Analytical and Monte Carlo Studies of Jets with Heavy Mesons and Quarkonia

Reggie Bain Duke University

In collaboration with L. Dai, A. Hornig, A.Leibovich, Y. Makris, T. Mehen

SCET 2016, DESY, Hamburg, Germany March 21-24, 2016

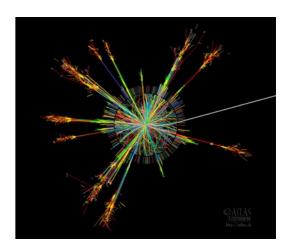
Motivations

Understand high energy jets at LHC

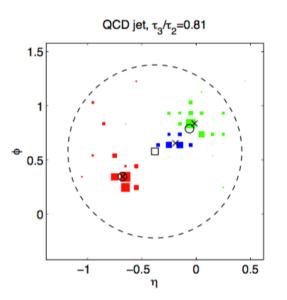
- Testing QCD
- Calculating backgrounds for new physics

Study wealth of jet substructure observables

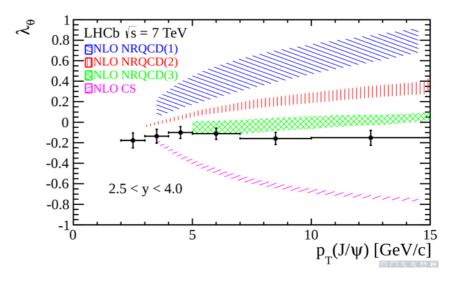
Elucidate outstanding puzzles in quarkonia production



ATLAS Collaboration



Thaler, v. Tilberg, arXiv:1011.2268



Outline

· Fragmenting jet functions w/ angularities

NLL' cross section calculations

- e⁺e⁻ → 2 jets with B meson
- $e^+e^- \longrightarrow 3$ jets with J/ ψ from gluon

Comparisons of NLL' vs. Monte Carlo

Jet Cross-Sections in SCET

Factorization ← Short Distance x Long Distance

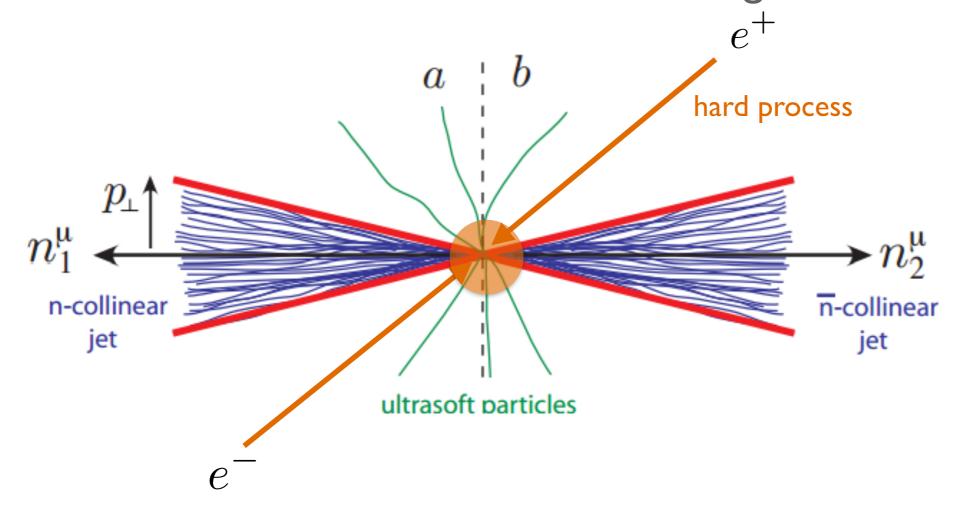


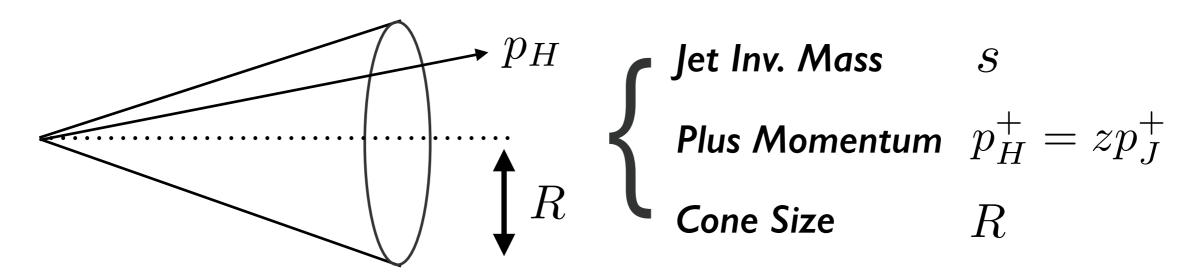
Figure from "Lectures on the Soft Collinear Effective Theory" by Iain W. Stewart, 2013

Factorization Theorem

$$d\sigma = H \times J^1 \otimes J^2 \otimes S \qquad \begin{cases} \text{Hard function} & H(\mu) \\ \text{Jet Functions} & J^{(1)}(\mu) \end{cases} \qquad \text{Measured} \\ \text{Soft Function} & S(\mu) \end{cases} \qquad \text{Unmeasured}$$

Fragmenting Jet Functions (FJF's)

Study jets with identified hadron



Study different measured jet observables/hadrons

Measured invariant mass $\mathcal{G}_i^H(s,z,\mu)$

Measured angularity $\mathcal{G}_i^H(au_a,z,\mu)$

Our observable: Angularities Ta

Generalization of jet invariant mass

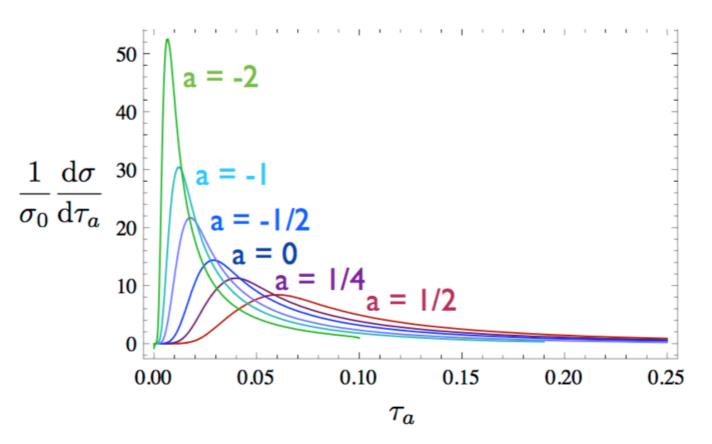
$$\tau_a = \frac{1}{\omega} \sum_i (p_i^+)^{1-a/2} (p_i^-)^{a/2}$$

Sum over jet particles

$$\omega = \sum_{i} p_{i}^{-} \approx 2E_{jet}$$

a=0 jet invariant mass $s=\omega^2\tau_0$

a=1 jet broadening



We have good analytic handle on T_a

Calculate Cross-Section with FJFs

Jet cross-section → Jet w/ Identified Hadron cross-section

$$J_i(\tau_a,\mu) \to \frac{1}{2(2\pi)^3} \mathcal{G}_i^H(\tau_a,z,\mu) dz$$

Convolution of Matching Coefficients & Fragmentation Functions (FF's)

$$\mathcal{G}_i^H(au_a,z,\mu) = \sum_j igg[\mathcal{J}_{ij}(au_a,\mu) ullet D_j^H(\mu) igg](z)$$
 where $[fullet g](z) \equiv \int_z^1 rac{dx}{x} f(x) g(z/x)$

Calculate $\mathcal{J}_{ij}(au_a,z,\mu)$ perturbatively for different observables

