Factorization for jet radius and algorithm effects in jet mass distributions at the LHC

Piotr Pietrulewicz

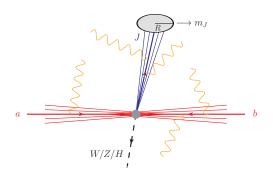
based on work with Daniel Kolodrubetz, Iain Stewart, Frank Tackmann, and Wouter Waalewijn

XIIIth Workshop on Soft-Collinear Effective Theory Hamburg, 23.03.2015

Scope and Goals

predict jet mass spectra at the LHC, specifically:

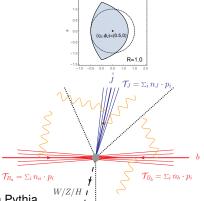
- exclusive jet spectra: veto on additional jets
- focus on $pp \to W/Z/H + 1$ jet (dijets \to Yiannis' talk)
- here: without grooming (for soft drop → Kai Yan's & Christopher's talks)



NNLL analysis performed for $pp \rightarrow H+1$ jet

[Jouttenus, Stewart, Tackmann, Waalewijn (2013)]

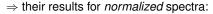
- large R jets with $m_J \ll p_T^J R \sim p_T^J$
- 1-jettiness contributions as jet veto
- jet boundary via 1-jettiness minimization with jet area πR^2
- ⇒ their results for *normalized* spectra:
 - dependence on jet veto mainly cancels
 - rather weak dependence on jet algorithm in Pythia



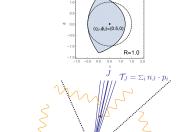
NNLL analysis performed for $pp \rightarrow H+1$ jet

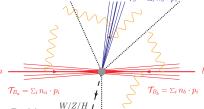
[Jouttenus, Stewart, Tackmann, Waalewijn (2013)]

- large R jets with $m_J \ll p_T^J R \sim p_T^J$
- 1-jettiness contributions as jet veto
- jet boundary via 1-jettiness minimization with jet area πR^2



- dependence on jet veto mainly cancels
- rather weak dependence on jet algorithm in Pythia

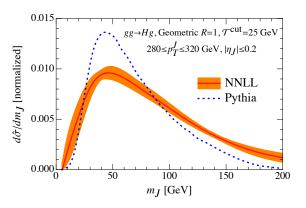




our aim: direct comparison with experiment

- other jet algorithms (anti-kT, XCone)
- ullet common (MPI insensitive) jet vetoes (e.g. $p_T^{
 m jet}$)
- small jet radii ($R \sim 0.5$)
- jet boundary effects for $m_J \sim p_T^J R$

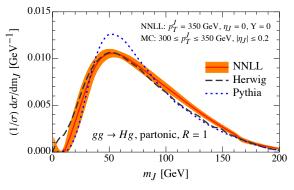
Comparison with Pythia for $pp \rightarrow H + 1$ jet



[Jouttenus, Stewart, Tackmann, Waalewijn (2013)]

 \Rightarrow Need to add nonsingular corrections in the far tail (large cancellation for $m_J \sim p_T^J R/2$!)

Comparison with Pythia for $pp \rightarrow H + 1$ jet



[Stewart, Tackmann, Waalewijn (2014)]

 \Rightarrow Add nonsingular corrections in the far tail $\sqrt{}$ Goal: Do this systematically for small R with $p_T^J R/2 \ll p_T^J \sim Q$

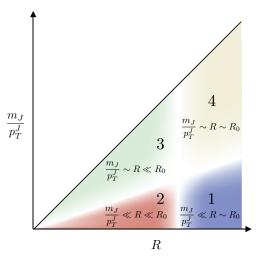
Outline

- Factorization of jet radius effects
 - Description of hierarchies $m_J \leftrightarrow p_T^J R \leftrightarrow p_T^J$
 - Relations between the hierarchies
- Soft functions for jet algorithms at hadron colliders
 - Calculation of jet algorithm effects
 - Results
- Summary

Outline

- Factorization of jet radius effects
 - Description of hierarchies $m_J \leftrightarrow p_T^J R \leftrightarrow p_T^J$
 - Relations between the hierarchies
- Soft functions for jet algorithms at hadron colliders
 - Calculation of jet algorithm effects
 - Results
- Summary

Different regimes according to hierarchies



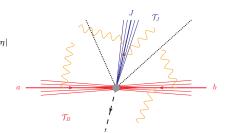
in the following: concentrate on hierarchies 1, 2 and 3



Factorization for regime 1: $m_J \ll p_T^J R \sim p_T^J$

consider here:

