Jet shapes in dijet events at the LHC in SCET

Yiannis Makris
Duke University
In collaboration with
Andrew Hornig (LANL) and Thomas Mehen (Duke U.)

[arXiv: 1601.01319]

Outline

Boost Invariant Angularities

Jet, Hard, Beam Functions

Soft Function

Scales and R.G. Evolution - Theoretical Uncertainties Plots for NLL'

Summary - Applications

Problem Setup

Analytic calculation of diff. Cross sections for Dijet events at proton-proton collisions**

Improved P.T. Resumming logarithms at NLL' accuracy

$$
\text { Jet } 1\left(E_{1}, y_{1}, \tau_{1}\right)
$$

Soft out-of-jet radiation

Proton Beam

Angularities

Rotational invariant
Almeida et al. [arXiv: 0807.0234]
Berger, Kucs, and Sterman [hep-ph/ 0303051]

$$
\begin{aligned}
\tau_{a}^{e^{+} e^{-}} & =\frac{1}{2 E_{J}} \sum_{i}\left|p_{T}^{i J}\right| e^{-(1-a)\left|y_{i J}\right|} \\
& =\left(2 E_{J}\right)^{-(2-a)}\left(p_{T}\right)^{1-a} \sum_{i}\left|p_{T}^{i}\right|\left(\frac{\theta_{i J}}{\sin \theta_{J}}\right)^{2-a}\left(1+\mathcal{O}\left(\theta_{i J}^{2}\right)\right)
\end{aligned}
$$

Boost invariant

$$
\begin{aligned}
\tau_{a} \equiv \tau_{a}^{p p} & \equiv \frac{1}{p_{T}} \sum_{i}\left|p_{T}^{i}\right|\left(\Delta \mathcal{R}_{i J}\right)^{2-a} \\
& =\left(\frac{2 E_{J}}{p_{T}}\right)^{2-a} \tau_{a}^{e^{+} e^{-}}+\mathcal{O}\left(\tau_{a}^{2}\right) \\
& \text { where } \Delta \mathcal{R}_{i j} \equiv \sqrt{\left(\Delta y_{i j}\right)^{2}+\left(\Delta \phi_{i j}\right)^{2}}
\end{aligned}
$$

Angularities

Rotational invariant
Almeida et al. [arXiv: 0807.0234]
Berger, Kucs, and Sterman [hep-ph/ 0303051]

$$
\begin{aligned}
\tau_{a}^{e^{+} e^{-}} & =\frac{1}{2 E_{J}} \sum_{i}\left|p_{T}^{i J}\right| e^{-(1-a)\left|y_{i J}\right|} \\
& =\left(2 E_{J}\right)^{-(2-a)}\left(p_{T}\right)^{1-a} \sum_{i}\left|p_{T}^{i}\right|\left(\frac{\theta_{i J}}{\sin \theta_{J}}\right)^{2-a}\left(1+\mathcal{O}\left(\theta_{i J}^{2}\right)\right)
\end{aligned}
$$

Boost invariant

$$
\begin{aligned}
& \tau_{a} \equiv \tau_{a}^{p p} \equiv \frac{1}{p_{T}} \sum_{i}\left|p_{T}^{i}\right|\left(\Delta \mathcal{R}_{i J}\right)^{2-a} \\
&=\left(\frac{2 E_{J}}{p_{T}}\right)^{2-a} \tau_{a}^{e^{+} e^{-}}+\mathcal{O}\left(\tau_{a}^{2}\right) \\
& \text { where } \quad \Delta \mathcal{R}_{i j} \equiv \sqrt{\left(\Delta y_{i j}\right)^{2}+\left(\Delta \phi_{i j}\right)^{2}}
\end{aligned}
$$

Angularities

Rotational invariant
Almeida et al. [arXiv: 0807.0234]
Berger, Kucs, and Sterman [hep-ph/ 0303051]

$$
\begin{aligned}
\tau_{a}^{e^{+} e^{-}} & =\frac{1}{2 E_{J}} \sum_{i}\left|p_{T}^{i J}\right| e^{-(1-a)\left|y_{i J}\right|} \\
& =\left(2 E_{J}\right)^{-(2-a)}\left(p_{T}\right)^{1-a} \sum_{i}\left|p_{T}^{i}\right|\left(\frac{\theta_{i J}}{\sin \theta_{J}}\right)^{2-a}\left(1+\mathcal{O}\left(\theta_{i J}^{2}\right)\right)
\end{aligned}
$$

Boost invariant

$$
\tau_{a} \equiv \tau_{a}^{p p} \equiv \frac{1}{p_{T}} \sum_{i}\left|p_{T}^{i}\right|\left(\Delta \mathcal{R}_{i J}\right)^{2-a}
$$

$$
=\left(\frac{2 E_{J}}{p_{T}}\right)^{2-a} \tau_{a}^{e^{+} e^{-}}+\mathcal{O}\left(\tau_{a}^{2}\right)
$$

where $\quad \Delta \mathcal{R}_{i j} \equiv \sqrt{\left(\Delta y_{i j}\right)^{2}+\left(\Delta \phi_{i j}\right)^{2}}$