Matching Coefficients at NLO

We calculated all 4 NLO (1-loop) \mathcal{J}_{ij} for measured angularities

$$\begin{split} \frac{\mathcal{J}_{qq}(\omega,z,\tau_{a},\mu)}{2(2\pi)^{3}} &= \frac{C_{F}\alpha_{s}}{2\pi} \frac{1}{\omega^{2}} \bigg\{ \delta(\tau_{a})\delta(1-z) \frac{2-a}{1-a} \bigg(-\frac{\pi^{2}}{12} + \frac{1}{2} \ln^{2} \bigg(\frac{\mu^{2}}{\omega^{2}} \bigg) \bigg) \\ &+ \delta(\tau_{a}) \bigg(1-z - \bigg[\ln \bigg(\frac{\mu^{2}}{\omega^{2}} \bigg) + \frac{1}{1-a/2} \ln \bigg(1 + \frac{(1-z)^{1-a}}{z^{1-a}} \bigg) \bigg] \frac{1+z^{2}}{(1-z)_{+}} \\ &+ \frac{1-a}{1-a/2} (1+z^{2}) \bigg(\frac{\ln(1-z)}{1-z} \bigg)_{+} \bigg) \\ &+ \bigg[\frac{1}{\tau_{a}} \bigg]_{+} \bigg(\frac{1}{1-a/2} \frac{1+z^{2}}{(1-z)_{+}} - \delta(1-z) \frac{2}{1-a} \ln \bigg(\frac{\mu^{2}}{\omega^{2}} \bigg) \bigg) \\ &+ \frac{2\delta(1-z)}{(1-a)(1-a/2)} \bigg[\frac{\ln \tau_{a}}{\tau_{a}} \bigg]_{+} \bigg\} \end{split}$$

also... $\mathcal{J}_{qg},\,\mathcal{J}_{gq},\,\mathcal{J}_{gg}$

Consistency checks

1.
$$\lim_{a\to 0} \mathcal{J}_{ij}(\tau_a,z,\mu) = \omega^2 \mathcal{J}_{ij}(s,z,\mu)$$
 \longrightarrow Jain, et. al, arXiv:1101.4953

2.
$$J_i(s,\mu) = \frac{1}{2(2\pi)^3} \sum_j \int_0^1 dz z \mathcal{J}_{ij}(s,z,\mu) \longrightarrow \text{S.D.Ellis, et. al, arXiv:1001.0014}$$

First steps: e⁺e⁻ collisions

R. Bain, L. Dai, A. Hornig, A.Leibovich, Y. Makris, T. Mehen

$$e^+e^- \to b\bar{b}$$
 \mapsto B jet

vs. Monte Carlo

vs. Monte Carlo

Goals

- I. Study z, T_0 distributions
- 2. pp \longrightarrow B, J/ ψ

Cross Section for 2 jets & B⁺/B⁰

Re-summed to NLL' using renormalization group (RG) $d\sigma(\tau_a,z) \equiv \frac{1}{\sigma_0} \frac{d\sigma^{(b)}}{d\tau_a dz} = H_2(\mu_H) \times S^{\mathrm{unmeas}}(\mu_\Lambda) \times J_{\bar{n}}^{(\bar{b})}(\mu_{J_{\bar{n}}}) \times \\ \times \sum_{j} \left\{ \left(\frac{\Theta(\tau_a)}{\tau_a^{1+\Omega}} \right) \left[\delta_{bj} \delta(1-z) \left(1 + f_S(\tau_a,\mu_{S^{\mathrm{meas}}}) \right) + f_{\mathcal{J}}^{bj}(\tau_a,z,\mu_{J_n}) \right] \bullet \frac{D_{j\to B}(z,\mu_{J_n})}{2(2\pi)^3} \right\}_{+} \times \Pi(\mu,\mu_H,\mu_\Lambda,\mu_{J_{\bar{n}}},\mu_{J_n},\mu_{S^{\mathrm{meas}}})$ coupled z & τ_a