- hard, central jet: $p_T^J \sim Q$
- SCET_I-type global veto: $\mathcal{T}_B = \sum_{i \notin \mathsf{jet}} p_{Ti} f(\eta_i) \text{ with } f(\eta) \overset{\eta \to \pm \infty}{\longrightarrow} e^{-|\eta|}$ (e.g. C-parameter: $f_C(\eta) = \frac{1}{2\cosh \eta}$)
- $\mathcal{T}_J = \sum_{i \in \mathsf{iet}} n_J \cdot p_i$ $(\Leftrightarrow m_J \text{ for hierarchies } 1-3)$
- jet algorithm with jet area $\approx \pi R^2$ in η - ϕ -plane



mode	$p^{\mu} = (+, -, \perp)$	$\sqrt{p^2}$
$n_{a,b}$ – collinear	$\left(\mathcal{T}_B, p_T^J, \sqrt{p_T^J \mathcal{T}_B} ight)_B$	$\sqrt{p_T^J \mathcal{T}_B}$
n_J – collinear	$\left(\mathcal{T}_{J},p_{T}^{J},\sqrt{p_{T}^{J}\mathcal{T}_{J}} ight)_{J}$	$\sqrt{p_T^J \mathcal{T}_J}$
usoft	$\left(\mathcal{T}_{B},\mathcal{T}_{B},\mathcal{T}_{B} ight)$	\mathcal{T}_B
	$\left(\mathcal{T}_{J},\mathcal{T}_{J},\mathcal{T}_{J}\right)$	\mathcal{T}_J

correlated emissions

Factorization for regime 1: $m_J \ll p_T^J R \sim p_T^J$

Factorization formula: [Stewart, Tackmann, Waalewijn (2009); + Jouttenus (2013)]

$$\frac{\mathrm{d}\sigma_1}{\mathrm{d}\Phi\,\mathrm{d}\mathcal{T}_B\,\mathrm{d}\mathcal{T}_J} = \sum_{\kappa} H_{\kappa}(\Phi,\mu) \, \underline{B_a(Q_a\mathcal{T}_B,x_a,\mu)} \otimes \underline{B_b(Q_b\mathcal{T}_B,x_b,\mu)} \, J_{\kappa_J}(Q_J\mathcal{T}_J,\mu)$$

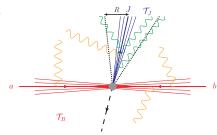
$$\otimes S_{\kappa}(\mathcal{T}_{J}, \mathcal{T}_{B}, \eta_{J}, R, \mu) \left[1 + \mathcal{O}\left(\frac{\mathcal{T}_{J}}{p_{T}^{J}}, \frac{\mathcal{T}_{B}}{p_{T}^{J}}\right) \right]$$

- channel dependent hard function $H_{\kappa}(\Phi,\mu)$ (partonic kinematics)
- ullet standard inclusive beam and jet functions $B_i(t,x,\mu)$ and $J_{\kappa_J}(s,\mu)$
- soft function $S_{\kappa}(\mathcal{T}_J, \mathcal{T}_B, \eta_J, R, \mu)$: jet algorithm and radius dependence
 - → one-loop computation in second part of my talk
 - ightarrow no large NGLs for $\mathcal{T}_J \sim \mathcal{T}_B$
 - \rightarrow "refactorization": (to avoid fake Sudakov logs $\alpha_s \ln^2(\mathcal{T}_J/\mathcal{T}_B)$)

$$S_{\kappa}(\mathcal{T}_{J}, \mathcal{T}_{B}, \eta_{J}, R, \mu) = S_{\kappa}^{\text{jet}}(\mathcal{T}_{J}, \eta_{J}, R, \mu) S_{\kappa}^{\text{beam}}(\mathcal{T}_{B}, \eta_{J}, R, \mu) + S_{\kappa}^{\text{NG}}(\mathcal{T}_{J}, \mathcal{T}_{B}, \eta_{J}, R, \mu)$$

Factorization for regime 2: $m_J \ll p_T^J R \ll p_T^J$

- ullet small R: jet algorithms give circular jets
- ullet n_J -coll. modes do not resolve jet boundary
- wide-angle soft modes do not resolve jet
- additional "boundary" modes: csoft/soft-coll. (coft) modes → SCET₊₍₊₎ [Larkoski, Moult, Neill (2015)] [Becher, Neubert, Rothen, Shao (2015)] [Chien, Hornig, Lee (2015)]
 - \rightarrow see Ding Yu's and Andrew's talks



mode	$p^{\mu} = (+, -, \perp)$	$\sqrt{p^2}$
$n_{a,b}$ – collinear	$\left(\mathcal{T}_B, p_T^J, \sqrt{p_T^J \mathcal{T}_B} ight)_B$	$\sqrt{p_T^J \mathcal{T}_B}$
n_J – collinear	$\left(\mathcal{T}_{J},p_{T}^{J},\sqrt{p_{T}^{J}\mathcal{T}_{J}} ight)_{J}^{-}$	$\sqrt{p_T^J \mathcal{T}_J}$
usoft	$\big(\mathcal{T}_B,\mathcal{T}_B,\mathcal{T}_B\big)$	\mathcal{T}_B
csoft	$\mathcal{T}_J/R^2(R^2,1,R)_J$	\mathcal{T}_J/R
(soft-collinear)	$\mathcal{T}_Big(R^2,1,Rig)_J$	$\mathcal{T}_B R$

