# Jet shapes in dijet events at the LHC in SCET

Yiannis Makris Duke University

In collaboration with Andrew Hornig (LANL) and Thomas Mehen (Duke U.)

[arXiv: 1601.01319]

SCET 2016, March. 21-24, Hamburg, Germany

# Outline

**Boost Invariant Angularities** 

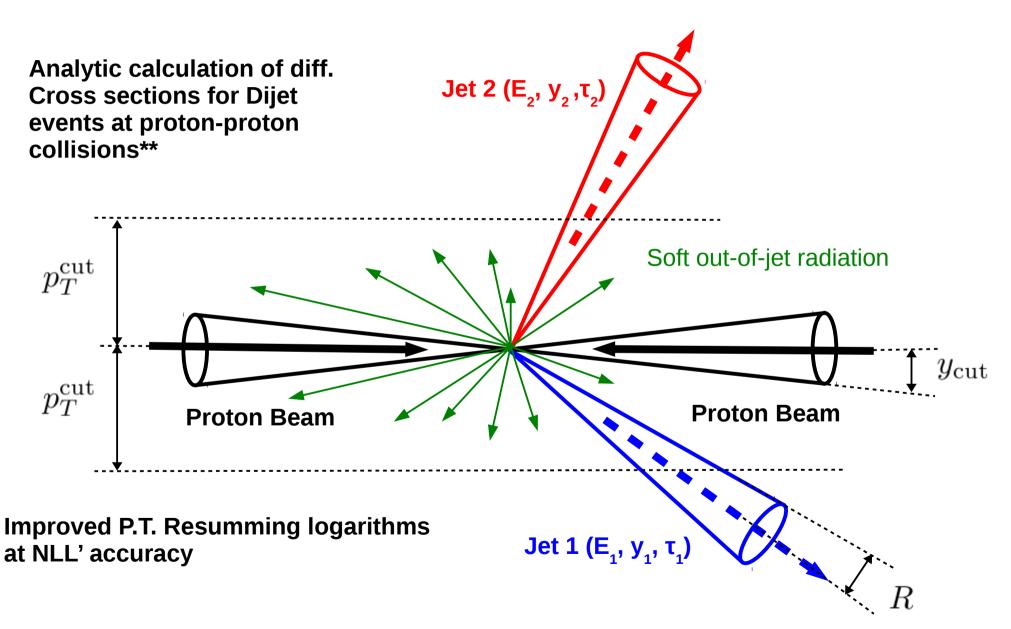
Jet, Hard, Beam Functions

Soft Function

Scales and R.G. Evolution - Theoretical Uncertainties – Plots for NLL'

Summary - Applications

# **Problem Setup**



\*\*Extension of the work on e+e- to N jets by Ellis, Vermilion, Walsh, Hornig and Lee, [arXiv: 1001.0014]

# Angularities

#### **Rotational invariant**

-1

Almeida et al. [arXiv: 0807.0234] Berger, Kucs, and Sterman [hep-ph/ 0303051]

$$\tau_a^{e^+e^-} = \frac{1}{2E_J} \sum_i |p_T^{iJ}| e^{-(1-a)|y_{iJ}|}$$
$$= (2E_J)^{-(2-a)} (p_T)^{1-a} \sum_i |p_T^i| \left(\frac{\theta_{iJ}}{\sin \theta_J}\right)^{2-a} \left(1 + \mathcal{O}(\theta_{iJ}^2)\right)$$

**Boost invariant** 

$$\tau_a \equiv \tau_a^{pp} \equiv \frac{1}{p_T} \sum_i |p_T^i| (\Delta \mathcal{R}_{iJ})^{2-a}$$
$$= \left(\frac{2E_J}{p_T}\right)^{2-a} \tau_a^{e^+e^-} + \mathcal{O}(\tau_a^2)$$

where 
$$\Delta \mathcal{R}_{ij} \equiv \sqrt{(\Delta y_{ij})^2 + (\Delta \phi_{ij})^2}$$

# Angularities

#### **Rotational invariant**

Almeida et al. [arXiv: 0807.0234] Berger, Kucs, and Sterman [hep-ph/ 0303051]

$$\tau_a^{e^+e^-} = \frac{1}{2E_J} \sum_{i} |p_T^{iJ}| e^{-(1-a)|y_{iJ}|}$$
$$= (2E_J)^{-(2-a)} (p_T)^{1-a} \sum_{i} |p_T^i| \left(\frac{\theta_{iJ}}{\sin \theta_J}\right)^{2-a} \left(1 + \mathcal{O}(\theta_{iJ}^2)\right)$$

#### **Boost invariant**

$$\tau_a \equiv \tau_a^{pp} \equiv \frac{1}{p_T} \sum_i |p_T^i| (\Delta \mathcal{R}_{iJ})^{2-a}$$
$$= \left(\frac{2E_J}{p_T}\right)^{2-a} \tau_a^{e^+e^-} + \mathcal{O}(\tau_a^2)$$

where 
$$\Delta \mathcal{R}_{ij} \equiv \sqrt{(\Delta y_{ij})^2 + (\Delta \phi_{ij})^2}$$

# Angularities

#### **Rotational invariant**

Almeida et al. [arXiv: 0807.0234] Berger, Kucs, and Sterman [hep-ph/ 0303051]

 $)^2$ 

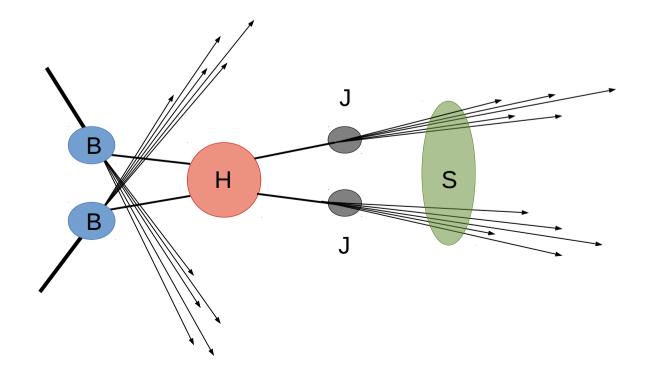
$$\tau_a^{e^+e^-} = \frac{1}{2E_J} \sum_{i} |p_T^{iJ}| e^{-(1-a)|y_{iJ}|}$$
$$= (2E_J)^{-(2-a)} (p_T)^{1-a} \sum_{i} |p_T^i| \left(\frac{\theta_{iJ}}{\sin \theta_J}\right)^{2-a} \left(1 + \mathcal{O}(\theta_{iJ}^2)\right)$$

#### **Boost invariant**

$$\tau_a \equiv \tau_a^{pp} \equiv \frac{1}{p_T} \sum_i |p_T^i| (\Delta \mathcal{R}_{iJ})^{2-a}$$
$$= \left(\frac{2E_J}{p_T}\right)^{2-a} \tau_a^{e^+e^-} + \mathcal{O}(\tau_a^2)$$
where  $\Delta \mathcal{R}_{ij} \equiv \sqrt{(\Delta y_{ij})^2 + (\Delta \phi_{ij})^2}$ 

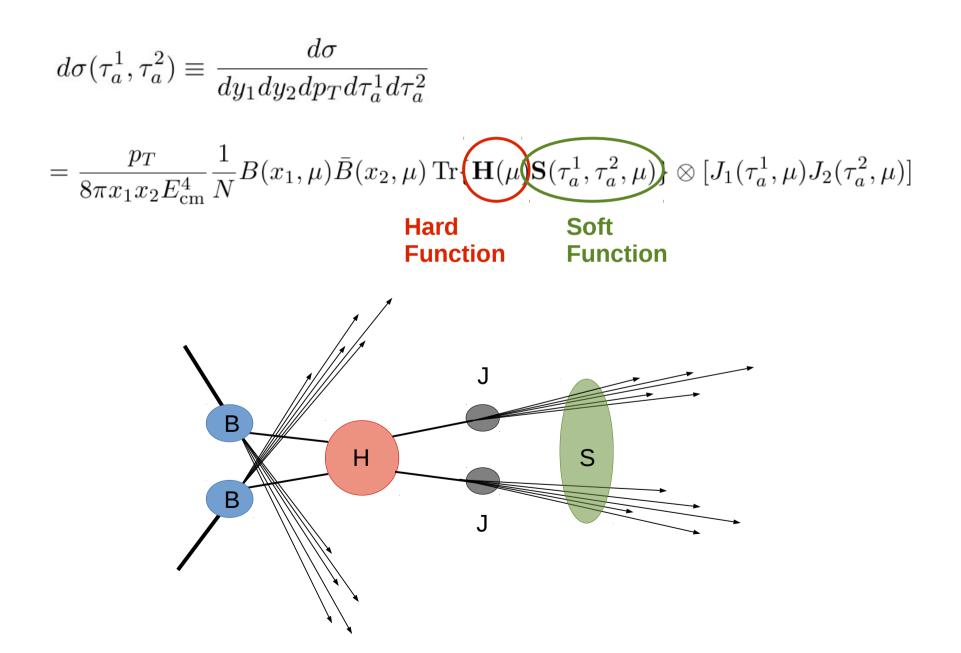
$$d\sigma(\tau_a^1, \tau_a^2) \equiv \frac{d\sigma}{dy_1 dy_2 dp_T d\tau_a^1 d\tau_a^2}$$