Coupling of z and T_a dependence appears first at NLO

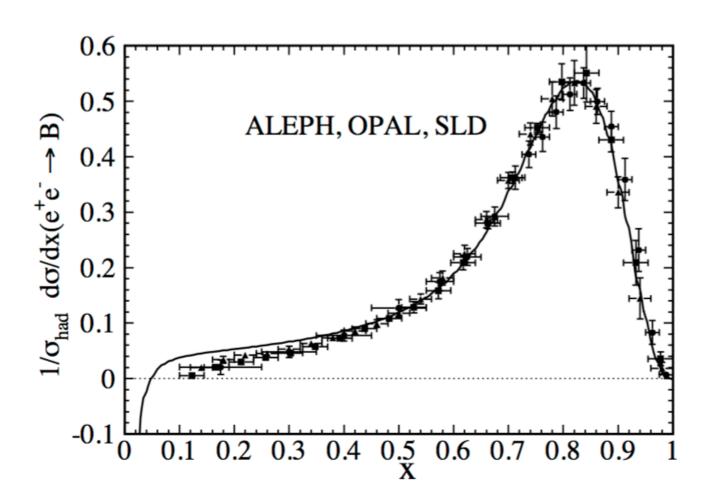
RG evolution factor

Evaluate each piece at characteristic scale, evolve up to hard scale

b quark Fragmentation Function

Fit power model to LEP data

Inclusive Cross-Section vs. z



$$D(x,\mu_0) = Nx^{\alpha}(1-x)^{\beta}$$

$$N = 4684.1$$

$$\alpha = 16.87$$

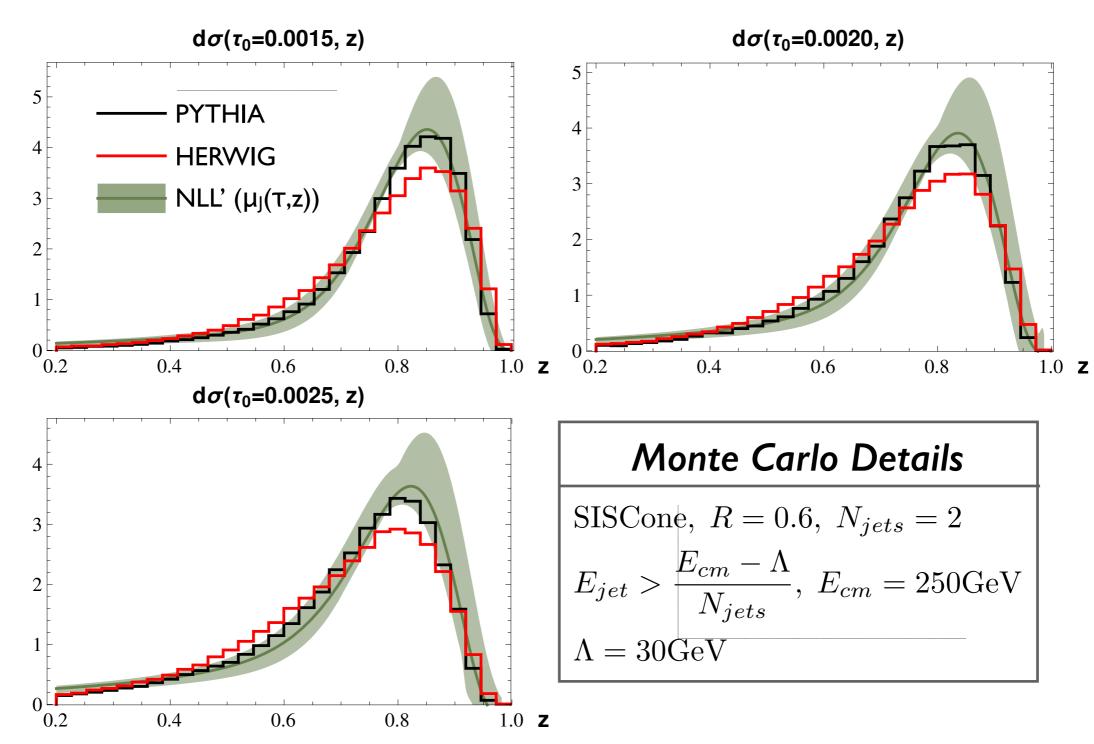
$$\beta = 2.028$$

$$\mu_0 = m_b = 4.5 GeV$$

$$\chi_{dof}^2 = 1.495$$

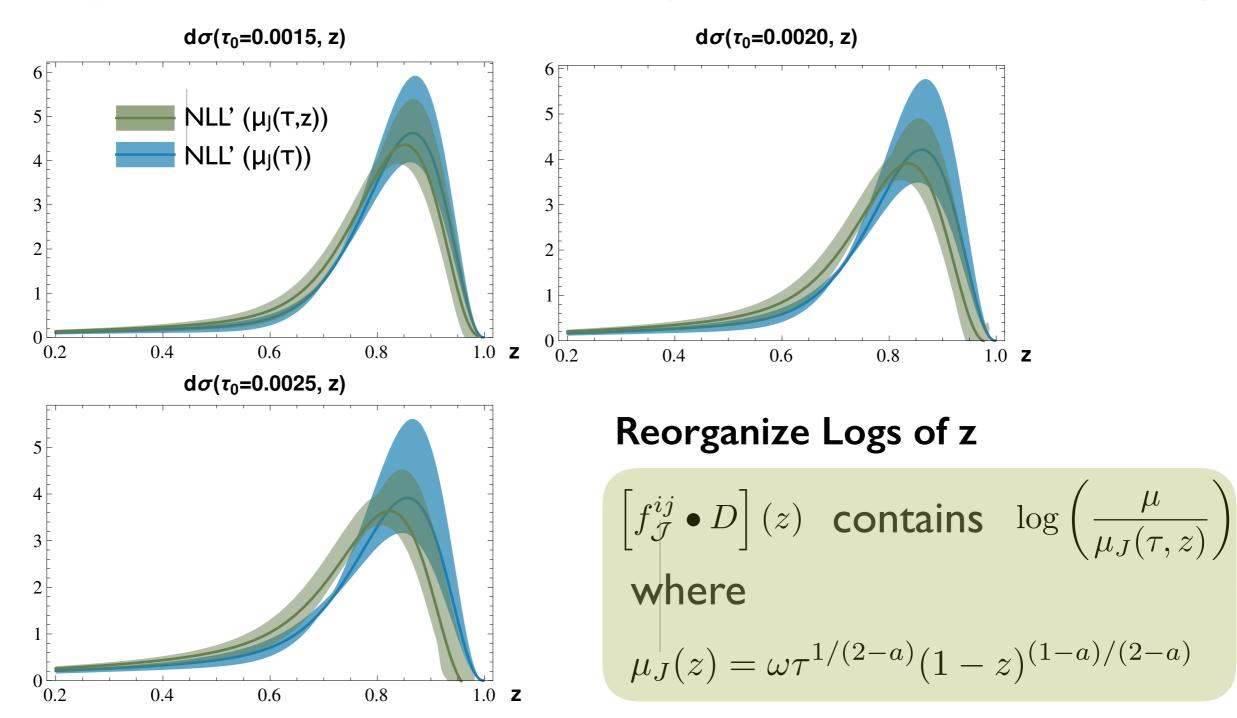
NLL' vs. Monte Carlo (B+/B0)

z distributions for fixed Ta match well



Minimizing Large Logs of I-z

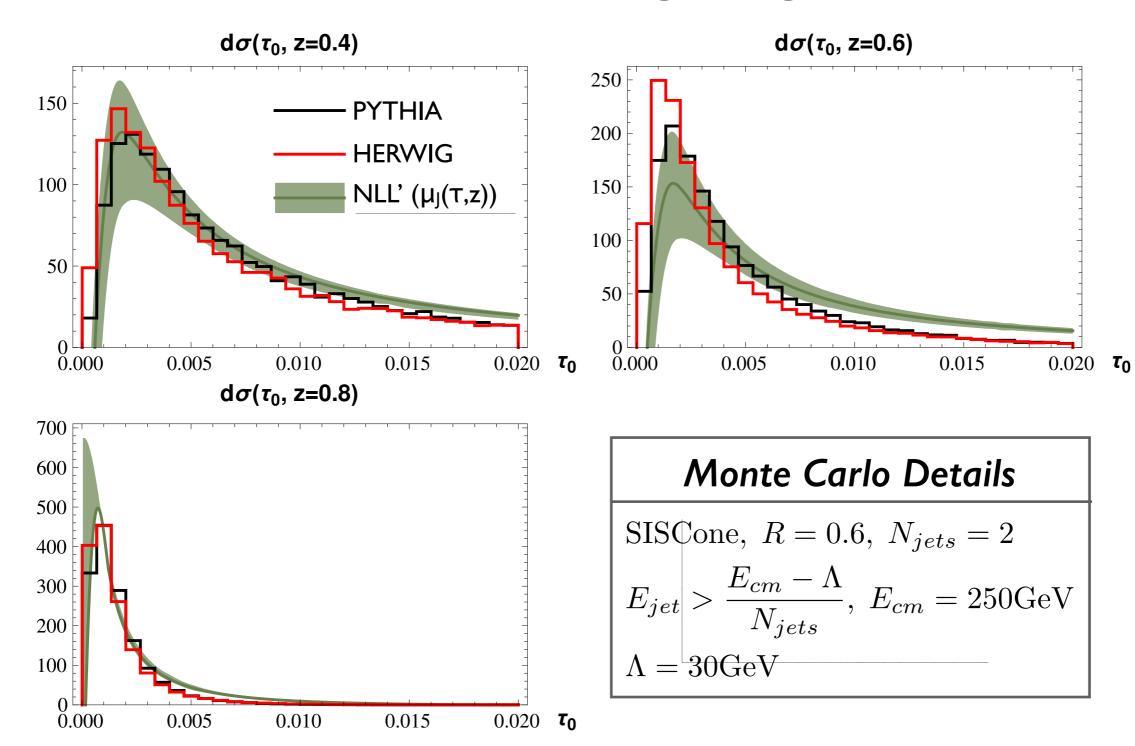
Use z-dependent measured jet scale in FJF — decreases uncertainty



Abbate, Fickinger, Hoang, Mateu, Stewart, arXiv:1006.3080 Hornig, Makris, Mehen, arXiv:1601.01319 Ligeti, Stewart, Tackmann, arXiv:0807.1926

NLL' vs. Monte Carlo (B+/B0)

 T_0 distributions for fixed z also show good agreement

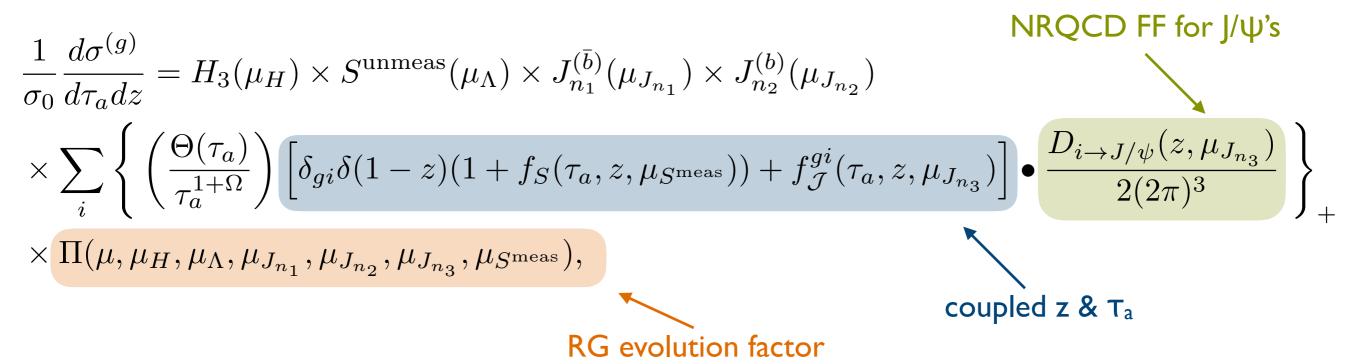


Next steps

- NLL' and Monte Carlo match well for B mesons in jets
- Use FJF's to probe quarkonium production?
- Calculate 3 jet cross-section with J/ψ, compare with MC...