The Factorization Theorem in SCET

$$
\begin{aligned}
& d \sigma\left(\tau_{a}^{1}, \tau_{a}^{2}\right) \equiv \frac{d \sigma}{d y_{1} d y_{2} d p_{T} d \tau_{a}^{1} d \tau_{a}^{2}} \\
& =\frac{p_{T}}{8 \pi x_{1} x_{2} E_{\mathrm{cm}}^{4}} \frac{1}{N} B\left(x_{1}, \mu\right) \bar{B}\left(x_{2}, \mu\right) \operatorname{Tr}\left\{\mathbf{H}(\mu) \mathbf{S}\left(\tau_{a}^{1}, \tau_{a}^{2}, \mu\right)\right\} \otimes\left[J_{1}\left(\tau_{a}^{1}, \mu\right) J_{2}\left(\tau_{a}^{2}, \mu\right)\right]
\end{aligned}
$$

The Factorization Theorem in SCET

$$
\begin{gathered}
d \sigma\left(\tau_{a}^{1}, \tau_{a}^{2}\right) \equiv \frac{d \sigma}{d y_{1} d y_{2} d p_{T} d \tau_{a}^{1} d \tau_{a}^{2}} \\
\left.=\frac{p_{T}}{8 \pi x_{1} x_{2} E_{\mathrm{cm}}^{4}} \frac{1}{N} B\left(x_{1}, \mu\right) \bar{B}\left(x_{2}, \mu\right) \operatorname{Tr} \mathbf{H}(\mu) \mathbf{S}\left(\tau_{a}^{1}, \tau_{a}^{2}, \mu\right)\right\} \otimes\left[J_{1}\left(\tau_{a}^{1}, \mu\right) J_{2}\left(\tau_{a}^{2}, \mu\right)\right] \\
\begin{array}{l}
\text { Hard } \\
\text { Function }
\end{array}
\end{gathered}
$$

The Factorization Theorem in SCET

$$
\begin{aligned}
& d \sigma\left(\tau_{a}^{1}, \tau_{a}^{2}\right) \equiv \frac{d \sigma}{d y_{1} d y_{2} d p_{T} d \tau_{a}^{1} d \tau_{a}^{2}} \\
& =\frac{p_{T}}{8 \pi x_{1} x_{2} E_{\mathrm{cm}}^{4}} \frac{1}{N} B\left(x_{1}, \mu\right) \bar{B}\left(x_{2}, \mu\right) \operatorname{Tr} \underbrace{\substack{\mathbf{H}(\mu) \\
\mathbf{S}\left(\tau_{a}^{1}, \tau_{a}^{2}, \mu\right) \\
\text { Function }}}_{\substack{\text { Hard } \\
\text { Function }}}) ~
\end{aligned} \in\left[J_{1}\left(\tau_{a}^{1}, \mu\right) J_{2}\left(\tau_{a}^{2}, \mu\right)\right],
$$

The Factorization Theorem in SCET

$$
\begin{aligned}
& d \sigma\left(\tau_{a}^{1}, \tau_{a}^{2}\right) \equiv \frac{d \sigma}{d y_{1} d y_{2} d p_{T} d \tau_{a}^{1} d \tau_{a}^{2}} \\
& =\frac{p_{T}}{8 \pi x_{1} x_{2} E_{\mathrm{cm}}^{4}} \frac{1}{N} B\left(x_{1}, \mu\right) \bar{B}\left(x_{2}, \mu\right) \operatorname{Tr} \underbrace{\mathbf{H}(\mu)}_{\substack{\text { Hard } \\
\text { Function }}} \underbrace{\substack{\text { Jet } \\
\text { Functions }}}_{\substack{\text { Soft } \\
\left.\text { Function } \\
\mathcal{S}_{a}^{1}, \tau_{a}^{2}, \mu\right)}} \underbrace{J_{i}}_{J_{1}\left(\tau_{a}^{1}, \mu\right) J_{2}\left(\tau_{a}^{2}, \mu\right)}
\end{aligned}
$$

The Factorization Theorem in SCET

$$
\begin{aligned}
& d \sigma\left(\tau_{a}^{1}, \tau_{a}^{2}\right) \equiv \frac{d \sigma}{d y_{1} d y_{2} d p_{T} d \tau_{a}^{1} d \tau_{a}^{2}} \\
& =\frac{p_{T}}{8 \pi x_{1} x_{2} E_{\mathrm{cm}}^{4}} \frac{1}{N} \underbrace{B\left(x_{1}, \mu\right) \bar{B}\left(x_{2}, \mu\right)}_{\substack{\text { Unmeas. Beam } \\
\text { Functions }}} \operatorname{Tr} \underset{\substack{\text { Hard } \\
\text { Function }}}{\mathbf{H}(\mu) \mathbf{S}\left(\tau_{a}^{1}, \tau_{a}^{2}, \mu\right)} \otimes \underset{\substack{\text { Soft } \\
\text { Function }}}{\substack{\text { Jet } \\
\text { Functions }}} \underbrace{s}_{J_{1}\left(\tau_{a}^{1}, \mu\right) J_{2}\left(\tau_{a}^{2}, \mu\right)}
\end{aligned}
$$

