Kelley, Schwartz, Schabinger, Zhu, '11])

Results: SCET $_{\text {II }}$

Observable	$d_{2}^{C_{A}}$	$d_{2}^{n_{f}}$
p_{T}-Resummation	-3.73389	-8.29610
[Becher, Neubert, '07]	(-3.73167)	(-8.29630)
Recoil free broadening	7.03595	-11.5393
[Becher, Bell, '12]	(7.03605)	(-11.5393)
E_{T}-Resummation	15.9804	-18.7370
[Grazzini et al. '14]	$[$ below]	$[$ below]

Analytic result for E_{T}
Resummation in Higgs production:

$$
\begin{aligned}
d_{2}^{C_{A}} & =\frac{760}{27}+\frac{22 \pi^{2}}{3}+8 \zeta_{3}-\left(\frac{512}{9}+8 \pi^{2}\right) \log 2 \\
d_{2}^{n_{f}} & =-\frac{128}{27}-\frac{8 \pi^{2}}{3}+\frac{160}{9} \log 2
\end{aligned}
$$

Conclusion

- We have developed a framework to systematically compute generic NNLO dijet soft functions for $\mathrm{SCET}_{\text {I }}$ and SCET $_{\text {II }}$ observables
- These are the missing puzzle pieces for NNLL resummation of (hadronic) dijet observables
- We have multiple independent methods to derive soft anomalous dimensions and anomaly exponents, both numerical and analytic
- The numerical code is now usable on non-cosmological time scales
- Our setup facilitates the computation of the missing NNLO ingredients needed for NNLL and NNLL' resummation

That's all folks!

Thank you!