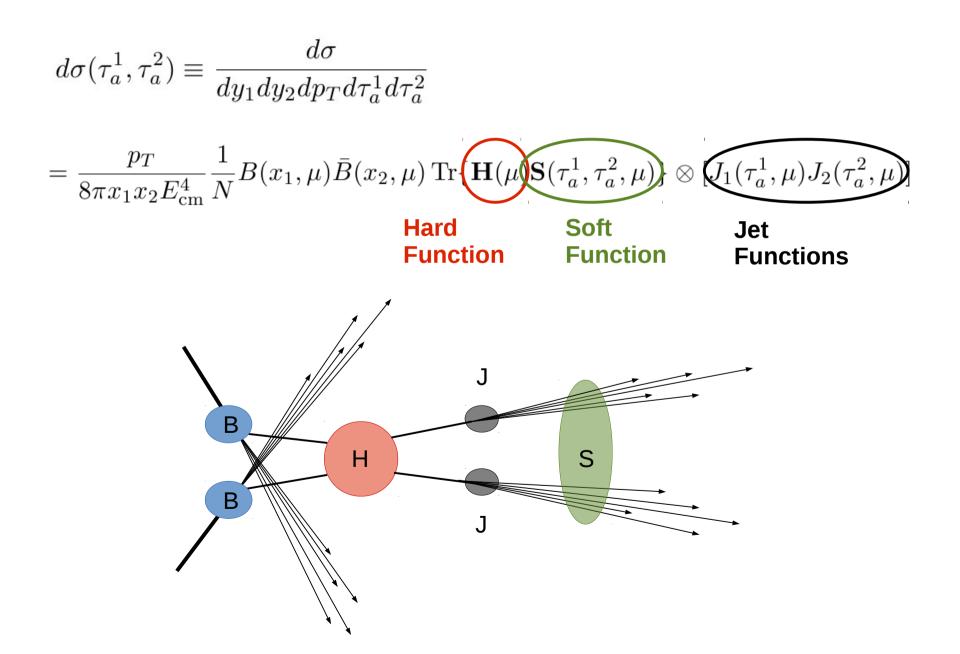
 $= \frac{p_T}{8\pi x_1 x_2 E_{\rm cm}^4} \frac{1}{N} B(x_1,\mu) \bar{B}(x_2,\mu) \operatorname{Tr}\{\mathbf{H}(\mu)\mathbf{S}(\tau_a^1,\tau_a^2,\mu)\} \otimes [J_1(\tau_a^1,\mu) J_2(\tau_a^2,\mu)]$ 

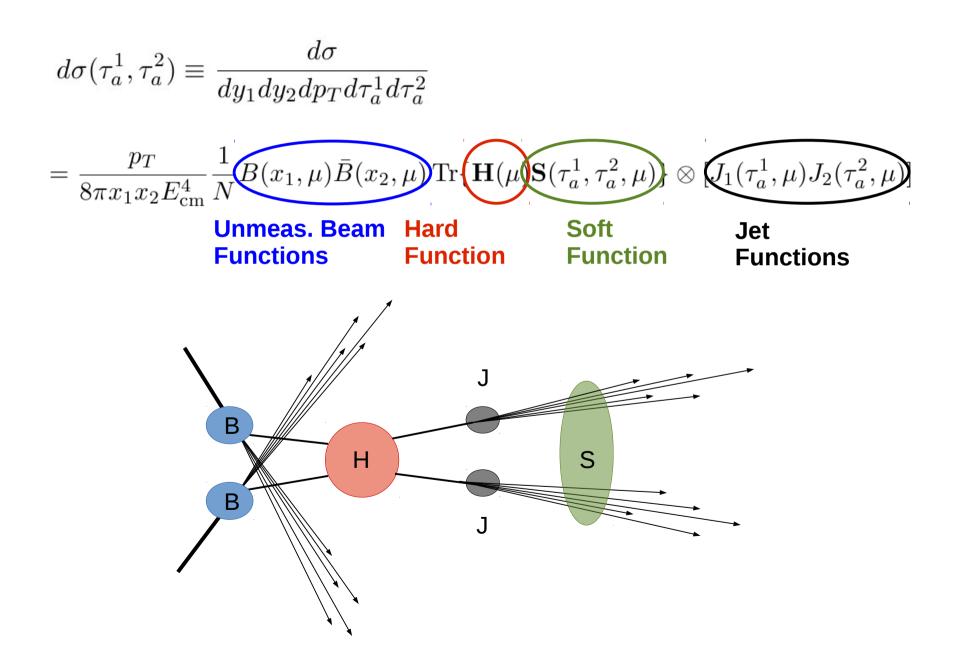


$$d\sigma(\tau_a^1, \tau_a^2) \equiv \frac{d\sigma}{dy_1 dy_2 dp_T d\tau_a^1 d\tau_a^2}$$

$$= \frac{p_T}{8\pi x_1 x_2 E_{\rm cm}^4} \frac{1}{N} B(x_1, \mu) \bar{B}(x_2, \mu) \operatorname{Tr} \left( \mathbf{H}(\mu) \mathbf{S}(\tau_a^1, \tau_a^2, \mu) \right) \otimes \left[ J_1(\tau_a^1, \mu) J_2(\tau_a^2, \mu) \right]$$
Hard
Function
$$\mathbf{J}$$







### **Jet Functions**

$$\int \frac{dk}{(2\pi)^4} \exp(-ik \cdot x) J_{n,\omega}(\tau, k^-) \left(\frac{n}{2}\right)_{\alpha\beta} = \langle \Omega | \chi^{\alpha}_{n,\omega}(x) \delta(\tau - \hat{\tau}) \bar{\chi}^{\beta}_{n,\omega}(0) | \Omega \rangle$$

### **Jet Functions**

$$\int \frac{dk}{(2\pi)^4} \exp(-ik \cdot x) J_{n,\omega}(\tau, k^-) \left(\frac{\eta}{2}\right)_{\alpha\beta} = \langle \Omega(\chi^{\alpha}_{n,\omega}(x)\delta(\tau - \hat{\tau})\bar{\chi}^{\beta}_{n,\omega}(0))\Omega \rangle$$

Quark Jet Function

**Similarly for Gloun Jets** 

### **Jet Functions**

$$\int \frac{dk}{(2\pi)^4} \exp(-ik \cdot x) J_{n,\omega}(\tau, k^-) \left(\frac{n}{2}\right)_{\alpha\beta} = \langle \Omega | \chi^{\alpha}_{n,\omega}(x) \delta(\tau - \hat{\tau}) \tilde{\chi}^{\beta}_{n,\omega}(0) | \Omega \rangle$$

$$A^{-1}\delta(A^{-1}\tau - \hat{\tau}) = \delta(\tau - A\hat{\tau})$$

$$J_i(\tau_a) = \left(\frac{p_T}{2E_J}\right)^{2-a} J_i^{e^+e^-} \left(\left(\frac{p_T}{2E_J}\right)^{2-a} \tau_a\right)$$

Ellis, Vermilion, Walsh, Hornig and Lee, [arXiv: 1001.0014]

# **Hard Function**

$$H_{IJ}(\mu) = C_I(\mu)C_J^*(\mu)$$
  $C_I(\mu)$  Wilson  
Coefficients

Kelley and Schwartz [arXiv: 1008.2759]

. . . . .

$$\frac{d \mathbf{H}}{d \ln \mu} = \mathbf{\Gamma}_H \mathbf{H} + \mathbf{H} \mathbf{\Gamma}_H^{\dagger}$$
$$\mathbf{\Gamma}_H = \frac{1}{2} \Gamma_H \mathbf{1} + \Gamma_c \mathbf{M}(m_i)$$