Jet Functions

$$
\int \frac{d k}{(2 \pi)^{4}} \exp (-i k \cdot x) J_{n, \omega}\left(\tau, k^{-}\right)\left(\frac{\underline{\gamma}}{2}\right)_{\alpha \beta}=\langle\Omega| \chi_{n, \omega}^{\alpha}(x) \delta(\tau-\hat{\tau}) \bar{Z}_{n, \omega}^{\beta}(0)|\Omega\rangle
$$

Jet Functions

$$
\int \frac{d k}{(2 \pi)^{4}} \exp (-i k \cdot x) J_{n, \omega}\left(\tau, k^{-}\right)\left(\frac{\not h}{2}\right)_{\alpha \beta}=\langle\Omega \underbrace{\chi_{n, \omega}^{\alpha}(x) \delta(\tau-\hat{\tau} \underbrace{\beta}_{n, \omega}(0)) \Omega\rangle}_{\text {Quark Jet Function }}
$$

Similarly for Gloun Jets

Jet Functions

$$
\begin{aligned}
& \int \frac{d k}{(2 \pi)^{4}} \exp (-i k \cdot x) J_{n, \omega}\left(\tau, k^{-}\right)\left(\frac{\not h}{2}\right)_{\alpha \beta}=\langle\Omega| \chi_{n, \omega}^{\alpha}\left(x \delta(\tau-\hat{\tau}) \chi_{n, \omega}^{\beta}(0)|\Omega\rangle\right. \\
& A^{-1} \delta\left(A^{-1} \tau-\hat{\tau}\right)=\delta(\tau-A \hat{\tau}) \\
& \longrightarrow J_{i}\left(\tau_{a}\right)=\left(\frac{p_{T}}{2 E_{J}}\right)^{2-a} J_{i}^{e^{+}} e^{-}\left(\left(\frac{p_{T}}{2 E_{J}}\right)^{2-a} \tau_{a}\right)
\end{aligned}
$$

Ellis, Vermilion, Walsh, Hornig and Lee, [arXiv: 1001.0014]

Hard Function

$$
\begin{gathered}
H_{I J}(\mu)=C_{I}(\mu) C_{J}^{*}(\mu) \quad C_{I}(\mu) \\
\frac{d \mathbf{H}}{d \ln \mu}=\boldsymbol{\Gamma}_{H} \mathbf{H}+\mathbf{H} \boldsymbol{\Gamma}_{H}^{\dagger} \\
\\
\begin{array}{l}
\text { Wilson } \\
\text { Coefficients } \\
\text { Kelley and Schwartz } \\
\text { [arXiv: 1008.2759] }
\end{array} \\
\boldsymbol{\Gamma}_{H}=\frac{1}{2} \Gamma_{H} \mathbf{1}+\Gamma_{c} \mathbf{M}\left(m_{i}\right)
\end{gathered}
$$

$\mathbf{H}\left(\mu, \mu_{H}\right)=\Pi_{H}\left(\mu, \mu_{H}\right) \boldsymbol{\Pi}_{H}\left(\mu, \mu_{H}\right) \mathbf{H}\left(\mu_{H}\right) \boldsymbol{\Pi}_{H}^{\dagger}\left(\mu, \mu_{H}\right)$

Hard Function

Hard Function

$$
H_{I J}(\mu)=C_{I}(\mu) C_{J}^{*}(\mu) \quad C_{I}(\mu) \quad \begin{gathered}
\text { Wilson } \\
\text { Coefficients }
\end{gathered}
$$

Kelley and Schwartz
[arXiv: 1008.2759]

Beam Function

Measured Beam $\quad B_{i}(s, x, \mu)$

Ritzmann and Waalewijn [arXiv:1407.3272]
Stewart, Tackmann and Waalewijn [arXiv:0910.0467]

Function

Unmeasured Beam $\quad B_{i}\left(x_{i}, \mu\right) \equiv B_{i}\left(\mathrm{E}_{\mathrm{cm}}, y_{\text {cut }}, x_{i}, \mu\right)$
Function
$y_{\text {cut }}$

Beam Function ("Unmeasured")

$$
\begin{aligned}
B_{i}\left(x_{i}, \mu\right) & \equiv B_{i}\left(\mathrm{E}_{\mathrm{cm}}, y_{\mathrm{cut}}, x_{i}, \mu\right) \\
& =\sum_{j} \int \frac{d z}{z} \mathcal{J}_{i j}\left(x_{i} \mathrm{E}_{\mathrm{cm}} e^{-y_{\mathrm{cut}}}, z, \mu\right) f_{j}\left(x_{i} / z, \mu\right)+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} / E^{2}\right)
\end{aligned}
$$

Beam Function ("Unmeasured")

$$
B_{i}\left(x_{i}, \mu\right) \equiv B_{i}\left(\mathrm{E}_{\mathrm{cm}}, y_{\mathrm{cut}}, x_{i}, \mu\right)
$$

$$
=\sum_{j} \int \frac{d z}{z} \frac{\left.\tau_{i j}\left(x_{i} \mathrm{E}_{\mathrm{cm}} e^{-y_{\mathrm{cut}}}, z, \mu\right) f_{j}\left(x_{i} / z, \mu\right)+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} / E^{2}\right)\right) ~}{\text { and }}
$$

Short Distance Matching Coefficients.