Cross Section for 3 jets & J/ψ

Re-summed to NLL' using renormalization group (RG)

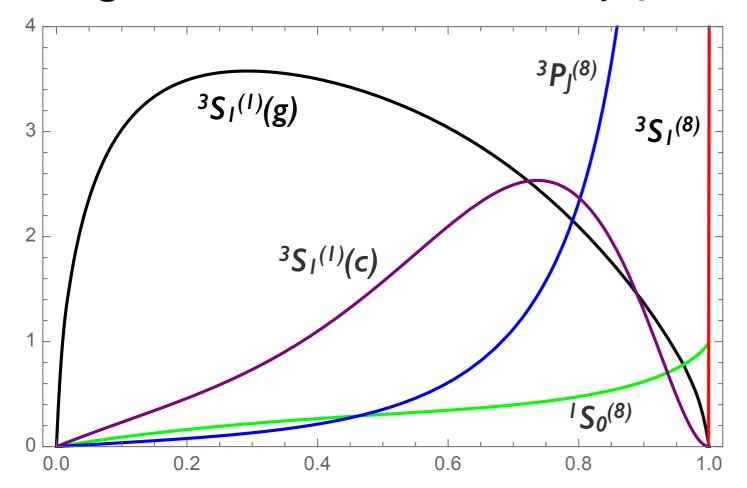


Similar to cross-section for B's with new FF and 3 jets

Want to study pp focus on g fragmentation

NRQCD Fragmentation Functions

Fragmentation Function vs. z of J/ψ



NRQCD Factorization

$$D_{g\to J/\psi} = \sum_{n} D_{g\to J/\psi}^{(n)} \langle \mathcal{O}^{J/\psi}(n) \rangle$$

with
$$n = {}^{2S+1} L_J^{(1,8)}$$

Examples of $\alpha_s(2m_c)$ & z dependence

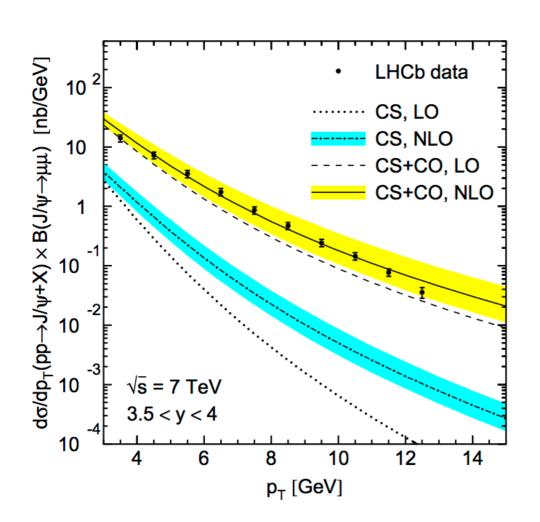
$$D_{g\to J/\psi}^{^{3}S_{1}^{(8)}}(z,2m_{c}) = \frac{\pi\alpha_{s}(2m_{c})}{24m_{c}^{3}}\delta(1-z)$$

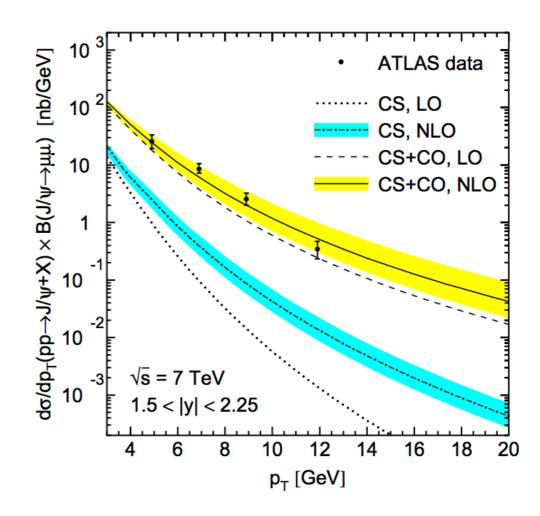
$$D_{g \to J/\psi}^{{}^{1}S_{0}^{(8)}}(z, 2m_{c}) = \frac{5\alpha_{s}(2m_{c})}{96m_{c}^{3}} \left(3z - 2z^{2} + 2(1-z)\log(1-z)\right)$$

Braaten, Chen, hep-ph/9610401 Braaten, Chen, hep-ph/9604237 Braaten, Yuan, hep-ph/9302307

Extract LDME's from World's Data

Need CS+CO at NLO to fit data from various experiments





Fit to world data (2/26 plots shown) to $e^+e^-, \gamma\gamma, \gamma p, p\bar{p}, pp \rightarrow J/\psi + X$

$\langle \mathcal{O}^{J/\psi}(^3S_1^{(1)}) \rangle$	$\langle \mathcal{O}^{J/\psi}(^3S_1^{(8)})\rangle$	$\langle \mathcal{O}^{J/\psi}(^1S_0^{(8)})\rangle$	$\langle \mathcal{O}^{J/\psi}(^3P_J^{(8)})\rangle/m_c^2$
$1.32~\mathrm{GeV^3}$	$2.24 \times 10^{-3} \text{ GeV}^3$	$4.97 \times 10^{-2} \text{ GeV}^3$	$-7.16 \times 10^{-3} \text{ GeV}^3$

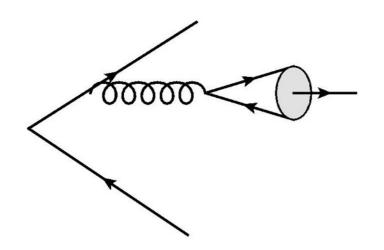
Default MadGraph + PYTHIA

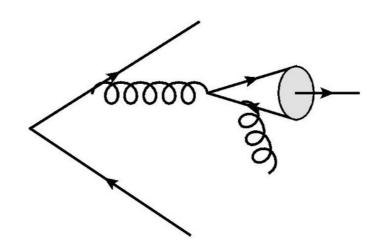
I. MadOnia: Create J/psi in hard process

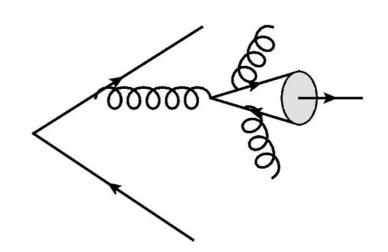
$$e^+e^- \rightarrow b\,\bar{b}\,c\,\bar{c}\,\left[{}^3S_1^{(8)}\right]$$

$$e^+e^- \rightarrow b\,\bar{b}\,g\,c\,\bar{c}\,\left[{}^1S_0^{(8)}\right]$$

$$e^{+}e^{-} \to b\,\bar{b}\,c\,\bar{c}\,\left[{}^{3}S_{1}^{(8)}\right] \qquad e^{+}e^{-} \to b\,\bar{b}\,g\,c\,\bar{c}\,\left[{}^{1}S_{0}^{(8)}\right] \qquad e^{+}e^{-} \to b\,\bar{b}\,g\,g\,c\,\bar{c}\,\left[{}^{3}S_{1}^{(1)}\right]$$





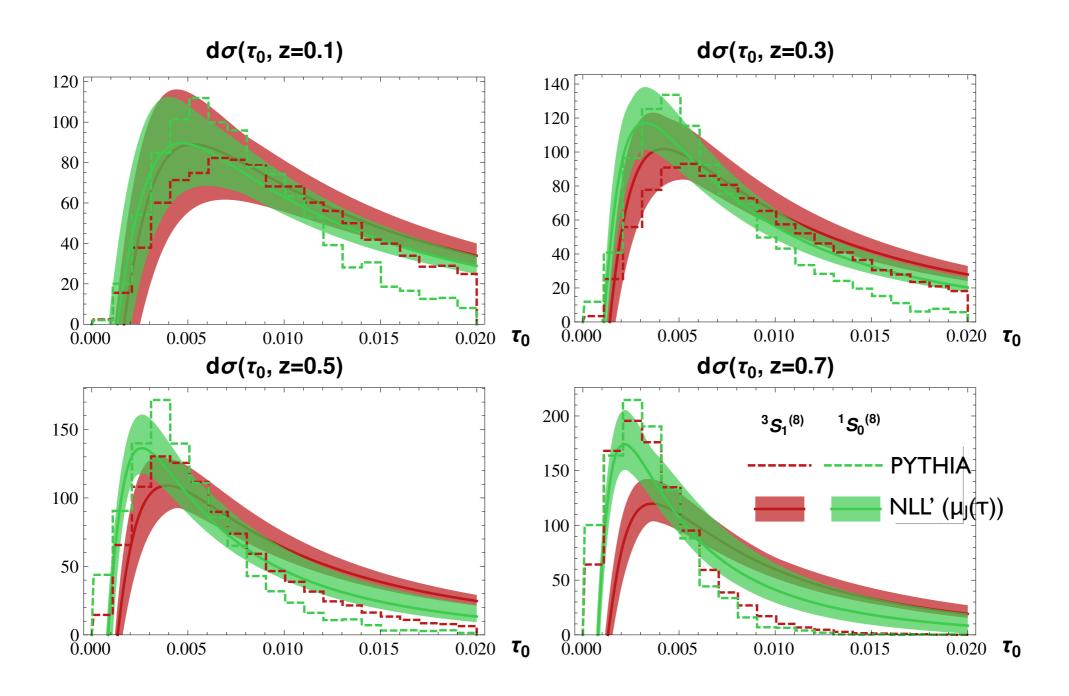


Parton shower + hadronization

Reconstruct jets + implement cuts

NLL' vs. PYTHIA (J/ψ)