 $\mathbf{H}(\mu,\mu_H) = \Pi_H(\mu,\mu_H) \,\mathbf{\Pi}_H(\mu,\mu_H) \mathbf{H}(\mu_H) \mathbf{\Pi}_H^{\dagger}(\mu,\mu_H)$ 

# **Hard Function**

$$H_{IJ}(\mu) = C_{I}(\mu)C_{J}^{*}(\mu) \qquad C_{I}(\mu) \qquad \begin{array}{l} \text{Wilson} \\ \text{Coefficients} \end{array}$$

$$\begin{array}{l} \text{Kelley and Schwartz} \\ [arXiv: 1008.2759] \end{array}$$

$$\frac{d \mathbf{H}}{d \ln \mu} = \mathbf{\Gamma}_{H} \mathbf{H} + \mathbf{H} \mathbf{\Gamma}_{H}^{\dagger}$$

$$\mathbf{\Gamma}_{H} = \underbrace{\frac{1}{2}}{\Gamma_{H}}\mathbf{1} + \Gamma_{c} \mathbf{M}(m_{i})$$

$$\mathbf{H}(\mu, \mu_{H}) = \underbrace{\Pi_{H}(\mu, \mu_{H})}{\Pi_{H}(\mu, \mu_{H})} \mathbf{H}(\mu_{H}) \mathbf{\Pi}_{H}^{\dagger}(\mu, \mu_{H})$$

# **Hard Function**

$$H_{IJ}(\mu) = C_{I}(\mu)C_{J}^{*}(\mu) \qquad C_{I}(\mu) \qquad \begin{array}{l} \text{Wilson} \\ \text{Coefficients} \end{array}$$

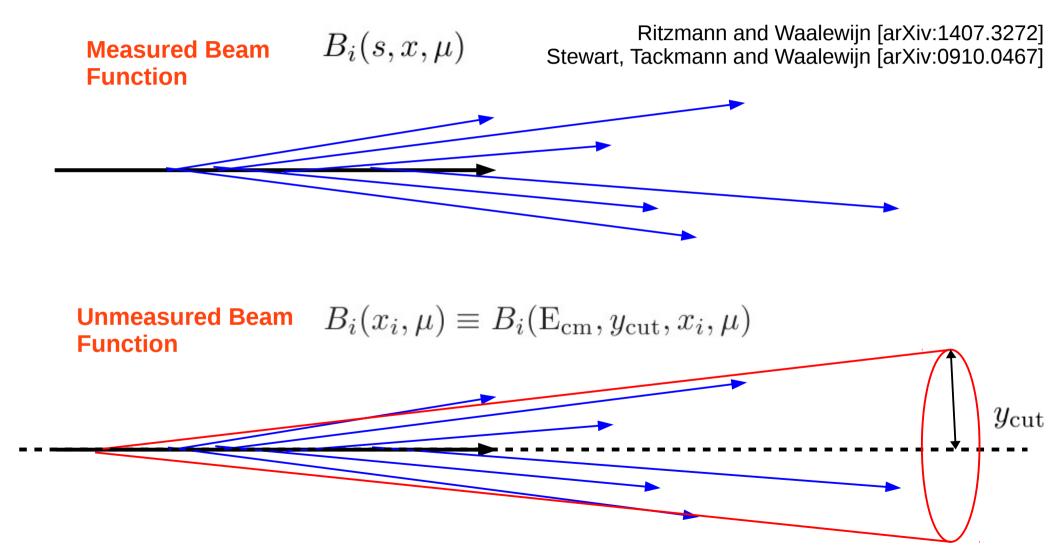
$$Kelley \text{ and Schwartz} \\ [arXiv: 1008.2759] \end{array}$$

$$\frac{d \mathbf{H}}{d \ln \mu} = \mathbf{\Gamma}_{H} \mathbf{H} + \mathbf{H} \mathbf{\Gamma}_{H}^{\dagger}$$

$$\mathbf{\Gamma}_{H} = \underbrace{\frac{1}{2}}{\Gamma_{H}}\mathbf{1} + \underbrace{\mathbf{\Gamma}_{c}}{\mathbf{M}(m_{i})}$$

$$\mathbf{H}(\mu, \mu_{H}) = \underbrace{\mathbf{\Pi}_{H}(\mu, \mu_{H})}{\mathbf{\Pi}_{H}(\mu, \mu_{H})} \mathbf{H}(\mu_{H}) \underbrace{\mathbf{\Pi}_{H}^{\dagger}(\mu, \mu_{H})}{\mathbf{\Pi}_{H}(\mu, \mu_{H})}$$

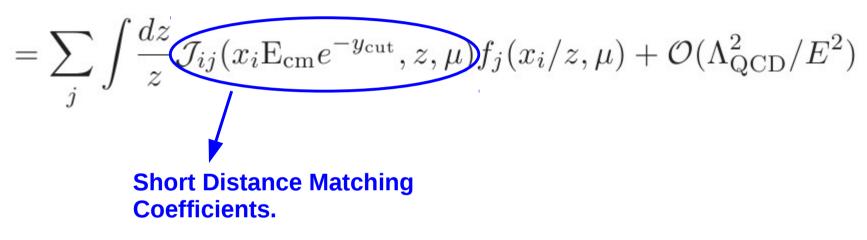
# **Beam Function**



 $B_i(x_i,\mu) \equiv B_i(\mathcal{E}_{cm}, y_{cut}, x_i, \mu)$ 

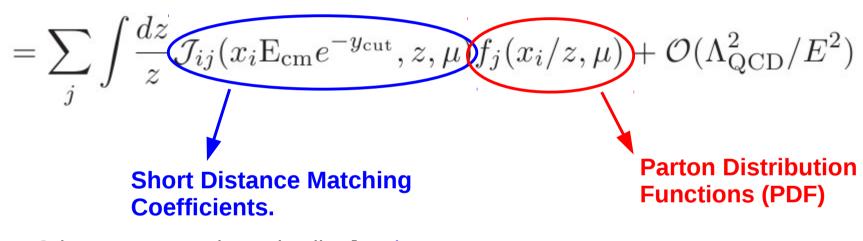
$$=\sum_{j}\int \frac{dz}{z}\mathcal{J}_{ij}(x_i \mathcal{E}_{\rm cm}e^{-y_{\rm cut}}, z, \mu)f_j(x_i/z, \mu) + \mathcal{O}(\Lambda_{\rm QCD}^2/E^2)$$

 $B_i(x_i,\mu) \equiv B_i(\mathcal{E}_{cm}, y_{cut}, x_i, \mu)$ 



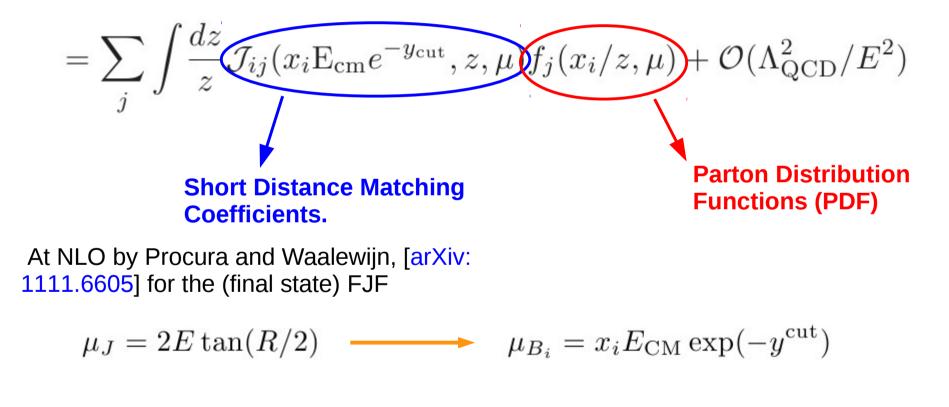
At NLO by Procura and Waalewijn, [arXiv: 1111.6605] for the (final state) FJF

 $B_i(x_i,\mu) \equiv B_i(\mathcal{E}_{cm}, y_{cut}, x_i,\mu)$ 



At NLO by Procura and Waalewijn, [arXiv: 1111.6605] for the (final state) FJF

 $B_i(x_i,\mu) \equiv B_i(\mathcal{E}_{cm}, y_{cut}, x_i,\mu)$ 



 $\Rightarrow \gamma_B(\mu_B,\mu) = \gamma_J(\mu_B,\mu)$ 

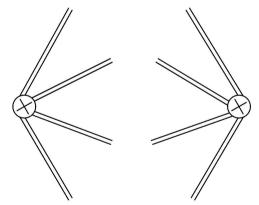
### **Soft Function**

$$S_{IJ}(\tau_1, \tau_2) = \mathcal{N} \sum_X \langle \Omega | \mathcal{W}_I^{\dagger} | X \rangle \langle X | \mathcal{W}_J | \Omega \rangle \ \delta(\tau_1 - \tau_1^X) \delta(\tau_2 - \tau_2^X)$$