At NLO by Procura and Waalewijn, [arXiv:
1111.6605] for the (final state) FJF

Beam Function ("Unmeasured")

$$
B_{i}\left(x_{i}, \mu\right) \equiv B_{i}\left(\mathrm{E}_{\mathrm{cm}}, y_{\mathrm{cut}}, x_{i}, \mu\right)
$$

At NLO by Procura and Waalewijn, [arXiv: 1111.6605] for the (final state) FJF

Beam Function ("Unmeasured")

$$
B_{i}\left(x_{i}, \mu\right) \equiv B_{i}\left(\mathrm{E}_{\mathrm{cm}}, y_{\mathrm{cut}}, x_{i}, \mu\right)
$$

$$
=\sum_{j} \int \frac{d z}{z} \underbrace{\tau_{i j}\left(x_{i} \mathrm{E}_{\mathrm{cm}} e^{-y_{\mathrm{cut}}, z, \mu} f_{j}\left(x_{i} / z, \mu\right)\right.}_{\begin{array}{c}
\text { Short Distance Matching } \\
\text { Coefficients. }
\end{array}}+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} / E^{2}\right)
$$

At NLO by Procura and Waalewijn, [arXiv:
1111.6605] for the (final state) FJF

$$
\begin{gathered}
\mu_{J}=2 E \tan (R / 2) \longrightarrow \mu_{B_{i}}=x_{i} E_{\mathrm{CM}} \exp \left(-y^{\mathrm{cut}}\right) \\
\Rightarrow \gamma_{B}\left(\mu_{B}, \mu\right)=\gamma_{J}\left(\mu_{B}, \mu\right)
\end{gathered}
$$

Soft Function

$$
\begin{aligned}
& S_{I J}\left(\tau_{1}, \tau_{2}\right)=\mathcal{N} \sum_{X}\langle\Omega| \mathcal{W}_{I}^{\dagger}|X\rangle\langle X| \mathcal{W}_{J}|\Omega\rangle \delta\left(\tau_{1}-\tau_{1}^{X}\right) \delta\left(\tau_{2}-\tau_{2}^{X}\right) \\
& \text { where } \tau_{i}^{X}= \begin{cases}\tau^{X} & \text { : inside jet i } \\
0 & : \text { outside jet i }\end{cases}
\end{aligned}
$$

Soft Function

$$
\begin{aligned}
& \left.\left.S_{I J}\left(\tau_{1}, \tau_{2}\right)=\mathcal{N} \sum_{X}\langle\delta| \mathcal{W}_{I}^{\dagger} \mid\right) X\right\rangle\langle X| \mathcal{W}_{J}|\Omega\rangle \delta\left(\tau_{1}-\tau_{1}^{X}\right) \delta\left(\tau_{2}-\tau_{2}^{X}\right) \\
& \text { Where } \tau_{i}^{X}= \begin{cases}\tau^{X} & \text { : inside jet i } \\
0 & \text { : outside jet i } \\
\text { of Wilson lines. }\end{cases}
\end{aligned}
$$

Leading Order (LO) contribution

Next to Leading Order (NLO) contribution outside Jets

Next to Leading Order (NLO) contribution inside Jets

Next to Leading Order Form of the Soft Function

$$
\begin{gathered}
\text { 2-measured 0-unmeasured Jets } \\
\mathbf{S}\left(\tau_{a}^{1}, \tau_{a}^{2}\right)=\mathbf{S}^{\text {unmeas }} \delta\left(\tau_{a}^{1}\right) \delta\left(\tau_{a}^{2}\right)+\left[\mathbf{S}_{0} S^{\text {meas }}\left(\tau_{a}^{1}\right) \delta\left(\tau_{a}^{2}\right)+(1 \leftrightarrow 2)\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{gathered}
$$

1-measured 1-unmeasured Jets

$$
\mathbf{S}\left(\tau_{a}\right)=\mathbf{S}^{\text {unmeas }} \delta\left(\tau_{a}\right)+\mathbf{S}_{0} S^{\text {meas }}\left(\tau_{a}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

0-measured 2-unmeasured Jets

$$
\mathbf{S}=\mathbf{S}^{\text {unmeas }}+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

$$
\mathbf{S}^{\text {unmeas }}=\mathbf{S}_{0}+\mathcal{O}\left(\alpha_{s}\right)
$$

Next to Leading Order Form of the Soft Function

$$
\begin{gathered}
\text { 2-measured 0-unmeasured Jets } \\
\mathbf{S}\left(\tau_{a}^{1}, \tau_{a}^{2}\right)=\mathbf{S}^{\text {unmeas }} \delta\left(\tau_{a}^{1}\right) \delta\left(\tau_{a}^{2}\right)+\left[\mathbf{S}_{0} S^{\text {meas }}\left(\tau_{a}^{1}\right) \delta\left(\tau_{a}^{2}\right)+(1 \leftrightarrow 2)\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{gathered}
$$