↓

correlated emissions

Factorization for regime 2: $m_J \ll p_T^J R \ll p_T^J$

Factorization formula:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi\,\mathrm{d}\mathcal{T}_{B}\,\mathrm{d}\mathcal{T}_{J}} = \sum_{\kappa} H_{\kappa}(\Phi,\mu) \, \underline{B_{a}(Q_{a}\mathcal{T}_{B},x_{a},\mu)} \otimes \underline{B_{b}(Q_{b}\mathcal{T}_{B},x_{b},\mu)} \, J_{\kappa_{J}}(Q_{J}\mathcal{T}_{J},\mu)
\otimes \mathcal{S}_{\kappa_{J}}\left(\frac{2\cosh\eta_{J}\mathcal{T}_{J}}{R},\frac{\mathcal{T}_{B}R}{f(\eta_{J})},\mu\right) \otimes \underline{S_{\kappa}^{B}(\mathcal{T}_{B},\eta_{J},\mu)}
\times \left[1 + \mathcal{O}\left(\frac{\mathcal{T}_{B}}{p_{T}^{J}},\frac{\mathcal{T}_{J}}{p_{T}^{J}R^{2}},R^{2}\right)\right]$$

- $S^B_{\kappa}(\mathcal{T}_B, \eta_J, \mu)$: contributes only to \mathcal{T}_B measurement, no R dependence \to analytic one-loop result for beam thrust, C-parameter & p_T -type vetoes
- $S_{\kappa_J}(k_J,k_B,\mu)$: csoft function \equiv double hemisphere soft function
 - ightarrow jet radius dependence only through its arguments
 - ightarrow dependence on jet algorithm is power suppressed by $\mathcal{O}(R^2)$
 - \rightarrow no large NGLs for $k_B \sim k_J \longleftrightarrow \mathcal{T}_J \sim \mathcal{T}_B R^2$
 - → "refactorization":

$$S_{\kappa_J}(k_J, k_B, \mu) = S_{\kappa_J}^{\text{hemi}}(k_J, \mu) S_{\kappa_J}^{\text{hemi}}(k_B, \mu) + S_{\kappa_J}^{\text{NG}}(k_J, k_B, \mu)$$

Factorization for regime 3: $m_J \sim p_T^J R \ll p_T^J$

- wide-angle soft modes do not resolve jet
- n_J-collinear modes resolve jet boundary, merge with csoft modes

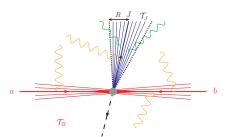
$$(\mathcal{T}_J, p_T^J, \sqrt{p_T^J \mathcal{T}_J}) \sim \mathcal{T}_J / R^2 (R^2, 1, R)$$

$$\sim p_T^J (R^2, 1, R)$$

[Chien, Hornig, Lee (2015)]

• soft-collinear modes resolve individual n_J -collinear emissions

[Becher, Neubert, Rothen, Shao (2015)]



mode	$p^{\mu} = (+, -, \perp)$	$\sqrt{p^2}$	
$n_{a,b}$ – collinear	$\left(\mathcal{T}_B, p_T^J, \sqrt{p_T^J \mathcal{T}_B}\right)_B$	$\sqrt{p_T^J \mathcal{T}_B}$	
n_J – collinear	$p_T^J(R^2, 1, R)_J$	$p_T^J R$	-
usoft	$\big(\mathcal{T}_B,\mathcal{T}_B,\mathcal{T}_B\big)$	\mathcal{T}_B	correlated emissions
soft-collinear	$\mathcal{T}_B(R^2,1,R)$	$\mathcal{T}_B R$	-

Factorization for regime 3: $m_J \sim p_T^J R \ll p_T^J$

"Factorization" formula:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi\,\mathrm{d}\mathcal{T}_{B}\,\mathrm{d}\mathcal{T}_{J}} = \sum_{\kappa} H_{\kappa}(\Phi,\mu) \, B_{a}(Q_{a}\mathcal{T}_{B},x_{a},\mu) \otimes B_{b}(Q_{b}\mathcal{T}_{B},x_{b},\mu) \\
\otimes \mathcal{J}_{\kappa_{J}}\left(Q_{J}\mathcal{T}_{J},p_{T}^{J}R,\frac{\mathcal{T}_{B}R}{f(\eta_{J})},\mu\right) \otimes S_{\kappa}^{B}(\mathcal{T}_{B},\eta_{J},\mu) \left[1 + \mathcal{O}\left(\frac{\mathcal{T}_{B}}{p_{T}^{J}},R^{2}\right)\right]$$