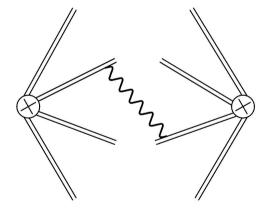
where  $\tau_i^X = \begin{cases} \tau^X & : \text{ inside jet i} \\ 0 & : \text{ outside jet i} \end{cases}$ 

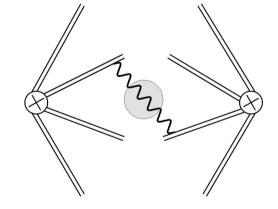
# **Soft Function**

$$\begin{split} S_{IJ}(\tau_1,\tau_2) &= \mathcal{N}\sum_X \langle \Omega | \mathcal{W}_I^{\dagger} | X \rangle \langle X | \mathcal{W}_J | \Omega \rangle \,\, \delta(\tau_1 - \tau_1^X) \delta(\tau_2 - \tau_2^X) \\ & \text{where} \quad \tau_i^X = \left\{ \begin{array}{l} \tau^X &: \text{inside jet i} \\ 0 &: \text{outside jet i} \end{array} \right. \end{split}$$



Leading Order (LO) contribution





Next to Leading Order (NLO) contribution outside Jets

Next to Leading Order (NLO) contribution inside Jets

### **Next to Leading Order Form of the Soft Function**

#### **2-measured 0-unmeasured Jets**

$$\mathbf{S}(\tau_a^1, \tau_a^2) = \mathbf{S}^{\text{unmeas}} \delta(\tau_a^1) \delta(\tau_a^2) + [\mathbf{S}_0 S^{\text{meas}}(\tau_a^1) \delta(\tau_a^2) + (1 \leftrightarrow 2)] + \mathcal{O}(\alpha_s^2)$$

#### **1-measured 1-unmeasured Jets**

$$\mathbf{S}(\tau_a) = \mathbf{S}^{\text{unmeas}} \delta(\tau_a) + \mathbf{S}_0 S^{\text{meas}}(\tau_a) + \mathcal{O}(\alpha_s^2)$$

**0-measured 2-unmeasured Jets** 

$$\mathbf{S} = \mathbf{S}^{\text{unmeas}} + \mathcal{O}(\alpha_s^2)$$

$$\mathbf{S}^{\text{unmeas}} = \mathbf{S}_0 + \mathcal{O}(\alpha_s)$$

### **Next to Leading Order Form of the Soft Function**

#### 2-measured 0-unmeasured Jets

$$\mathbf{S}(\tau_a^1, \tau_a^2) = \mathbf{S}^{\text{unmeas}} \delta(\tau_a^1) \delta(\tau_a^2) + [\mathbf{S}_0 S^{\text{meas}}(\tau_a^1) \delta(\tau_a^2) + (1 \leftrightarrow 2)] + \mathcal{O}(\alpha_s^2)$$

#### **1-measured 1-unmeasured Jets**

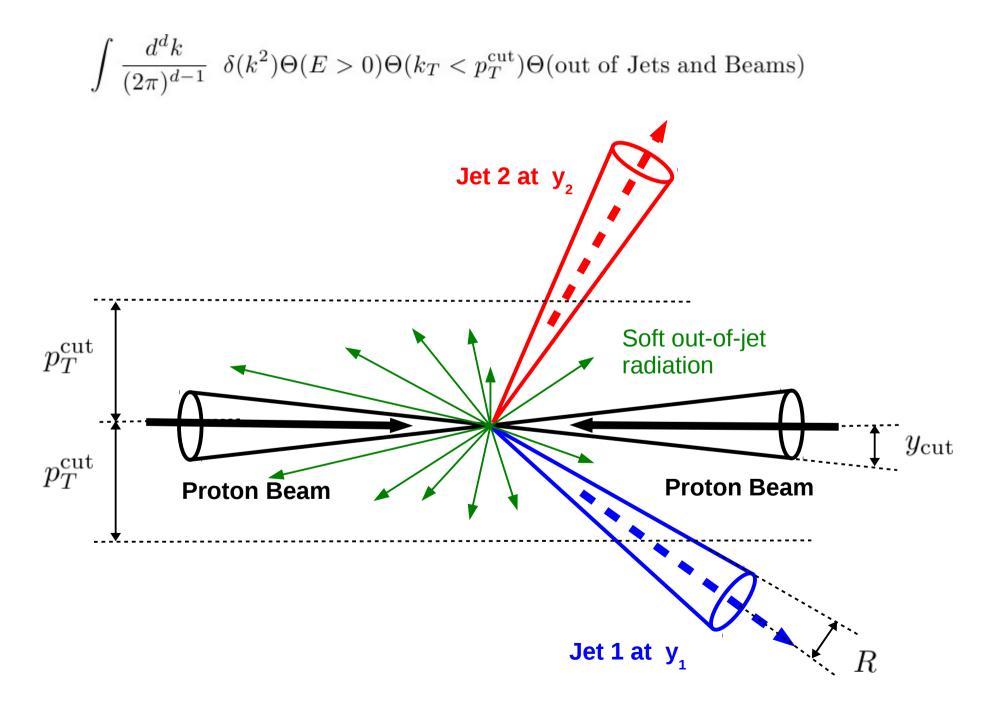
$$\mathbf{S}(\tau_a) = \mathbf{S}^{\text{unmeas}} \delta(\tau_a) + \mathbf{S}_0 S^{\text{meas}}(\tau_a) + \mathcal{O}(\alpha_s^2)$$

**0-measured 2-unmeasured Jets** 

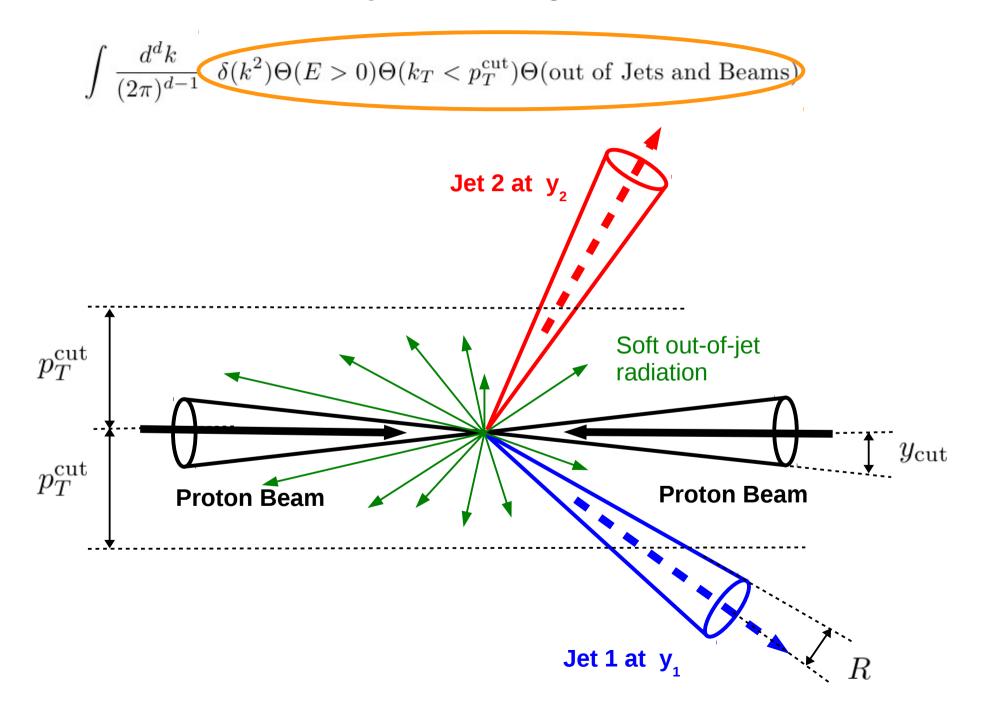
$$\mathbf{S} = \mathbf{S}^{\text{unmeas}} + \mathcal{O}(\alpha_s^2)$$

$$\mathbf{S}^{\text{unmeas}} = \mathbf{S}_0 + \mathcal{O}(\alpha_s)$$
 New calculation