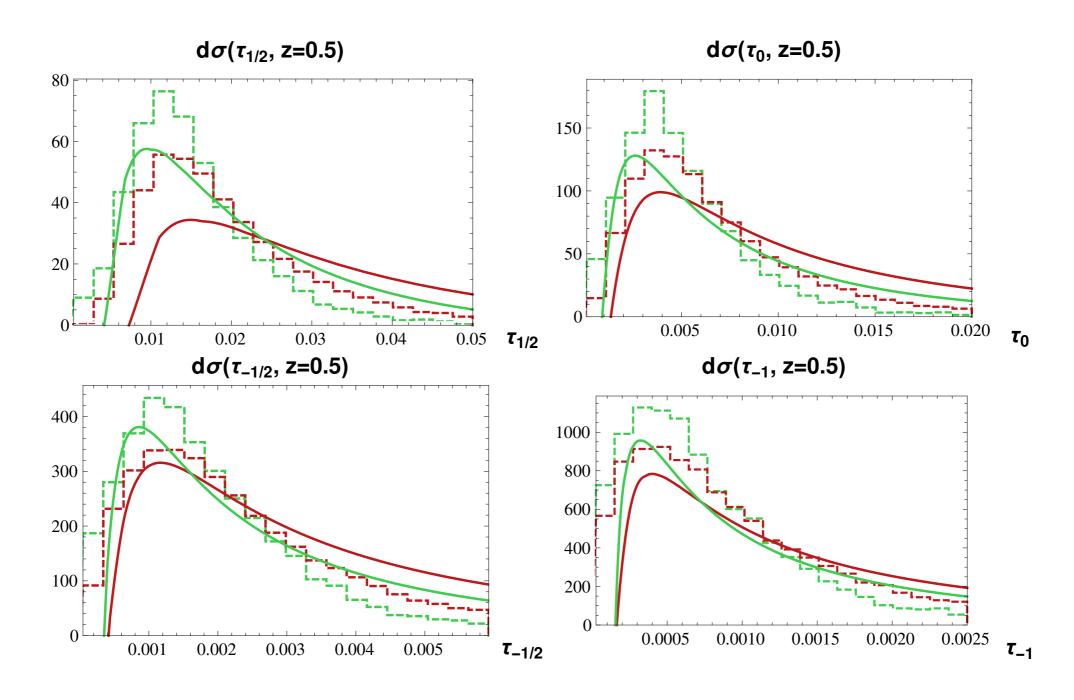
Monte Carlo/NLL' Ta distributions for fixed z's show similarities



As $z \rightarrow 0$ we see less dependence on production mechanism

NLL' vs. PYTHIA (J/ψ)

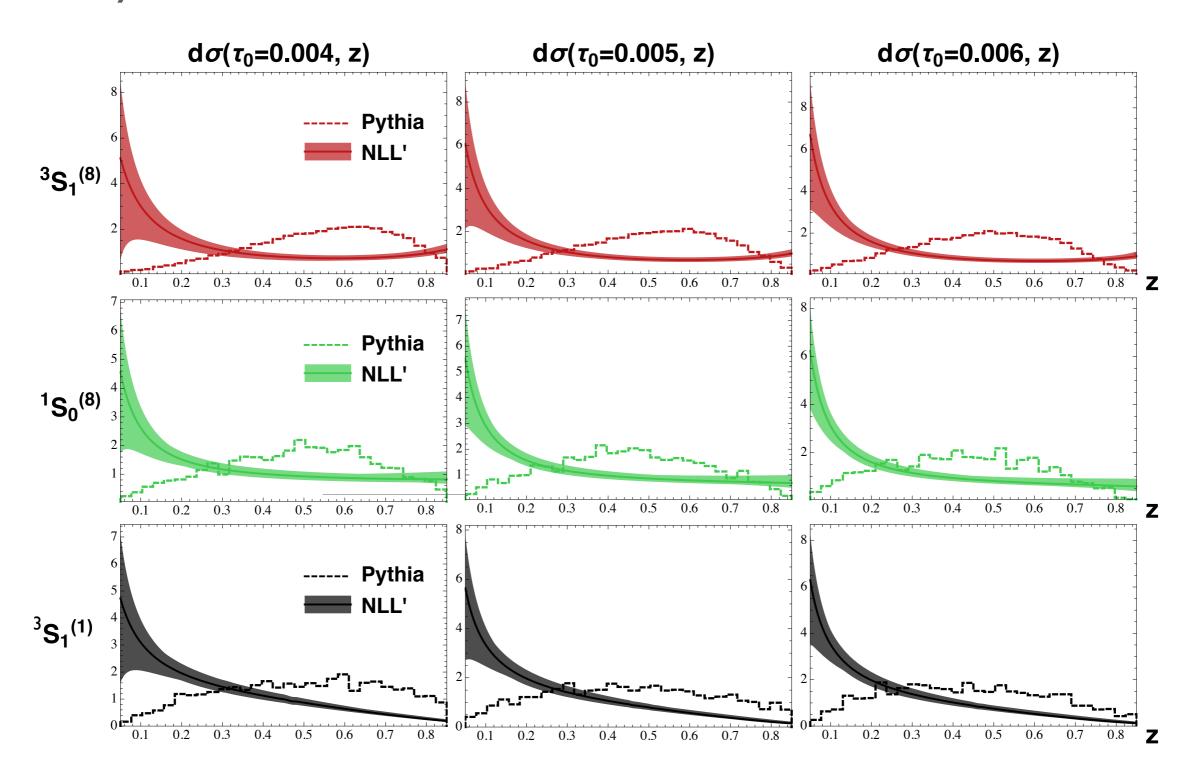
Monte Carlo/NLL' Ta distributions for different a's also show similarities



More discriminating power for larger a (a < 1 in SCET₁)

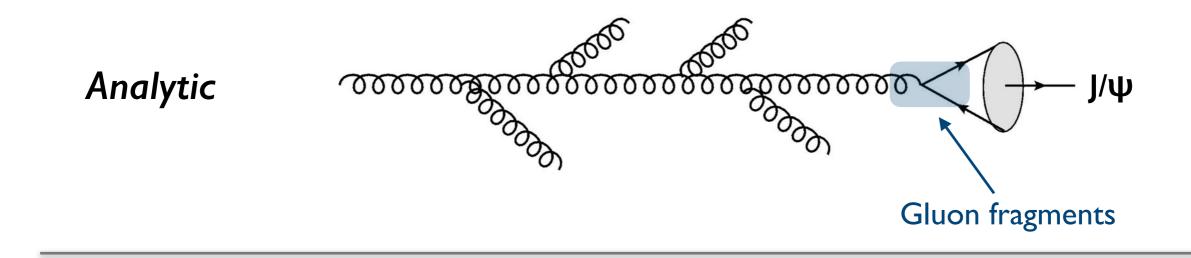
Comparing NLL' & PYTHIA

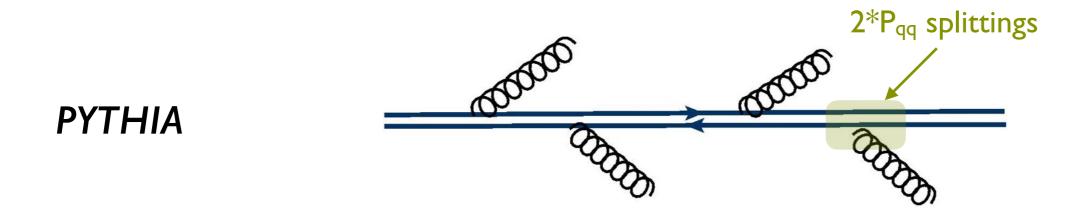
PYTHIA yields much harder z distributions