new ingredient: jet function \mathcal{J}_{κ_J}

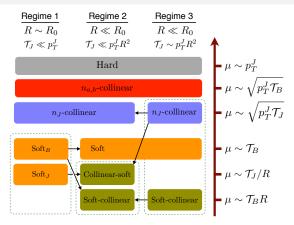
- contains jet algorithm and radius dependence
- corrections to jet and beam measurements from hard-coll. and soft-coll. modes
- "refactorization":

$$\mathcal{J}_{\kappa_J}\big(s_J, p_T^J R, k_B, \mu\big) = J_{\kappa_J}^R\big(s_J, p_T^J R, \mu\big) \, S_{\kappa_J}^{\mathrm{hemi}}\big(k_B, \mu\big) + \mathcal{J}_{\kappa_J}^{\mathrm{NG}}\big(s_J, p_T^J R, k_B, \mu\big)$$

- $ightarrow J^R$: jet function with boundary effects [Ellis et al. (2010); Chay, Kim, Kim (2015)]
- $ightarrow S^{
 m hemi}$: soft-coll. function (= single hemisphere soft function)
- ullet large NGLs unavoidable in above formula for $\mathcal{T}_B \ll p_T^J$
 - → systematic incorporation of the dominant effects with recent progress possible [Larkoski, Moult, Neill (2015); Caron-Huot (2015); Becher, Neubert, Rothen, Shao (2015)]

→ □ ▷ ◆□□ ▷ ◆ □ ▷ ◆ □ ▷ → □ □ □ ◆

Relations between the hierarchies



Relations between matrix elements:

$$S_{\kappa}(\mathcal{T}_{J}, \mathcal{T}_{B}, \eta_{J}, R, \mu) = S_{\kappa}^{B}(\mathcal{T}_{B}, \eta_{J}, \mu) \otimes S_{\kappa_{J}}\left(\frac{2\cosh\eta_{J}\mathcal{T}_{J}}{R}, \frac{\mathcal{T}_{B}R}{f(\eta_{J})}, \mu\right) [1 + \mathcal{O}(R^{2})]$$

$$\mathcal{J}_{\kappa_{J}}\left(Q_{J}\mathcal{T}_{J}, p_{T}^{J}R, \frac{\mathcal{T}_{B}R}{f(\eta_{J})}, \mu\right) = J_{\kappa_{J}}(Q_{J}\mathcal{T}_{J}, \mu) \otimes S_{\kappa_{J}}\left(\frac{Q_{J}\mathcal{T}_{J}}{p_{T}^{J}R}, \frac{\mathcal{T}_{B}R}{f(\eta_{J})}, \mu\right) [1 + \mathcal{O}\left(\frac{m_{J}^{2}}{(p_{T}^{J}R)^{2}}\right)]$$

Combining cross sections by nonsingular matching

- in regime 2 ($\mathcal{T}_J \ll p_T^J R^2 \ll p_T^J$): resummation of $\ln R, \ln(\mathcal{T}_J/(p_T^J R^2))$
- add power corrections of $\mathcal{O}(R^2)$ from region 1 and of $\mathcal{O}(\mathcal{T}_J/(p_T^JR^2))$ from region 3

$$\frac{\mathrm{d}\sigma_{1+2+3}}{\mathrm{d}\Phi\,\mathrm{d}\mathcal{T}_{B}\,\mathrm{d}\mathcal{T}_{J}} = \frac{\mathrm{d}\sigma_{2}}{\mathrm{d}\Phi\,\mathrm{d}\mathcal{T}_{B}\,\mathrm{d}\mathcal{T}_{J}} + \left(\frac{\mathrm{d}\sigma_{1}}{\mathrm{d}\Phi\,\mathrm{d}\mathcal{T}_{B}\,\mathrm{d}\mathcal{T}_{J}} - \frac{\mathrm{d}\sigma_{2}}{\mathrm{d}\Phi\,\mathrm{d}\mathcal{T}_{B}\,\mathrm{d}\mathcal{T}_{J}}\right|_{\mu_{S} = \mu_{S}^{B} = \mu_{S}}\right)
+ \left(\frac{\mathrm{d}\sigma_{3}}{\mathrm{d}\Phi\,\mathrm{d}\mathcal{T}_{B}\,\mathrm{d}\mathcal{T}_{J}} - \frac{\mathrm{d}\sigma_{2}}{\mathrm{d}\Phi\,\mathrm{d}\mathcal{T}_{B}\,\mathrm{d}\mathcal{T}_{J}}\right|_{\mu_{S} = \mu_{J} = \mu_{J}^{B}}\right)$$