### **Phase-Space of Integration**

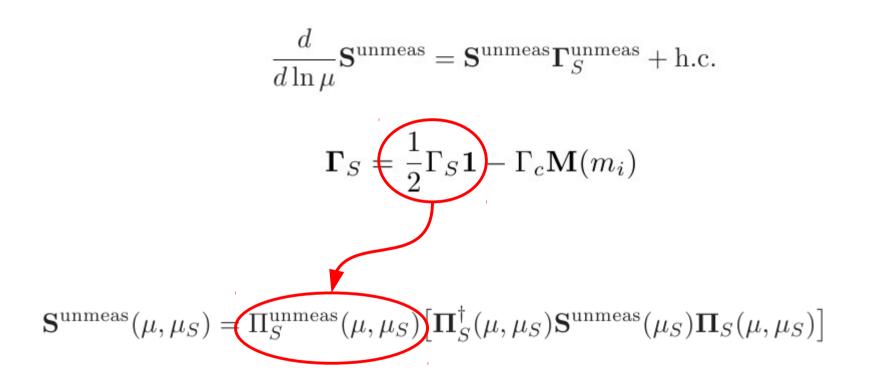


### **Phase-Space of Integration**

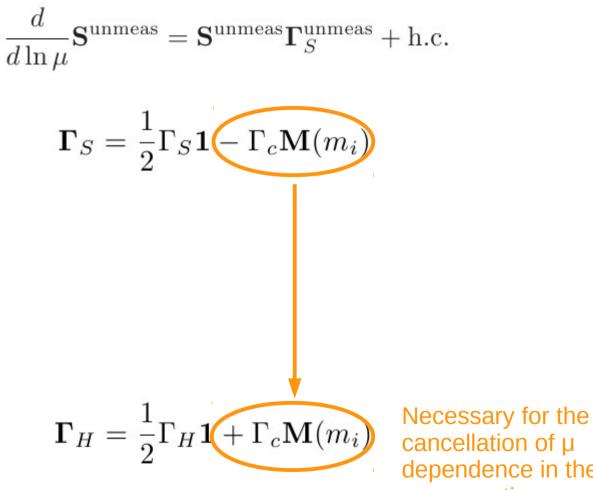


$$\frac{d}{d\ln\mu}\mathbf{S}^{\text{unmeas}} = \mathbf{S}^{\text{unmeas}}\mathbf{\Gamma}_{S}^{\text{unmeas}} + \text{h.c.}$$

$$\boldsymbol{\Gamma}_S = \frac{1}{2} \Gamma_S \boldsymbol{1} - \Gamma_c \mathbf{M}(m_i)$$