Gluon Fragmentation and PYTHIA

PYTHIA's picture of showering off onia different from theory



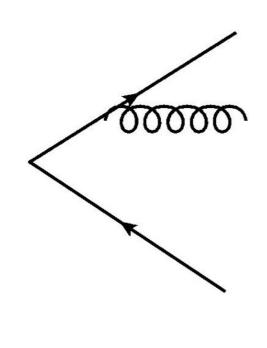


Monte carlo z distributions much harder than analytic

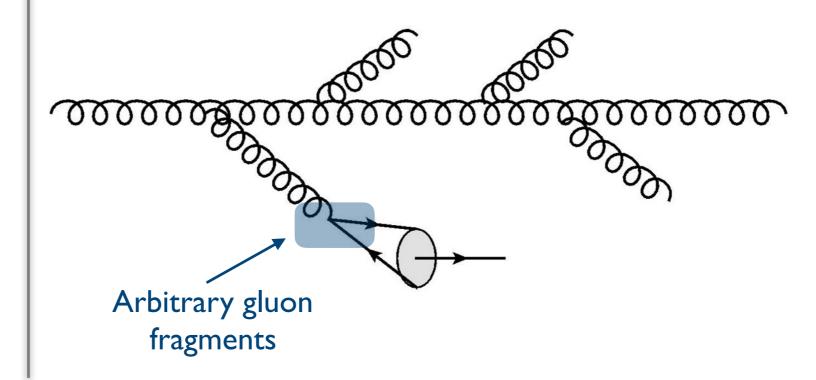
Gluon Fragmentation Improved PYTHIA (GFIP)

Madgraph 5

$$e^+e^- \rightarrow b\,\bar{b}\,g$$



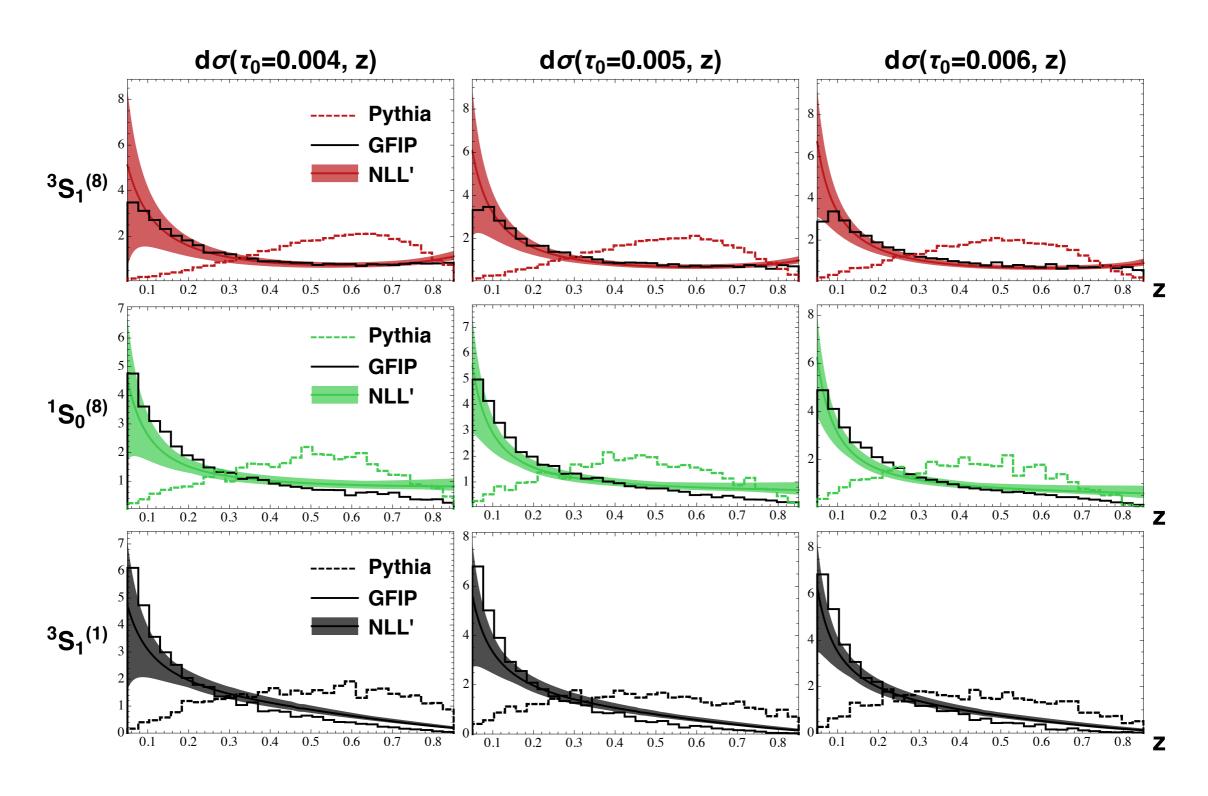
PYTHIA + Convolution



- 2. PYTHIA No hadronization, adjust shower pT cutoff
- 3. Convolve NRQCD FFs w/ random final state gluon

Comparing NLL', PYTHIA, and GFIP

GFIP shows far better agreement w/ NLL'



Conclusions

- New calculation: FJF for measured angularities
- Our calculation fits B production in Monte Carlo (dσ/dτdz)
- Default Monte Carlo J/ψ seems to lack proper onia showering
- GFIP shows improvements in z-distributions

Future Work

· Proper modification of Pythia to fix showering of quarkonia

· Calculate cross-section for pp w/ measured angularity

Extend to other jet observables

Thank you!

Backup Slides

Extra Details on Scales/FJF's

Characteristic Scales in B meson case

Function (F)	H_2	$J_{ar{n}}^{ar{b}}$	$S^{ m unmeas}$	$\mathcal{J}(au,z)$	$S^{ m meas}(au)$
Scale (μ_F)	$E_{\rm cm}$	$igg \omega_{ar{n}}r$	$2\Lambda r^{1/2}$	$\omega_n \tau^{1/(2-a)} (1-z)^{(1-a)/(2-a)}$	$\omega_n \tau / r^{1-a}$

Previous Studies on FJF's

Different identified hadrons/measured observables

X. Liu, arXiv:1011.3872

Jain, Procura, Waalewijn, arXiv: 1101.4953

Jain, Procura, Waalewijn, arXiv:1110.0839

Procura, Waalewijn, arXiv:1111.6605

Jain, Procura, Waalewijn, B. Shotwell, arXiv: I 207.4788

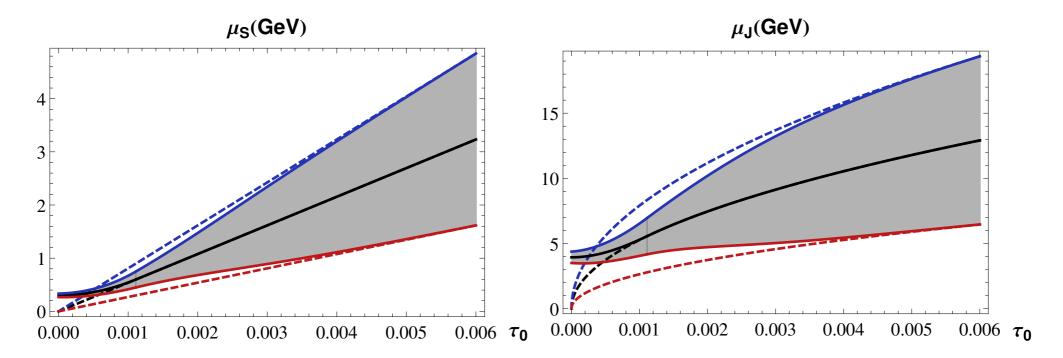
Bauer, Mereghetti, arXiv:1312.5605

Baumgart, Mehen, Leibovich, Rothstein, arXiv:1406.2295

Chien, Z.-B. Kang, F. Ringer, I. Vitev and H. Xing, arXiv: 1512.06851

Profile Functions

Abbate, Fickinger, Hoang, Mateu, Stewart, arXiv:1006.3080 Ligeti, Stewart, Tackmann, arXiv:0807.1926 Hornig, Makris, Mehen, arXiv:1601.01319



	Traditional	Profile
Canonical		
$\epsilon_{S/J}$ =+1/2 (+50%)		
$\epsilon_{S/J} = -1/2 \ (-50\%)$		

$$\mu_S^{PF}(\tau) = \begin{bmatrix} 1 + \epsilon_S \frac{g(\tau)}{g(1)} \end{bmatrix} \times \begin{cases} \mu_0 + \alpha \tau^{\beta}; & 0 < \tau < \tau_{min} \\ \omega \tau / r^{(1-a)}; & \tau_{min} \le \tau \end{cases}$$

$$\mu_J^{PF}(\tau) = \left[1 + \epsilon_J \frac{g(\tau)}{g(1)} \right] \times \begin{cases} (\omega r)^{(1-a)/(2-a)} (\mu_0 + \alpha \tau^{\beta})^{1/(2-a)}; & 0 < \tau < \tau_{min} \\ \omega \tau^{1/(2-a)}; & \tau_{min} \le \tau \end{cases}$$