1-measured 1-unmeasured Jets

$$
\mathbf{S}\left(\tau_{a}\right)=\mathbf{S}^{\text {unmeas }} \delta\left(\tau_{a}\right)+\mathbf{S}_{0} S^{\text {meas }}\left(\tau_{a}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

0-measured 2-unmeasured Jets

$$
\mathbf{S}=\mathbf{S}^{\text {unmeas }}+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

$$
\mathbf{S}^{\text {unmeas }}=\mathbf{S}_{0}+\mathcal{O}\left(\alpha_{s}\right) \text { New calculation! }
$$

Phase-Space of Integration

$$
\int \frac{d^{d} k}{(2 \pi)^{d-1}} \delta\left(k^{2}\right) \Theta(E>0) \Theta\left(k_{T}<p_{T}^{\text {cut }}\right) \Theta(\text { out of Jets and Beams })
$$

Phase-Space of Integration

Unmeasured Evolution

$$
\begin{gathered}
\frac{d}{d \ln \mu} \mathbf{S}^{\text {unmeas }}=\mathbf{S}^{\text {unmeas }} \boldsymbol{\Gamma}_{S}^{\text {unmeas }}+\text { h.c. } \\
\boldsymbol{\Gamma}_{S}=\frac{1}{2} \Gamma_{S} \mathbf{1}-\Gamma_{c} \mathbf{M}\left(m_{i}\right)
\end{gathered}
$$

Unmeasured Evolution

Unmeasured Evolution

$$
\frac{d}{d \ln \mu} \mathbf{S}^{\text {unmeas }}=\mathbf{S}^{\text {unmeas }} \boldsymbol{\Gamma}_{S}^{\text {unmeas }}+\text { h.c. }
$$

Unmeasured Evolution

$$
\frac{d}{d \ln \mu} \mathbf{S}^{\text {unmeas }}=\mathbf{S}^{\text {unmeas }} \boldsymbol{\Gamma}_{S}^{\text {unmeas }}+\text { h.c. }
$$

$$
\boldsymbol{\Gamma}_{S}=\frac{1}{2} \Gamma_{S} \mathbf{1}-\Gamma_{c} \mathbf{M}\left(m_{i}\right)
$$

$$
\boldsymbol{\Gamma}_{H}=\frac{1}{2} \Gamma_{H} \mathbf{1}+\Gamma_{c} \mathbf{M}\left(m_{i}\right) \begin{aligned}
& \text { Necessary for the } \\
& \text { cancellation of } \mu \\
& \text { dependence in the } \\
& \text { cross section }
\end{aligned}
$$

Soft-Collinear Refactorization

Chien, Hornig, and Lee, [arXiv:1509.04287]

Scales and R.G. Evolution

Scales and R.G. Evolution

$$
\mu_{H}=\sqrt{-t}
$$

Theoretical Uncertainties

Variation of the characteristic scales

Hard	
Soft (Unmeasured)	$\pm 50 \%$
Beam	
Jet (Measured)	Profile Scales
Soft (Measured)	

Abbate, Fickinger, Hoang, Mateu and

Stewart, [arxiv: 1006.3080].

Plots

$$
\left.d \tilde{\sigma}\left(\tau_{a}\right) \equiv \frac{B\left(x_{1}, \mu=\mu_{H}\right) \bar{B}\left(x_{2}, \mu=\mu_{H}\right)}{B\left(x_{1}, \mu=\mu_{B}^{1}\right) \bar{B}\left(x_{2}, \mu=\mu_{B}^{2}\right)} \frac{d \sigma\left(\tau_{a}^{1}, \tau_{a}^{2}\right)}{\sigma^{\mathrm{LO}}\left(\mu=\mu_{H}\right)}\right|_{\tau_{a}^{1}=\tau_{a}^{2}=\tau_{a}}
$$

$$
\boldsymbol{T}_{\mathrm{a}}^{1}=\boldsymbol{\tau}_{\mathrm{a}}^{2}=\boldsymbol{\tau}_{\mathrm{a}}
$$

Partonic Channel: qq' $\longrightarrow q^{\prime}$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{cm}}=10 \mathrm{TeV} \quad y_{1}=1.0 \quad p_{T}=500 \mathrm{GeV} \quad R=0.6 \\
& a=0 \\
& y_{2}=1.4 \\
& p_{T}^{\text {cut }}=20 \mathrm{GeV} \\
& y_{\text {cut }}=5.0
\end{aligned}
$$

Plots - Variation of cone size R

Without S-C Refactorization

Plots - Variation of a

Plots - Variation of $\mathbf{p}_{\mathrm{T}}{ }^{\text {cut }}$

Increase of $p_{T}^{\text {cut }}$ corresponds to increase of normalization
Peak location and shape independent of $p_{T}{ }^{\text {cut }}$
Non-Global-Logarithms : $\alpha_{s}^{n} \ln ^{n}\left(p_{T}^{\text {cut }} \mathcal{R}^{2} / p_{T}^{J} \tau_{a}\right)$ not included

Summary

Establish framework for calculation of dijet events in proton-proton collisions

Veto on out-of-jet transverse momentum radiation and rapidity constrains

Introduce the unmeasured beam functions

Calculate differential cross section at NLL' accuracy

Apply s-c refactorization for improved accuracy

Future Work

Apply to different partonic channels and compute physically observable cross section

NNLL calculation

Study other jet substructure observables

Exclusive cross sections for heavy meson and quarkonium production (In collaboration with Bain, Dai, Hornig, Leibovich, Mehen)

Compare to Monte Carlo simulations and experimental data

Thank you!