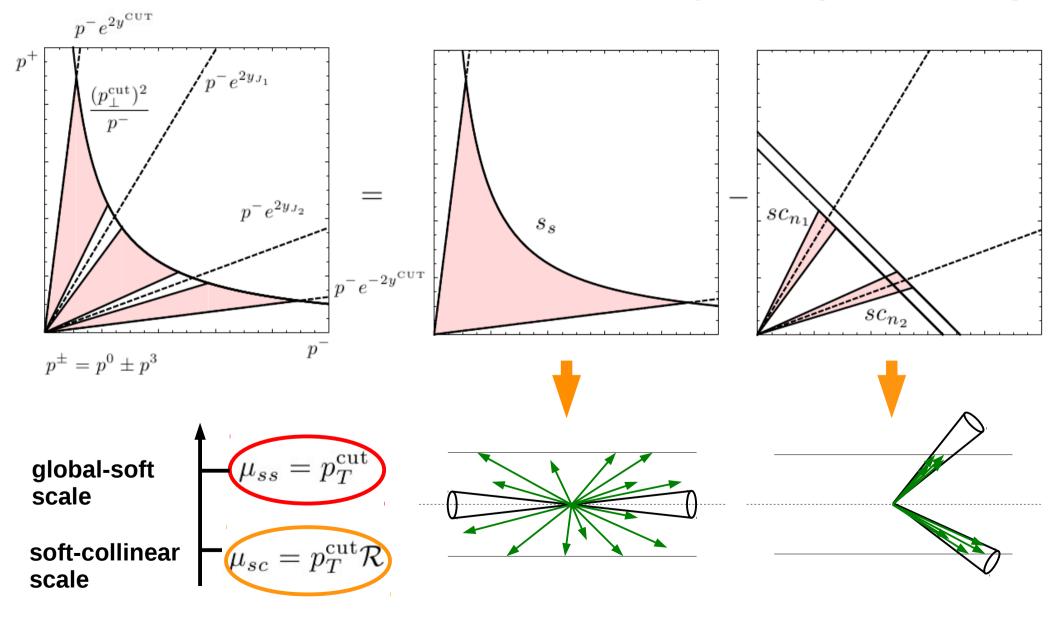




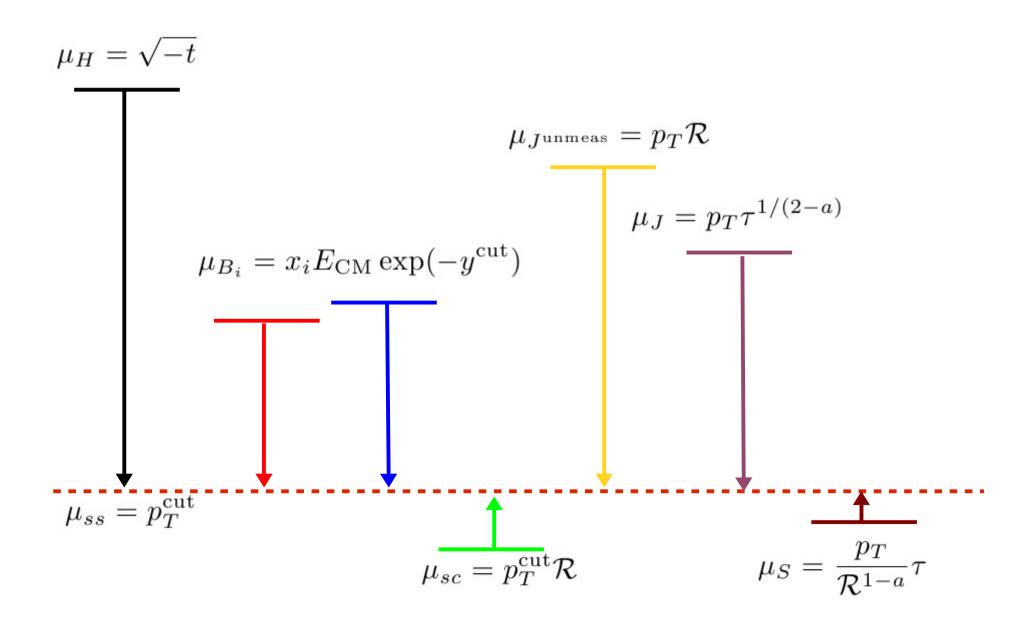
dependence in the cross section

### **Soft-Collinear Refactorization**

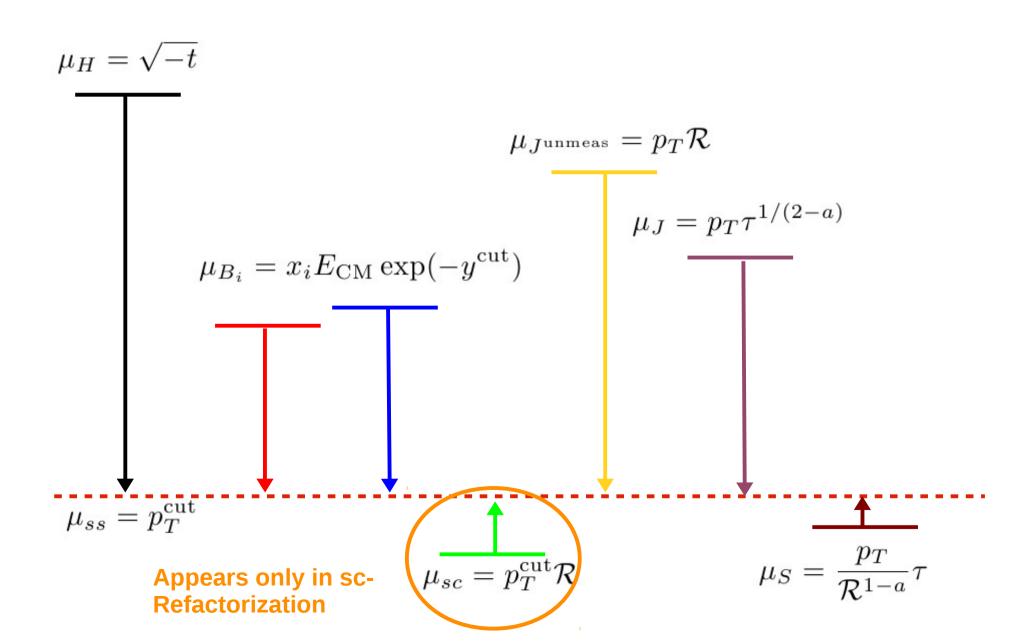




### Scales and R.G. Evolution

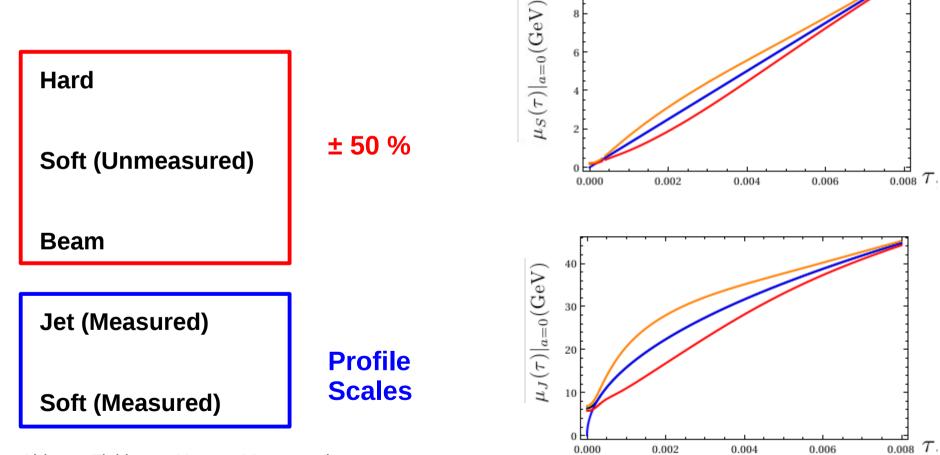


### Scales and R.G. Evolution



# **Theoretical Uncertainties**

Variation of the characteristic scales



10

Abbate, Fickinger, Hoang, Mateu and Stewart, [arxiv: 1006.3080].

# **Plots**

$$d\tilde{\sigma}(\tau_a) \equiv \frac{B(x_1, \mu = \mu_H)\bar{B}(x_2, \mu = \mu_H)}{B(x_1, \mu = \mu_B^1)\bar{B}(x_2, \mu = \mu_B^2)} \frac{d\sigma(\tau_a^1, \tau_a^2)}{\sigma^{\rm LO}(\mu = \mu_H)} \bigg|_{\tau_a^1 = \tau_a^2 = \tau_a}$$

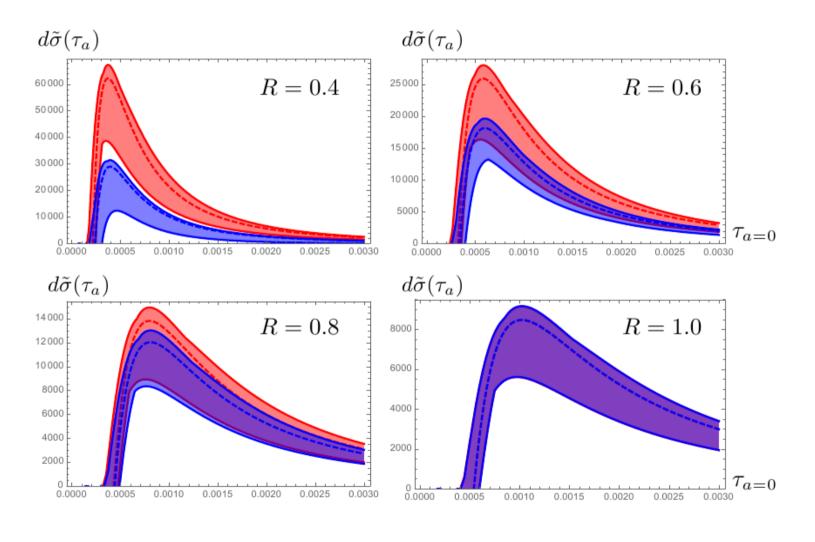
$$\boldsymbol{\tau}_{a}^{1} = \boldsymbol{\tau}_{a}^{2} = \boldsymbol{\tau}_{a}$$

Partonic Channel: qq' -- qq'

 $E_{cm} = 10 \text{ TeV}$   $y_1 = 1.0$   $p_T = 500 \text{ GeV}$  R = 0.6

a = 0  $y_2 = 1.4$   $p_T^{\text{cut}} = 20 \text{ GeV}$   $y_{\text{cut}} = 5.0$ 

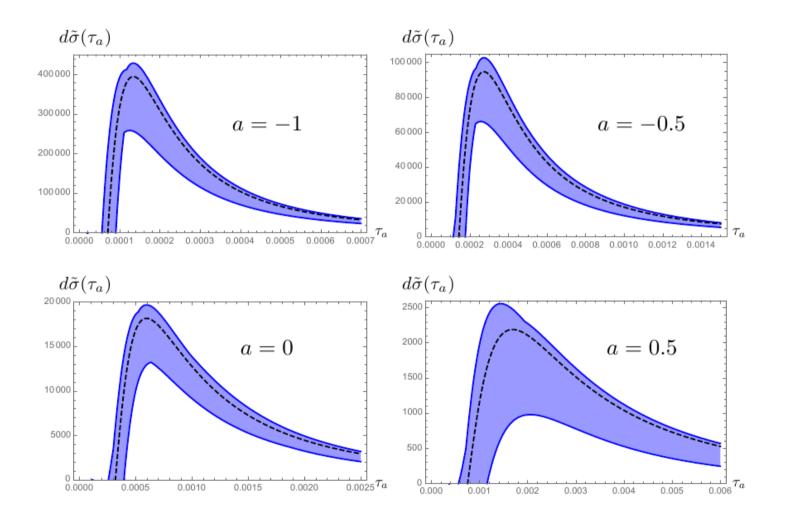
## **Plots - Variation of cone size R**



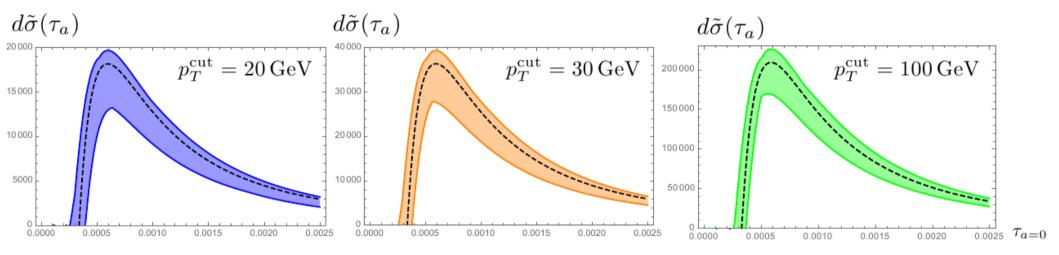
Without S-C Refactorization



#### **Plots - Variation of a**



# **Plots - Variation of p\_{\tau}^{cut}**



Increase of  $p_T^{cut}$  corresponds to increase of normalization Peak location and shape independent of  $p_T^{cut}$ Non-Global-Logarithms :  $\alpha_s^n \ln^n (p_T^{cut} \mathcal{R}^2/p_T^J \tau_a)$  not included

# Summary

Establish framework for calculation of dijet events in proton-proton collisions

Veto on out-of-jet transverse momentum radiation and rapidity constrains

Introduce the unmeasured beam functions

Calculate differential cross section at NLL' accuracy

Apply s-c refactorization for improved accuracy

## **Future Work**

Apply to different partonic channels and compute physically observable cross section

NNLL calculation

Study other jet substructure observables

Exclusive cross sections for heavy meson and quarkonium production (In collaboration with Bain, Dai, Hornig, Leibovich, Mehen)

Compare to Monte Carlo simulations and experimental data

# Thank you!

# Scales and R.G. Evolution (1/2)

$$\frac{d}{d\ln\mu}F(\mu) = \left(\Gamma_F[\alpha]\ln\frac{\mu^2}{m_F^2} + \gamma_F[\alpha]\right)F(\mu)$$
$$F(\mu) = \exp[K_F(\mu,\mu_0)]\left(\frac{\mu_0}{m_F}\right)^{\omega_F(\mu,\mu_0)}F(\mu_0)$$