Reorganizing Log(I-z)

Convolution in z

$$\frac{1}{T_{ij}} \frac{2\pi}{\alpha_s(\mu)} f_{\mathcal{J}}^{ij}(\tau, z, \mu) \bullet D(z) = \delta_{ij} f_1(\tau, z, \mu) D(z) - \int_z^1 dx f_2(\tau, x, \mu) \left(\frac{P_{ji}(x)}{x} \circ D\left(\frac{z}{x}\right)\right) + \int_z^1 dx \left[c_{ij}(x) - \frac{1}{1 - a/2} \ln\left(1 + \left(\frac{1 - x}{x}\right)^{1 - a}\right) \frac{\bar{P}_{ji}(x)}{x}\right] \circ D\left(\frac{z}{x}\right),$$

Definitions of functions

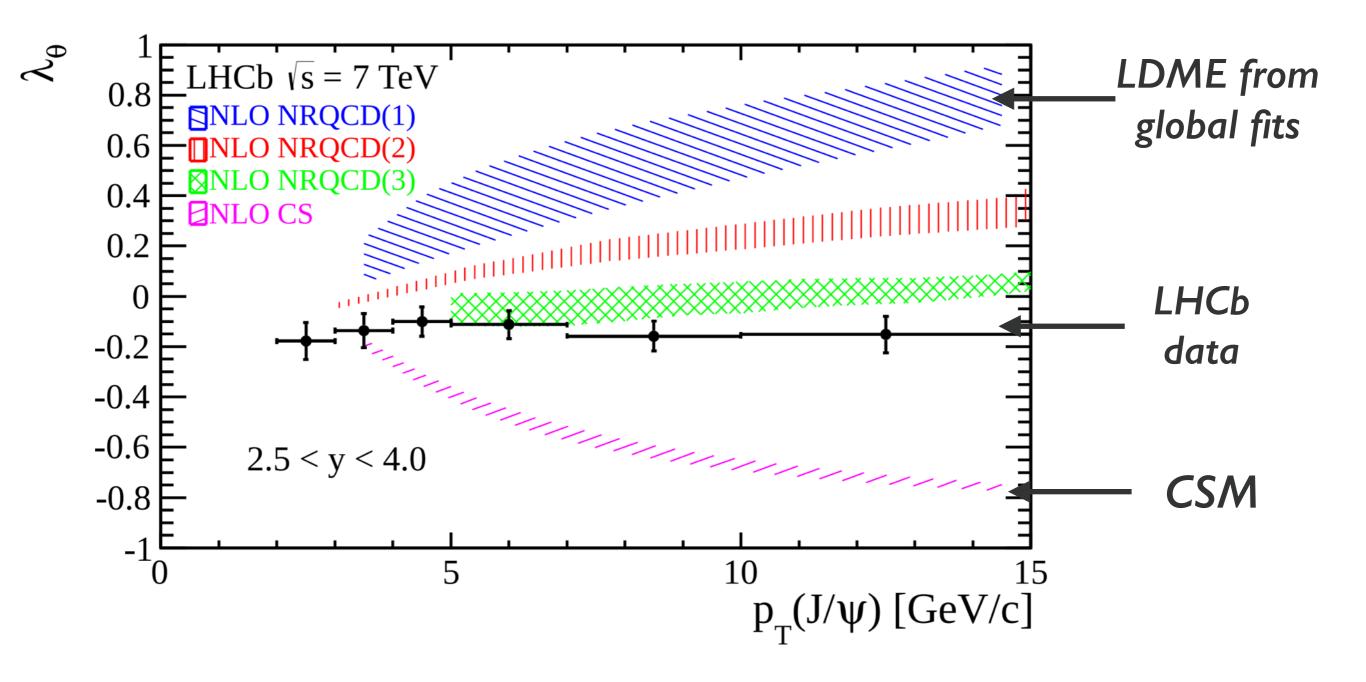
$$f_1(\tau, z, \mu) = \frac{1 - a/2}{1 - a} \left(f_2(\tau, z, \mu) \right)^2 + \frac{a(1 - a/4)}{(1 - a)(1 - a/2)} \frac{\pi^2}{6} - \frac{1}{(1 - a)(1 - a/2)} \psi^{(1)}(-\Omega)$$

$$f_2(\tau, z, \mu) = 2 \ln \left(\frac{\mu}{\mu_I(\tau, z)} \right) + \frac{1}{1 - a/2} H(-1 - \Omega),$$

z dependent scale

$$\mu_J(\tau, z) = \omega \tau^{1/(2-a)} (1-z)^{(1-a)/(2-a)}$$

Polarization Problem



$$\lambda_{\theta}$$
 = +1 (trans.), 0 (unpol.), -1 (long.)
 θ = J/ ψ and μ + momentum polar angle

Blue = No feed down, pT > 3 GeV; Buttenschon et. al (2012)
Red = Chi_cJ and Psi(2S) feed down, pT > 7 GeV; Gong et al. (2013)
Green = No feed down, pT > 7 GeV; Chao et. al (2012)
Magenta = Color singlet at NLO; Buttenschon et al (2012)

Terms that Arise at NLL'

Measured jet function contribution (NLO/NLL')

$$f_{\mathcal{J}}^{ij}(\tau, z, \mu) = T_{ij} \frac{\alpha_s(\mu)}{2\pi} \left(c_0^{ij}(z, \mu) + c_1^{ij}(z, \mu) \left(\ln \tau - H(-1 - \Omega) \right) + c_2 \delta_{ij} \delta(1 - z) \left(\frac{(\ln \tau - H(-1 - \Omega))^2 + \pi^2/6 - \psi^{(1)}(-\Omega)}{2} \right) \right).$$

Measured soft function contribution (NLO/NLL')

$$f_S(\tau,\mu) = -\frac{\alpha_s(\mu)C_F}{\pi} \frac{1}{1-a} \left\{ \left[\ln \frac{\mu \tan^{1-a} \frac{R}{2}}{\omega \tau} + H(-1-\Omega) \right]^2 + \frac{\pi^2}{6} - \psi^{(1)}(-\Omega) \right\},\,$$

Apply to Heavy Quarkonium?

Non-relativistic QCD Factorization Formalism

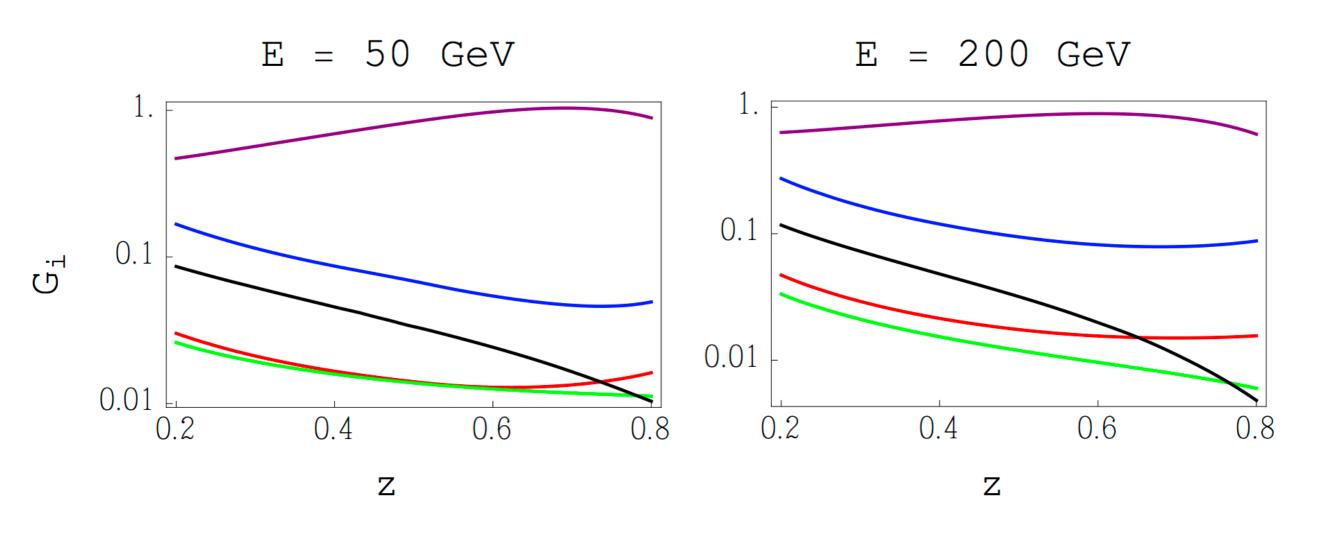
$$\sigma(gg \to J/\psi + X) = \sum_n \sigma(gg \to c\bar{c}(n) + X) \langle \mathcal{O}^{J/\psi}(n) \rangle$$
 Expand in α_s Scaling in v