• remaining power corrections: $\mathcal{O}(\mathcal{T}_B/p_T^J)$, $\mathcal{O}(R^2 \times \mathcal{T}_J/(p_T^JR^2)) = \mathcal{O}(\mathcal{T}_J/p_T^J)$ \rightarrow full QCD corrections

Outline

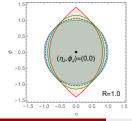
- Factorization of jet radius effects
 - Description of hierarchies $m_J \leftrightarrow p_T^J R \leftrightarrow p_T^J$
 - Relations between the hierarchies
- Soft functions for jet algorithms at hadron colliders
 - Calculation of jet algorithm effects
 - Results
- Summary

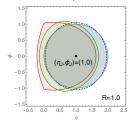
Jet algorithms

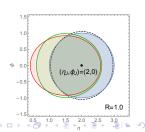
- clustering of soft radiation (for coll. core) according to distance measures $d_B, d_J \to d_J(\eta,\phi) < d_B(\eta,\phi)$ ($d_B < d_J$): soft particle in the jet (beam) region
- examples for algorithms: (see also [Stewart, Tackmann, Thaler, Vermilion, Wilkason (2015)])

jet algorithm	d_B	d_J
A: anti-kT	R^2	$(\Delta \eta)^2 + (\Delta \phi)^2$
B: Geometric R	$p_T e^{- \eta }$	$rac{1}{ ho(R,\eta_J)} n_J \cdot p$
C: Mod. Geometric R	$p_T/(2\cosh\eta)$	$\frac{1}{\rho(R,\eta_J)} n_J \cdot p$
D: XCone ($\beta = 2$)	$p_T/(2\cosh\eta)$	$rac{1}{ ho(R,\eta_J)} n_J \cdot p \ rac{\cosh \eta_J}{R^2 \cosh \eta} n_J \cdot p$
	$R^2/2$	$\cosh(\Delta \eta) - \cos(\Delta \phi)$

• shapes of jet areas for R=1 for different η_J :





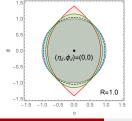


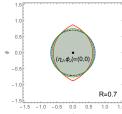
Jet algorithms

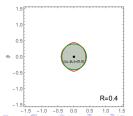
- clustering of soft radiation (for coll. core) according to distance measures $d_B, d_J \to d_J(\eta,\phi) < d_B(\eta,\phi)$ ($d_B < d_J$): soft particle in the jet (beam) region
- examples for algorithms: (see also [Stewart, Tackmann, Thaler, Vermilion, Wilkason (2015)])

jet algorithm	d_B	d_J
A: anti-kT	R^2	$(\Delta \eta)^2 + (\Delta \phi)^2$
B: Geometric R	$p_T e^{- \eta }$	$rac{1}{ ho(R,\eta_J)} n_J \cdot p$
C: Mod. Geometric R	$p_T/(2\cosh\eta)$	
D: XCone ($\beta = 2$)	$p_T/(2\cosh\eta)$	$\frac{\frac{1}{\rho(R,\eta_J)} n_J \cdot p}{\frac{\cosh \eta_J}{R^2 \cosh \eta} n_J \cdot p}$
	$R^2/2$	$\cosh(\Delta \eta) - \cos(\Delta \phi)$

• shapes of the jet areas for $\eta_J = 0$ for different R:







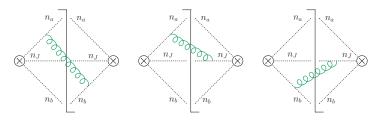
Soft function diagrams

• aim: compute associated one-loop soft functions

$$S(\ell_J, \ell_B) \sim \operatorname{tr}\left[\left\langle 0 \middle| \bar{T}[Y_{n_a}^{\dagger} Y_{n_b} Y_{n_J}] \middle| X_s \right\rangle \left\langle X_s \middle| T[Y_{n_J}^{\dagger} Y_{n_b}^{\dagger} Y_{n_a}] \middle| 0 \right\rangle\right] F(\ell_J, \ell_B, \{p_i^{X_s}\})$$

$$F(\ell_B, \ell_J, \{p_i\}) = \delta\left(\ell_J - \sum_{i \in I} n_J \cdot p_i\right) \delta(\ell_B) + \delta\left(\ell_B - \sum_{i \in B} p_{Ti} f(\eta_i)\right) \delta(\ell_J)$$

real radiation diagrams



$$S^{(1)} \equiv S_{ab} + S_{aJ} + S_{bJ}$$

integral expression:

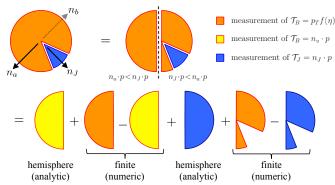
$$S_{ij} = -2\mathbf{T}_i \cdot \mathbf{T}_j \left(\frac{e^{\gamma_E} \mu^2}{4\pi}\right)^{\epsilon} g^2 \int \frac{\mathrm{d}^d p}{(2\pi)^{d-1}} \frac{n_i \cdot n_j}{(n_i \cdot p)(n_j \cdot p)} \, \delta(p^2) \, \theta(p^0) \, F(\ell_J, \ell_B, p)$$