Scales and R.G. Evolution (1/2)

$$
\begin{aligned}
& \frac{d}{d \ln \mu} F(\mu)=\left(\Gamma_{F}[\alpha] \ln \frac{\mu^{2}}{m_{F}^{2}}+\gamma_{F}[\alpha]\right) F(\mu) \\
& F(\mu)=\exp \left[K_{F}\left(\mu, \mu_{0}\right)\right]\left(\frac{\mu_{0}}{m_{F}}\right)^{\omega_{F}\left(\mu, \mu_{0}\right)} F\left(\mu_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d \ln \mu} F(\tau, \mu)=\left[\Gamma_{F}[\alpha]\left(\ln \frac{\mu^{2}}{m_{F}^{2}} \delta(\tau)-\frac{2}{j_{F}}\left[\frac{\Theta(\tau)}{\tau}\right]_{+}\right)+\gamma_{F}[\alpha] \delta(\tau)\right] \otimes F(\tau, \mu) \\
& F(\tau, \mu)=\frac{\exp \left[K_{F}\left(\mu, \mu_{0}\right)+\gamma_{E} \omega\left(\mu, \mu_{0}\right)\right]}{\Gamma\left(-\omega\left(\mu, \mu_{0}\right)\right)}\left(\frac{\mu_{0}}{m_{F}}\right)^{j_{F} \omega_{F}\left(\mu, \mu_{0}\right)}\left[\frac{\Theta(\tau)}{(\tau)^{1+\omega\left(\mu, \mu_{0}\right)}}\right]_{+} \otimes F\left(\tau, \mu_{0}\right)
\end{aligned}
$$

$\omega_{F}\left(\mu, \mu_{0}\right) \equiv \frac{2}{j_{F}} \int_{\alpha_{s}\left(\mu_{0}\right)}^{\alpha_{s}(\mu)} \frac{d \alpha}{\beta[\alpha]} \Gamma_{F}[\alpha]$,

$$
K_{F}\left(\mu, \mu_{0}\right) \equiv \int_{\alpha_{s}\left(\mu_{0}\right)}^{\alpha_{s}(\mu)} \frac{d \alpha}{\beta[\alpha]} \gamma_{F}[\alpha]+2 \int_{\alpha_{s}\left(\mu_{0}\right)}^{\alpha_{s}(\mu)} \frac{d \alpha}{\beta[\alpha]} \Gamma_{F}[\alpha] \int_{\alpha_{s}\left(\mu_{0}\right)}^{\alpha} \frac{d \alpha^{\prime}}{\beta\left[\alpha^{\prime}\right]}
$$

Scales and R.G. Evolution (2/2)

	$\Gamma_{F}\left[\alpha_{s}\right]$	$\gamma_{F}\left[\alpha_{s}\right]$	j_{F}	m_{F}	μ_{F}
γ_{H}	$-\Gamma \sum_{i} C_{i}$	$-\sum_{i} \frac{\alpha_{s}}{\pi} \gamma_{i}$	1	$\prod_{i} m_{i}^{C_{i} / \sum_{j} C_{j}}$	m_{i}
$\gamma_{J_{i}}\left(\tau_{a}^{i}\right)$	$\Gamma C_{i} \frac{2-a}{1-a}$	$\frac{\alpha_{s}}{\pi} \gamma_{i}$	$2-a$	p_{T}	$p_{T}\left(\tau_{a}^{i}\right)^{1 /(2-a)}$
$\gamma_{S}^{\text {meas }}\left(\tau_{a}^{i}\right)$	$-\Gamma C_{i} \frac{1}{1-a}$	0	1	$p_{T} / \mathcal{R}^{1-a}$	$p_{T} \tau_{a}^{i} / \mathcal{R}^{1-a}$
$\gamma_{J_{i}}$	ΓC_{i}	$\frac{\alpha_{s}}{\pi} \gamma_{i}$	1	$p_{T} \mathcal{R}$	$p_{T} \mathcal{R}$
$\gamma_{B_{i}}$	ΓC_{i}	$\frac{\alpha_{s}}{\pi} \gamma_{i}$	1	$x_{i} \mathrm{E}_{\mathrm{cm}} e^{-y_{\mathrm{cut}}}$	$x_{i} \mathrm{E}_{\mathrm{cm}} e^{-y_{\mathrm{cut}}}$
$\gamma_{S}^{\text {unmeas }}$	0	$\frac{2 \alpha_{s}}{\pi} \Delta \gamma_{s s}\left(m_{i}\right)$			
$+\frac{2 \alpha_{s}}{\pi}\left(C_{1}+C_{2}\right) \ln \mathcal{R}$	1	--	$p_{T}^{\text {cut }}$		
$\gamma_{s s}$	$\Gamma\left(C_{1}+C_{2}\right)$	$\frac{2 \alpha_{s}}{\pi} \Delta \gamma_{s s}\left(m_{i}\right)$	1	$p_{T}^{\text {cut }}$	$p_{T}^{\text {cut }}$
$\gamma_{s c}^{i}$	$-\Gamma C_{i}$	0	1	$p_{T}^{\text {cut } \mathcal{R}}$	$p_{T}^{\text {cut }} \mathcal{R}$