Unmeasured

$$\frac{d}{d\ln\mu}F(\tau,\mu) = \left[\Gamma_F[\alpha] \left(\ln\frac{\mu^2}{m_F^2}\delta(\tau) - \frac{2}{j_F} \left[\frac{\Theta(\tau)}{\tau}\right]_+\right) + \gamma_F[\alpha]\delta(\tau)\right] \otimes F(\tau,\mu)$$

Measured

$$F(\tau,\mu) = \frac{\exp[K_F(\mu,\mu_0) + \gamma_E \omega(\mu,\mu_0)]}{\Gamma(-\omega(\mu,\mu_0))} \Big(\frac{\mu_0}{m_F}\Big)^{j_F\omega_F(\mu,\mu_0)} \Big[\frac{\Theta(\tau)}{(\tau)^{1+\omega(\mu,\mu_0)}}\Big]_+ \otimes F(\tau,\mu_0)$$

$$\omega_F(\mu,\mu_0) \equiv \frac{2}{j_F} \int_{\alpha_s(\mu_0)}^{\alpha_s(\mu)} \frac{d\alpha}{\beta[\alpha]} \Gamma_F[\alpha] ,$$
  
$$K_F(\mu,\mu_0) \equiv \int_{\alpha_s(\mu_0)}^{\alpha_s(\mu)} \frac{d\alpha}{\beta[\alpha]} \gamma_F[\alpha] + 2 \int_{\alpha_s(\mu_0)}^{\alpha_s(\mu)} \frac{d\alpha}{\beta[\alpha]} \Gamma_F[\alpha] \int_{\alpha_s(\mu_0)}^{\alpha} \frac{d\alpha'}{\beta[\alpha']} \Gamma_F[\alpha] \int_{\alpha_s(\mu_0)}^{\alpha} \frac{d\alpha'}{\beta[\alpha']} \Gamma_F[\alpha] \int_{\alpha_s(\mu_0)}^{\alpha} \frac{d\alpha'}{\beta[\alpha']} \Gamma_F[\alpha] \int_{\alpha_s(\mu_0)}^{\alpha} \frac{d\alpha'}{\beta[\alpha']} \Gamma_F[\alpha] \Gamma_F[\alpha] \int_{\alpha_s(\mu_0)}^{\alpha} \frac{d\alpha'}{\beta[\alpha']} \Gamma_F[\alpha] \Gamma_F[\alpha] \int_{\alpha_s(\mu_0)}^{\alpha} \frac{d\alpha'}{\beta[\alpha']} \Gamma_F[\alpha] \Gamma_F[\alpha] \Gamma_F[\alpha]$$

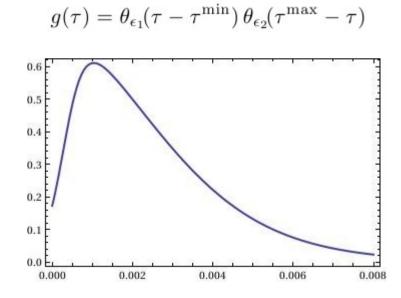
# Scales and R.G. Evolution (2/2)

|                                 | $\Gamma_F[\alpha_s]$         | $\gamma_F[lpha_s]$                                                                                  | $j_F$ | $m_F$                                       | $\mu_F$                                     |
|---------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------|-------|---------------------------------------------|---------------------------------------------|
| $\gamma_H$                      | $-\Gamma \sum_{i} C_{i}$     | $-\sum_i rac{lpha_s}{\pi} \gamma_i$                                                                | 1     | $\prod_i m_i^{C_i / \sum_j C_j}$            | $m_i$                                       |
| $\gamma_{J_i}(	au_a^i)$         | $\Gamma C_i \frac{2-a}{1-a}$ | $rac{lpha_s}{\pi}\gamma_i$                                                                         | 2-a   | $p_T$                                       | $p_T(\tau_a^i)^{1/(2-a)}$                   |
| $\gamma^{\rm meas}_S(\tau^i_a)$ | $-\Gamma C_i \frac{1}{1-a}$  | 0                                                                                                   | 1     | $p_T/\mathcal{R}^{1-a}$                     | $p_T  \tau_a^i / \mathcal{R}^{1-a}$         |
| $\gamma_{J_i}$                  | $\Gamma C_i$                 | $\frac{\alpha_s}{\pi}\gamma_i$                                                                      | 1     | $p_T \mathcal{R}$                           | $p_T \mathcal{R}$                           |
| $\gamma_{B_i}$                  | $\Gamma C_i$                 | $rac{lpha_s}{\pi}\gamma_i$                                                                         | 1     | $x_i \mathcal{E}_{\rm cm} e^{-y_{\rm cut}}$ | $x_i \mathcal{E}_{\rm cm} e^{-y_{\rm cut}}$ |
| $\gamma_S^{\rm unmeas}$         | 0                            | $\frac{\frac{2\alpha_s}{\pi}\Delta\gamma_{ss}(m_i)}{+\frac{2\alpha_s}{\pi}(C_1+C_2)\ln\mathcal{R}}$ | 1     |                                             | $p_T^{ m cut}$                              |
| $\gamma_{ss}$                   | $\Gamma(C_1 + C_2)$          | $\frac{2\alpha_s}{\pi}\Delta\gamma_{ss}(m_i)$                                                       | 1     | $p_T^{ m cut}$                              | $p_T^{\mathrm{cut}}$                        |
| $\gamma^i_{sc}$                 | $-\Gamma C_i$                | 0                                                                                                   | 1     | $p_T^{	ext{cut}}\mathcal{R}$                | $p_T^{	ext{cut}}\mathcal{R}$                |

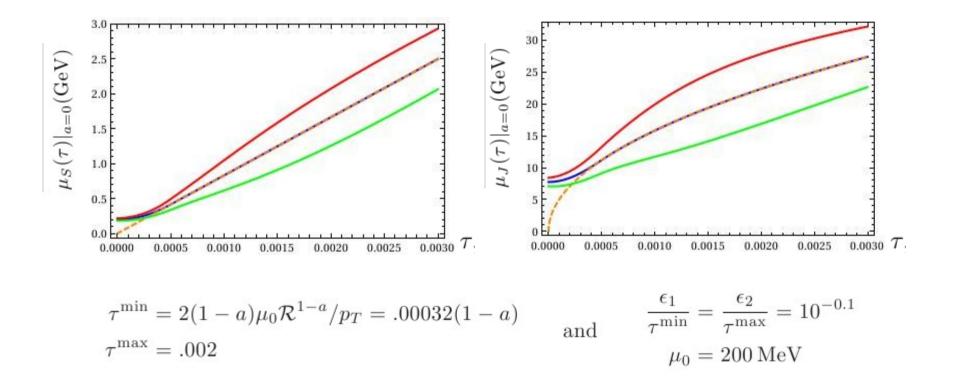
### **Profile Functions (1/2)**

 $\mu_{S}^{i}(\tau_{a}^{i}) = (1 + e_{S}g(\tau))\mu(\tau_{a}^{i}) \qquad \mu_{J}^{i}(\tau_{a}^{i}) = (1 + e_{J}g(\tau))(p_{T}\mathcal{R})^{\frac{1-a}{2-a}}(\mu(\tau_{a}^{i}))^{\frac{1}{2-a}}$ 

$$\mu(\tau) = \begin{cases} \mu_0 + \alpha \tau^\beta \sqrt{-t}, & \tau < \tau^{\min} \\ \frac{p_T \tau}{\mathcal{R}^{1-a}}, & \tau > \tau^{\min} , \end{cases} \qquad \alpha = \frac{p_T}{\beta(\tau^{\min})^{\beta-1}\mathcal{R}^{1-a}\sqrt{-t}} \\ \beta = \left(1 - \frac{\mu_0 R^{1-a}}{p_T \tau^{\min}}\right)^{-1}, \qquad g(\tau) = \theta_{\epsilon_1}(\tau - \tau^{\min}) \theta_{\epsilon_2}(\tau^{\max} - \tau) \\ \theta_{\epsilon}(x) \equiv \frac{1}{1 + \exp\left(-x/\epsilon\right)} \end{cases}$$



#### **Profile Functions (2/2)**



### **Soft Function**

Without Refactorization

$$\mathbf{S}^{\text{unmeas}} = \mathbf{S}_0 + \left[ \mathbf{S}_0 \sum_{i < j} \mathbf{T}_i \cdot \mathbf{T}_j \left( S_{ij}^{\text{incl}} + \sum_{k=1}^N S_{ij}^k \right) + \text{h.c.} \right]$$