General hemisphere decomposition

- Strategy:
 - ightarrow compute analytic result for a measurement with the same divergent behavior
 - → compute the remaining mismatch numerically in 4d
- hemisphere decomposition [Jouttenus, Stewart, Tackmann, Waalewijn (2011)]
 (related method used also in [Bauer, Dunn, Hornig (2011)])
 - \rightarrow soft function for N-jettiness jets with N-jettiness measurement
 - → generalization to other observables and jet boundaries possible (see also Tomas' talk [Kasemets, Waalewijn, Zeune (2015)])

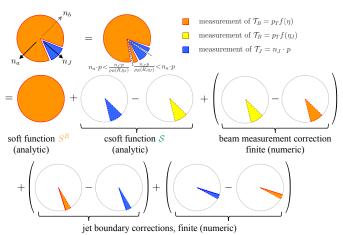
General hemisphere decomposition

- Strategy:
 - → compute analytic result for a measurement with the same divergent behavior
 - → compute the remaining mismatch numerically in 4d
- hemisphere decomposition [Jouttenus, Stewart, Tackmann, Waalewijn (2011)]
- example: correction from aJ-dipole for SCET_I measurements



ullet more efficient: use analytic results and compute numeric $\mathcal{O}(R^2)$ corrections

$$S_{\kappa}(\mathcal{T}_{J}, \mathcal{T}_{B}, \eta_{J}, R, \mu) = S_{\kappa}^{B}(\mathcal{T}_{B}, \eta_{J}, \mu) \otimes S_{\kappa_{J}}\left(\frac{2\cosh \eta_{J}\mathcal{T}_{J}}{R}, \frac{\mathcal{T}_{B}R}{f(\eta_{J})}, \mu\right) \left[1 + \mathcal{O}(R^{2})\right]$$



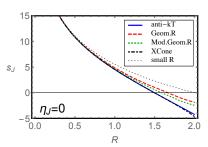
• jet boundary corrections only in regions without collinear divergences

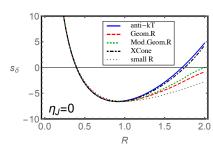
ightarrow applicable to all combinations of $\mathrm{SCET_{I}/SCET_{II}}$ jet and beam measurements

Corrections from beam-jet dipole for C-parameter (SCET_I)

$$\begin{split} S_{aJ}^{(1)}(\ell_J,\ell_B,\eta_J,R,\mu) &= \frac{\alpha_s(\mu)}{4\pi} \, \mathbf{T}_a \cdot \mathbf{T}_J \bigg\{ \frac{8}{\mu} \, \mathcal{L}_1\Big(\frac{\ell_B}{\mu}\Big) \, \delta(\ell_J) + \frac{8}{\mu} \, \mathcal{L}_1\Big(\frac{\ell_J}{\mu}\Big) \, \delta(\ell_B) \\ &+ s_B(R,\eta_J) \, \frac{1}{\mu} \, \mathcal{L}_0\Big(\frac{\ell_B}{\mu}\Big) \, \delta(\ell_J) + s_J(R,\eta_J) \, \frac{1}{\mu} \, \mathcal{L}_0\Big(\frac{\ell_J}{\mu}\Big) \, \delta(\ell_B) \\ &+ s_\delta(R,\eta_J) \, \delta(\ell_J) \, \delta(\ell_B) \bigg\} \end{split}$$

Results for $\eta_J=0$ in terms of R for C-parameter veto: $f_C=\frac{1}{2\cosh\eta}$





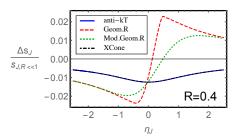
 \rightarrow small deviations for $R \lesssim 1$ (for central jets)

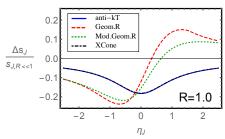
◆ロト ◆部 ▶ ◆ 恵 ▶ ◆ 恵 ★ 夏 ★ 夕 Q ○

Corrections from beam-jet dipole for C-parameter (SCET_I)

$$\begin{split} S_{aJ}^{(1)}(\ell_J,\ell_B,\eta_J,R,\mu) &= \frac{\alpha_s(\mu)}{4\pi} \, \mathbf{T}_a \cdot \mathbf{T}_J \bigg\{ \frac{8}{\mu} \, \mathcal{L}_1 \Big(\frac{\ell_B}{\mu} \Big) \, \delta(\ell_J) + \frac{8}{\mu} \, \mathcal{L}_1 \Big(\frac{\ell_J}{\mu} \Big) \, \delta(\ell_B) \\ &+ s_B(R,\eta_J) \, \frac{1}{\mu} \, \mathcal{L}_0 \Big(\frac{\ell_B}{\mu} \Big) \, \delta(\ell_J) + s_J(R,\eta_J) \, \frac{1}{\mu} \, \mathcal{L}_0 \Big(\frac{\ell_J}{\mu} \Big) \, \delta(\ell_B) \\ &+ s_\delta(R,\eta_J) \, \delta(\ell_J) \, \delta(\ell_B) \bigg\} \end{split}$$