Profile Functions (1/2)

$$
\begin{aligned}
& \mu_{S}^{i}\left(\tau_{a}^{i}\right)=\left(1+e_{S} g(\tau)\right) \mu\left(\tau_{a}^{i}\right) \quad \mu_{J}^{i}\left(\tau_{a}^{i}\right)=\left(1+e_{J} g(\tau)\right)\left(p_{T} \mathcal{R}\right)^{\frac{1-a}{2-a}}\left(\mu\left(\tau_{a}^{i}\right)\right)^{\frac{1}{2-a}} \\
& \mu(\tau)=\left\{\begin{array}{l|l|c}
\mu_{0}+\alpha \tau^{\beta} \sqrt{-t}, & \tau<\tau^{\min } & \alpha=\frac{p_{T}}{\beta\left(\tau^{\min }\right)^{\beta-1} \mathcal{R}^{1-a} \sqrt{-t}} \\
\frac{p_{T} \tau}{\mathcal{R}^{1-a}}, & \tau>\tau^{\min }, & \beta=\left(1-\frac{\mu_{0} R^{1-a}}{p_{T} \tau^{\min }}\right)^{-1},
\end{array}\right. \\
& g(\tau)=\theta_{\epsilon_{1}}\left(\tau-\tau^{\min }\right) \theta_{\epsilon_{2}}\left(\tau^{\max }-\tau\right)
\end{aligned}
$$

Profile Functions (2/2)

Soft Function

Without Refactorization

$$
\mathbf{S}^{\text {unmeas }}=\mathbf{S}_{0}+\left[\mathbf{S}_{0} \sum_{i<j} \mathbf{T}_{i} \cdot \mathbf{T}_{j}\left(S_{i j}^{\mathrm{incl}}+\sum_{k=1}^{N} S_{i j}^{k}\right)+\text { h.c. }\right]
$$

With Refactorization

$$
\begin{gathered}
\mathbf{S}^{\text {unmeas }}=\mathbf{S}_{0}+\frac{\alpha_{s}}{4 \pi} \frac{1}{2}\left[\mathbf{S}_{0}\left(\mathbf{S}_{s}^{(1)}\left(p_{T}^{\mathrm{cut}}\right)+\sum_{k=1,2} S_{s c}^{k(1)}\left(p_{T}^{\mathrm{cut}} \mathcal{R}\right)\right)+\mathrm{h} . \mathrm{c} .\right]+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
\mathbf{S}_{s}^{(1)}\left(p_{T}^{\mathrm{cut}}\right)=\frac{4}{\epsilon}\left(\frac{\mu}{p_{T}^{\mathrm{cut}}}\right)^{2 \epsilon} \sum_{i<j} \mathbf{T}_{i} \cdot \mathbf{T}_{j}\left[\mathcal{I}_{i j}^{\mathrm{incl}}+\left(\delta_{i B}+\delta_{i \bar{B}}\right)\left(\delta_{j J_{1}}+\delta_{j J_{2}}\right) \mathcal{I}_{i j}^{i}+\delta_{i B} \delta_{i \bar{B}}\left(\mathcal{I}_{i j}^{i}+\mathcal{I}_{i j}^{j}\right)\right] \\
S_{s c}^{k(1)}\left(p_{T}^{\mathrm{cut}} \mathcal{R}\right)=\frac{4}{\epsilon}\left(\frac{\mu}{p_{T}^{\mathrm{cut}}}\right)^{2 \epsilon} \sum_{i<j} \mathbf{T}_{i} \cdot \mathbf{T}_{j}\left[\delta_{i k} \mathcal{I}_{i j}^{i}\right]
\end{gathered}
$$

Results (1/2)

Soft function after RG Evolution

$$
\begin{aligned}
\mathbf{S}\left(\tau_{a}^{1}, \tau_{a}^{2}, \mu, \mu_{S}^{1}, \mu_{S}^{2}, \bar{\mu}_{S}\right)=U_{S}^{1}\left(\tau_{a}^{1}, \mu, \mu_{S}^{1}\right) & U_{S}^{1}\left(\tau_{a}^{2}, \mu, \mu_{S}^{2}\right)\left[1+\left(f_{S}^{1}\left(\tau_{a}^{1} ; \omega_{S}^{1}, \mu_{S}^{1}\right)+f_{S}^{2}\left(\tau_{a}^{2} ; \omega_{S}^{2}, \mu_{S}^{2}\right)\right)\right] \\
& \times \Pi_{S}^{\mathrm{unmeas}}\left(\mu, \bar{\mu}_{S}\right)\left[\boldsymbol{\Pi}_{S}^{\dagger}\left(\mu, \bar{\mu}_{S}\right) \mathbf{S}^{\mathrm{unmeas}}\left(\bar{\mu}_{S}\right) \boldsymbol{\Pi}_{S}\left(\mu, \bar{\mu}_{S}\right)\right]
\end{aligned}
$$