#### With Refactorization

$$\mathbf{S}^{\text{unmeas}} = \mathbf{S}_{0} + \frac{\alpha_{s}}{4\pi} \frac{1}{2} \Big[ \mathbf{S}_{0} \Big( \mathbf{S}_{s}^{(1)}(p_{T}^{\text{cut}}) + \sum_{k=1,2} S_{sc}^{k(1)}(p_{T}^{\text{cut}}\mathcal{R}) \Big) + \text{h.c.} \Big] + \mathcal{O}(\alpha_{s}^{2})$$
$$\mathbf{S}_{s}^{(1)}(p_{T}^{\text{cut}}) = \frac{4}{\epsilon} \Big( \frac{\mu}{p_{T}^{\text{cut}}} \Big)^{2\epsilon} \sum_{i < j} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \Big[ \mathcal{I}_{ij}^{\text{incl}} + (\delta_{iB} + \delta_{i\bar{B}})(\delta_{jJ_{1}} + \delta_{jJ_{2}}) \mathcal{I}_{ij}^{i} + \delta_{iB} \delta_{i\bar{B}}(\mathcal{I}_{ij}^{i} + \mathcal{I}_{ij}^{j}) \Big]$$
$$S_{sc}^{k(1)}(p_{T}^{\text{cut}}\mathcal{R}) = \frac{4}{\epsilon} \Big( \frac{\mu}{p_{T}^{\text{cut}}} \Big)^{2\epsilon} \sum_{i < j} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \Big[ \delta_{ik} \mathcal{I}_{ij}^{i} \Big]$$

# Results (1/2)

#### Soft function after RG Evolution

 $\begin{aligned} \mathbf{S}(\tau_{a}^{1},\tau_{a}^{2},\mu,\mu_{S}^{1},\mu_{S}^{2},\bar{\mu}_{S}) &= U_{S}^{1}(\tau_{a}^{1},\mu,\mu_{S}^{1})U_{S}^{1}(\tau_{a}^{2},\mu,\mu_{S}^{2})\left[1 + (f_{S}^{1}(\tau_{a}^{1};\omega_{S}^{1},\mu_{S}^{1}) + f_{S}^{2}(\tau_{a}^{2};\omega_{S}^{2},\mu_{S}^{2}))\right] \\ &\times \Pi_{S}^{\mathrm{unmeas}}(\mu,\bar{\mu}_{S})\left[\mathbf{\Pi}_{S}^{\dagger}(\mu,\bar{\mu}_{S})\mathbf{S}^{\mathrm{unmeas}}(\bar{\mu}_{S})\mathbf{\Pi}_{S}(\mu,\bar{\mu}_{S})\right] \end{aligned}$ 

$$f_{S}^{i}(\tau;\Omega,\mu) = \frac{\alpha_{s}C_{i}}{\pi(1-a)} \left[ \psi^{(1)}(-\Omega) - \left( H(-1-\Omega) + \ln\frac{\mu \mathcal{R}^{1-a}}{p_{T}\tau} \right)^{2} - \frac{\pi^{2}}{8} \right]$$

Without s-c Refactorization

$$\mathbf{S}^{\text{unmeas}} = \mathbf{S}_0 + \frac{\alpha_s}{\pi} \bigg\{ \mathbf{S}_0 \bigg[ \bigg( \frac{1}{2\epsilon} + \ln \frac{\mu}{p_T^{\text{cut}}} \bigg) \Big( \mathbf{S}^{\text{div}} + \sum_{i=1,2} C_i \ln \mathcal{R} \Big) - \frac{1}{2} \sum_{i=1,2} C_i \ln^2 \mathcal{R} \\ - \mathbf{T}_1 \cdot \mathbf{T}_2 \ln \left( 1 + e^{\Delta y} \right) \ln \left( 1 + e^{-\Delta y} \right) \bigg] + \text{h.c.} \bigg\} + \mathcal{O}(\alpha_s^2)$$

$$\mathbf{S}^{\text{div}} = \sum_{i < j} \mathbf{T}_i \cdot \mathbf{T}_j \ln \frac{n_i \cdot n_j}{2} - y_{\text{cut}} \left( C_B + C_{\bar{B}} \right) - \sum_{i=1,2} C_i \ln(2 \cosh y_i)$$

# Results (2/2)

#### With s-c Refactorization

$$\begin{split} \mathbf{S}^{\text{unmeas}}(\Omega,\mu_{sc},\mu_{ss}) &\equiv \mathbf{S}_{0} + \left\{ \mathbf{S}_{0} \bigg[ \frac{\alpha_{s}(\mu_{ss})}{4\pi} \bigg( \frac{1}{2} \mathbf{f}_{s}^{2} + \mathbf{f}_{s}^{1} \Big( \ln \frac{\mu_{ss}}{p_{T}^{\text{cut}}} + H(-\Omega) \Big) \right. \\ &+ \mathbf{f}_{s}^{0} \Big( \frac{\pi^{2}}{6} - \psi^{(1)}(1-\Omega) + \Big( \ln \frac{\mu_{ss}}{p_{T}^{\text{cut}}} + H(-\Omega) \Big)^{2} \Big) \Big) \\ &+ \frac{\alpha_{s}(\mu_{sc})}{4\pi} \bigg( \frac{1}{2} f_{c}^{2} + f_{c}^{1} \Big( \ln \frac{\mu_{sc}}{p_{T}^{\text{cut}}\mathcal{R}} + H(-\Omega) \Big) \\ &+ f_{c}^{0} \Big( \frac{\pi^{2}}{6} - \psi^{(1)}(1-\Omega) + \Big( \ln \frac{\mu_{sc}}{p_{T}^{\text{cut}}\mathcal{R}} + H(-\Omega) \Big)^{2} \Big) \Big) \bigg] + \text{h.c.} \bigg\} \end{split}$$

$$f_c^0 = -2(C_1 + C_2) \qquad \mathbf{f}_s^0 = -f_c^0$$
  

$$f_c^1 = 0 \qquad \mathbf{f}_s^1 = 4\mathbf{S}^{\text{div}}$$
  

$$f_c^2 = \frac{\pi^2}{6}(C_1 + C_2) \qquad \mathbf{f}_s^2 = -8\mathbf{T}_1 \cdot \mathbf{T}_2 \ln(1 + e^{\Delta y}) \ln(1 + e^{-\Delta y}) - f_c^2$$

## Applications in heavy meson and quarkonium production

$$p_{h}, z \equiv \frac{p_{h}}{k^{-}}$$

$$Jet - axis : \vec{k} = \frac{\omega}{2} \hat{\mathbf{n}}$$

$$where \ \omega = k^{-} = s/k^{+}$$

$$Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

$$OPE : \quad \mathcal{G}(z, \tau, \mu) = \sum_{j} \left[ \mathcal{J}_{i}^{j}(\tau, \mu) \bullet D_{j \rightarrow h}(\mu) \right](z)$$

$$Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

$$Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

$$Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

$$Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

$$Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

$$Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

$$Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

$$Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

$$Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

$$Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

$$Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

$$Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

$$Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

$$Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

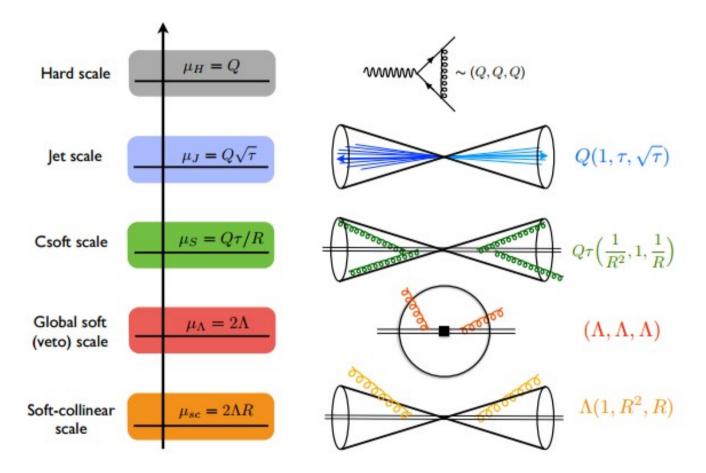
$$Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

$$Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

$$Identified Jets: \quad Identified Jets: \quad Identified Jets: \quad J_{i}(p^{2}, \tau, \mu) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$$

$$Identified Jets: \quad Identified Jets:$$

# Non-Global Logs and S-C Refactorization



Chien, Hornig, and Lee, [arXiv:1509.04287]