Relative deviations from small R limit for R=0.4 and R=1.0 in terms of η_J :



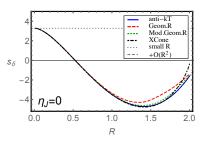


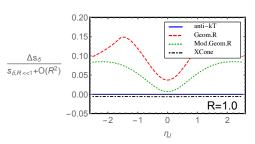
- → deviations between algorithms can be sizable for large rapidities (different shape)
- \rightarrow small R limit reasonable approximation even for R=1

Corrections from beam-beam dipole for $p_T^{ m jet}$ (SCET_{II})

$$\begin{split} S_{ab}^{(1)}(\ell_J, p_T^{\text{cut}}, \eta_J, R, \mu, \nu) &= \frac{\alpha_s(\mu)}{4\pi} \, \mathbf{T}_a \cdot \mathbf{T}_b \bigg\{ \bigg[8 \ln^2 \Big(\frac{p_T^{\text{cut}}}{\mu} \Big) - 16 \ln \Big(\frac{p_T^{\text{cut}}}{\mu} \Big) \ln \Big(\frac{\nu}{\mu} \Big) \bigg] \delta(\ell_J) \\ &+ s_B(R, \eta_J) \bigg[\ln \Big(\frac{p_T^{\text{cut}}}{\mu} \Big) \delta(\ell_J) - \mathcal{L}_0 \Big(\frac{\ell_J}{\mu} \Big) \bigg] + s_\delta(R, \eta_J) \, \delta(\ell_J) \bigg\} \end{split}$$

Result for $\eta_J = 0$ and relative deviation for R = 1:





- \rightarrow large, common corrections to small R limit
- \rightarrow with analytic $\mathcal{O}(R^2)$ corrections: identical to anti-kT

Outline

- Factorization of jet radius effects
 - Description of hierarchies $m_J \leftrightarrow p_T^J R \leftrightarrow p_T^J$
 - Relations between the hierarchies
- Soft functions for jet algorithms at hadron colliders
 - Calculation of jet algorithm effects
 - Results
- Summary

Summary & Outlook

Summary:

- proper treatment of jet boundary effects important for substructure analyses
 - → clustering of soft radiation
 - \rightarrow small R effects
- for jet mass measurements: several hierarchies for $m_J \leftrightarrow p_T^J R$, $R \leftrightarrow R_0$
 - \rightarrow resummation of $\ln R$ in SCET₊
 - → systematic combination with nonsingular corrections
 - → computation of soft functions for typical jet algorithms
 - \rightarrow results based on small R expansion give a good approximation for $R \lesssim 1$

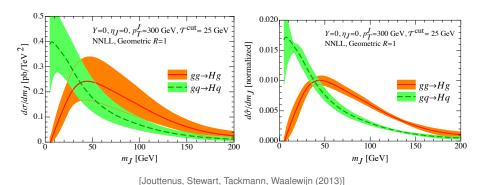
Coming up:

- ullet phenomenological study for pp o H/W/Z + 1 jet extending current NNLL analysis [Jouttenus, Stewart, Tackmann, Waalewijn (2013)]
- soft functions for overlapping jets: different clustering for anti-kT and XCone

Outline

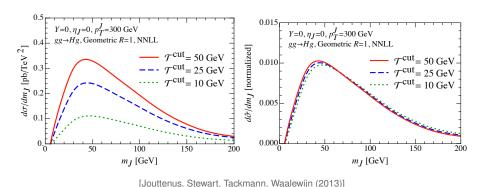
Back-up slides

Perturbative uncertainties at NNLL



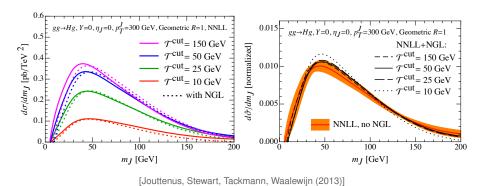
⇒ reduction of perturbative uncertainties for normalized spectrum

Jet veto dependence at NNLL



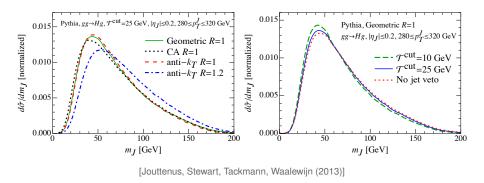
⇒ jet veto dependence cancels mainly in normalized spectrum