Without s-c Refactorization

$$
\begin{array}{r}
\mathbf{S}^{\text {unmeas }}=\mathbf{S}_{0}+\frac{\alpha_{s}}{\pi}\left\{\mathbf { S } _ { 0 } \left[\left(\frac{1}{2 \epsilon}+\ln \frac{\mu}{p_{T}^{\text {cut }}}\right)\left(\mathbf{S}^{\mathrm{div}}+\sum_{i=1,2} C_{i} \ln \mathcal{R}\right)-\frac{1}{2} \sum_{i=1,2} C_{i} \ln ^{2} \mathcal{R}\right.\right. \\
\left.\left.-\mathbf{T}_{1} \cdot \mathbf{T}_{2} \ln \left(1+e^{\Delta y}\right) \ln \left(1+e^{-\Delta y}\right)\right]+ \text { h.c. }\right\}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
\mathbf{S}^{\mathrm{div}}=\sum_{i<j} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \ln \frac{n_{i} \cdot n_{j}}{2}-y_{\mathrm{cut}}\left(C_{B}+C_{\bar{B}}\right)-\sum_{i=1,2} C_{i} \ln \left(2 \cosh y_{i}\right)
\end{array}
$$

Results (2/2)

With s-c Refactorization

$$
\begin{aligned}
& \mathbf{S}^{\text {unmeas }}\left(\Omega, \mu_{s c}, \mu_{s s}\right) \equiv \mathbf{S}_{0}+\left\{\mathbf { S } _ { 0 } \left[\frac { \alpha _ { s } (\mu _ { s s }) } { 4 \pi } \left(\frac{1}{2} \mathbf{f}_{s}^{2}+\mathbf{f}_{s}^{1}\left(\ln \frac{\mu_{s s}}{p_{T}^{\text {cut }}}+H(-\Omega)\right)\right.\right.\right. \\
& \left.+\mathbf{f}_{s}^{0}\left(\frac{\pi^{2}}{6}-\psi^{(1)}(1-\Omega)+\left(\ln \frac{\mu_{s s}}{p_{T}^{\text {cut }}}+H(-\Omega)\right)^{2}\right)\right) \\
& +\frac{\alpha_{s}\left(\mu_{s c}\right)}{4 \pi}\left(\frac{1}{2} f_{c}^{2}+f_{c}^{1}\left(\ln \frac{\mu_{s c}}{p_{T}^{\text {cut }} \mathcal{R}}+H(-\Omega)\right)\right. \\
& \left.\left.\left.+f_{c}^{0}\left(\frac{\pi^{2}}{6}-\psi^{(1)}(1-\Omega)+\left(\ln \frac{\mu_{s c}}{p_{T}^{\text {cut }} \mathcal{R}}+H(-\Omega)\right)^{2}\right)\right)\right]+ \text { h.c. }\right\} \\
& f_{c}^{0}=-2\left(C_{1}+C_{2}\right) \\
& \mathbf{f}_{s}^{0}=-f_{c}^{0} \\
& f_{c}^{1}=0 \\
& \mathbf{f}_{s}^{1}=4 \mathbf{S}^{\mathrm{div}} \\
& f_{c}^{2}=\frac{\pi^{2}}{6}\left(C_{1}+C_{2}\right) \quad \mathbf{f}_{s}^{2}=-8 \mathbf{T}_{1} \cdot \mathbf{T}_{2} \ln \left(1+e^{\Delta y}\right) \ln \left(1+e^{-\Delta y}\right)-f_{c}^{2}
\end{aligned}
$$

Applications in heavy meson and quarkonium production

Identified Jets: $\quad J_{i}\left(p^{2}, \tau, \mu\right) \longrightarrow \mathcal{G}_{i}^{h}(z, \tau, \mu)$

OPE : $\quad \mathcal{G}(z, \tau, \mu)=\sum_{j}\left[\mathcal{J}_{i}^{j}(\tau, \mu) \bullet D_{j \rightarrow h}(\mu)\right](z)$

$$
[g \bullet f](z)=[f \bullet g](z) \equiv \int_{z}^{1} \frac{d x}{x} g\left(\frac{z}{x}\right) f(x)
$$

[arXiv:0911.4980]
M. Procura and I. W. Stewart
[arXiv:1111.6605]
M. Procura and W. J. Waalewijn
[arXiv:1101.4953]
A. Jain, M. Procura, and W. J. Waalewijn

Non-Global Logs and S-C Refactorization

Chien, Hornig, and Lee, [arXiv:1509.04287]