Effect of NGLs



- ⇒ tight veto minimizes NGLs for unnormalized spectrum around the peak region
- ⇒ mild impact of NGLs on the normalize spectrum for a wide range of jet vetoes

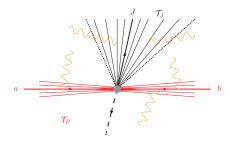
Jet algorithm and jet veto dependence in Pythia



- \Rightarrow 1-jettiness jets (Geometric \it{R}) give almost equivalent result to anti-kT jets in Pythia
- \Rightarrow Jet veto dependence in Pythia is small, inclusive and exclusive case not far apart

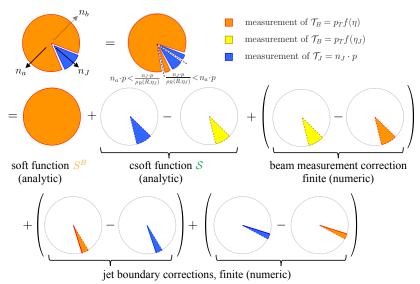
regime 4: $m_J \sim p_T^J R \sim p_T^J$

- ullet only hard wide-angle radiation inside the "jet", no n_J -collinear modes
- soft modes resolve individual hard emissions



mode	$p^{\mu} = (+, -, \perp)$	$\sqrt{p^2}$	
hard	(p_T^J, p_T^J, p_T^J)	p_T^J	 ←¬
$n_{a,b}$ – collinear	$\left(\mathcal{T}_B, p_T^J, \sqrt{p_T^J \mathcal{T}_B} ight)_B$	$\sqrt{p_T^J \mathcal{T}_B}$	correlated emissions
usoft	$(\mathcal{T}_B,\mathcal{T}_B,\mathcal{T}_B)$	\mathcal{T}_B	-

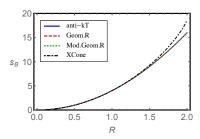
Hemisphere decomposition for small ${\it R}$

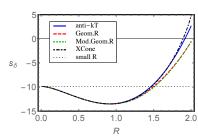


Corrections from beam-beam dipole (SCET_I) (C-parameter)

$$\begin{split} S_{ab}^{(1)}(\ell_J,\ell_B,\eta_J,R,\mu) &= \frac{\alpha_s(\mu)}{4\pi} \, \mathbf{T}_a \cdot \mathbf{T}_b \bigg\{ \frac{16}{\mu} \, \mathcal{L}_1 \Big(\frac{\ell_B}{\mu} \Big) \, \delta(\ell_J) \\ &+ s_B(R,\eta_J) \bigg[\frac{1}{\mu} \, \mathcal{L}_0 \Big(\frac{\ell_B}{\mu} \Big) \, \delta(\ell_J) - \frac{1}{\mu} \, \mathcal{L}_0 \Big(\frac{\ell_J}{\mu} \Big) \, \delta(\ell_B) \bigg] \\ &+ s_\delta(R,\eta_J) \, \delta(\ell_J) \, \delta(\ell_B) \bigg\} \end{split}$$

Results for $\eta_J=0$ for C-parameter veto: $(s_B(R,\eta_J)=4/\pi \times \text{ jet area} \approx 4R^2)$





Corrections from beam-jet dipole ($SCET_{II}$)

$$\begin{split} S_{aJ}^{(1)}(\ell_{J}, p_{T}^{\mathrm{cut}}, \eta_{J}, R, \mu, \nu) &= \frac{\alpha_{s}(\mu)}{4\pi} \mathbf{T}_{a} \cdot \mathbf{T}_{J} \bigg\{ \bigg[4 \ln^{2} \bigg(\frac{p_{T}^{\mathrm{cut}}}{\mu} \bigg) - 8 \ln \bigg(\frac{p_{T}^{\mathrm{cut}}}{\mu} \bigg) \ln \bigg(\frac{\nu e^{-\eta_{J}}}{\mu} \bigg) \bigg] \delta(\ell_{J}) \\ &+ \frac{8}{\mu} \mathcal{L}_{1} \bigg(\frac{\ell_{J}}{\mu} \bigg) + s_{B}(R, \eta_{J}) \ln \bigg(\frac{p_{T}^{\mathrm{cut}}}{\mu} \bigg) \delta(\ell_{J}) \\ &+ s_{J}(R, \eta_{J}) \frac{1}{\mu} \mathcal{L}_{0} \bigg(\frac{\ell_{J}}{\mu} \bigg) + s_{\delta}(R, \eta_{J}) \delta(\ell_{J}) \bigg\} \end{split}$$

Result for $\eta_J = 0$ and for R = 1.0 (for p_T^{cut}):