NRQCD Power Counting in α_s , v					
Mechanism	$d_n(z)$	$\langle \mathcal{O}_n^H angle$			
$^{3}S_{1}^{(1)}$	α_s^3	v^3			
$3S_1^{(8)}$	$lpha_s$	v^7			
$^{1}S_{0}^{(8)}$	$lpha_s^2$	v^7			
$P_J^{(8)}$	$lpha_s^2$	v^7			

with
$$n = {}^{2S+1} L_J^{(1,8)}$$

FJF's and Quarkonia Production

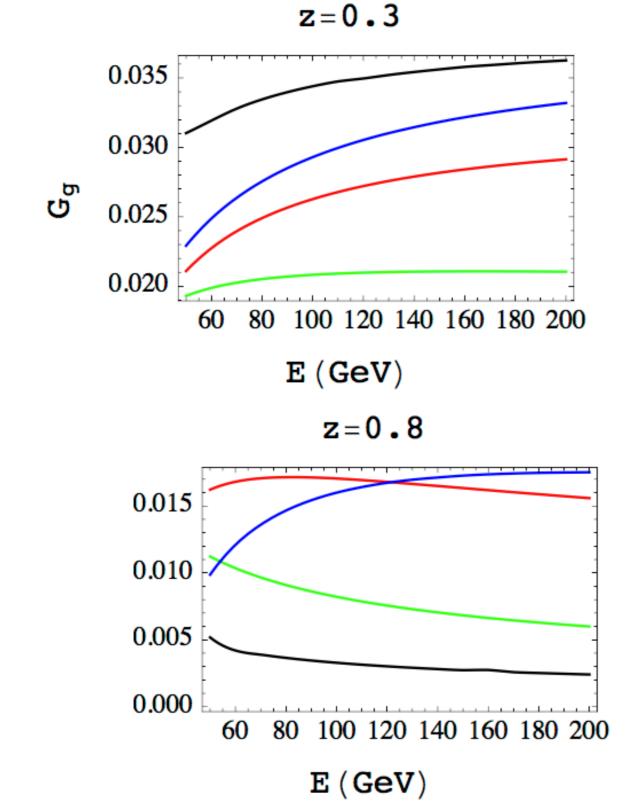
Discriminating power between NRQCD production mechanisms

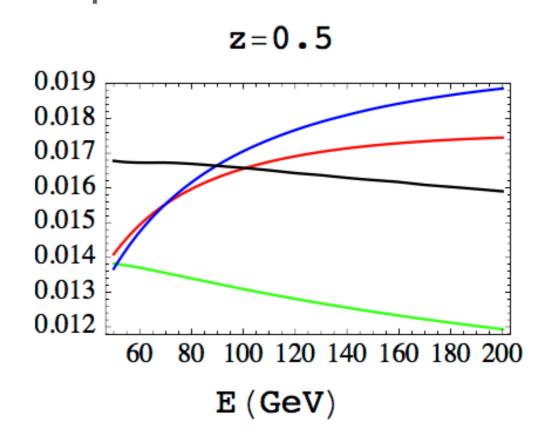


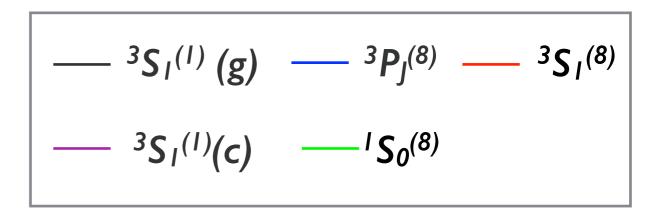
$$--- {}^{3}S_{1}^{(1)}(g) --- {}^{3}P_{1}^{(8)} --- {}^{3}S_{1}^{(8)}$$
$$--- {}^{3}S_{1}^{(1)}(c) --- {}^{1}S_{0}^{(8)}$$

FJF's and Quarkonia Production

Discriminating power between NRQCD production mechanisms

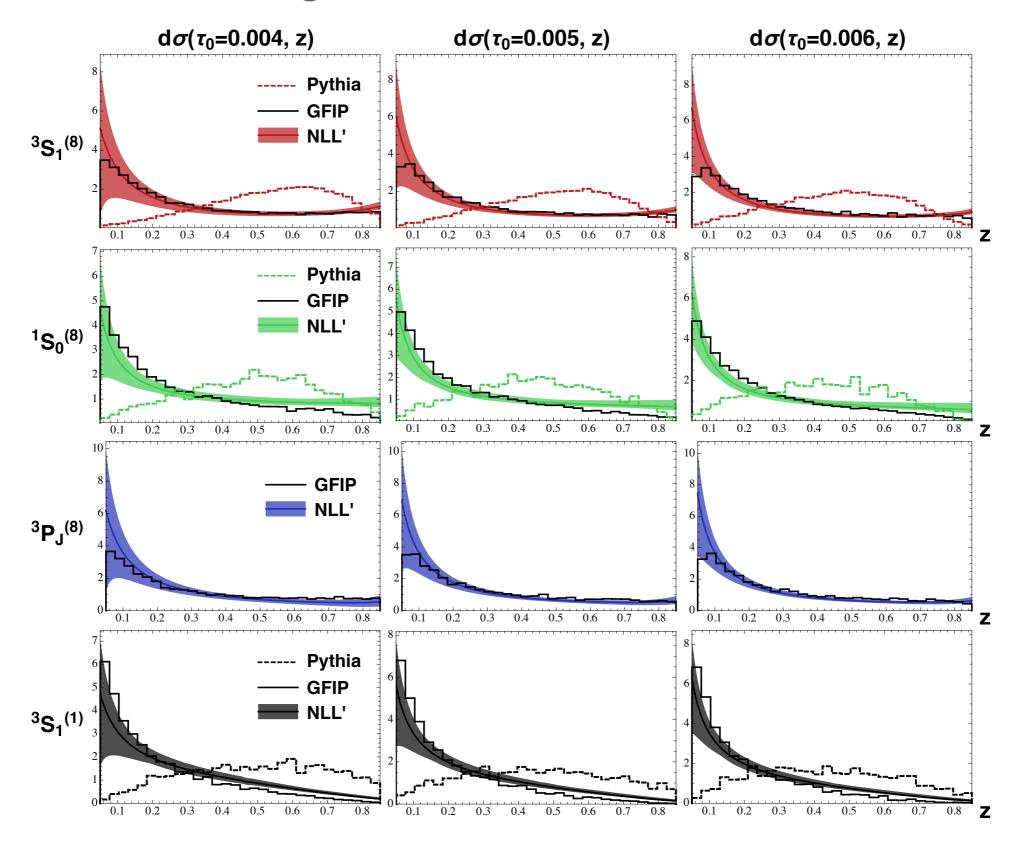






Comparing NLL', PYTHIA, and GFIP

GFIP shows far better agreement w/ NLL'



Details of Calculation

Hard, Soft Unmeasured, and Unmeasured Jet Functions

$$H_{2}(\mu) = 1 - \frac{\alpha_{s}(\mu)C_{F}}{2\pi} \left[8 - \frac{7\pi^{2}}{6} + \ln^{2} \frac{\mu^{2}}{\omega^{2}} + 3\ln \frac{\mu^{2}}{\omega^{2}} \right]$$

$$S^{\text{unmeas}}(\mu) = 1 + \frac{\alpha_{s}(\mu)C_{F}}{2\pi} \left[\ln^{2} \frac{\mu^{2}}{4\Lambda^{2}} - \ln^{2} \frac{\mu^{2}}{4\Lambda^{2}r^{2}} - \frac{\pi^{2}}{3} \right]$$

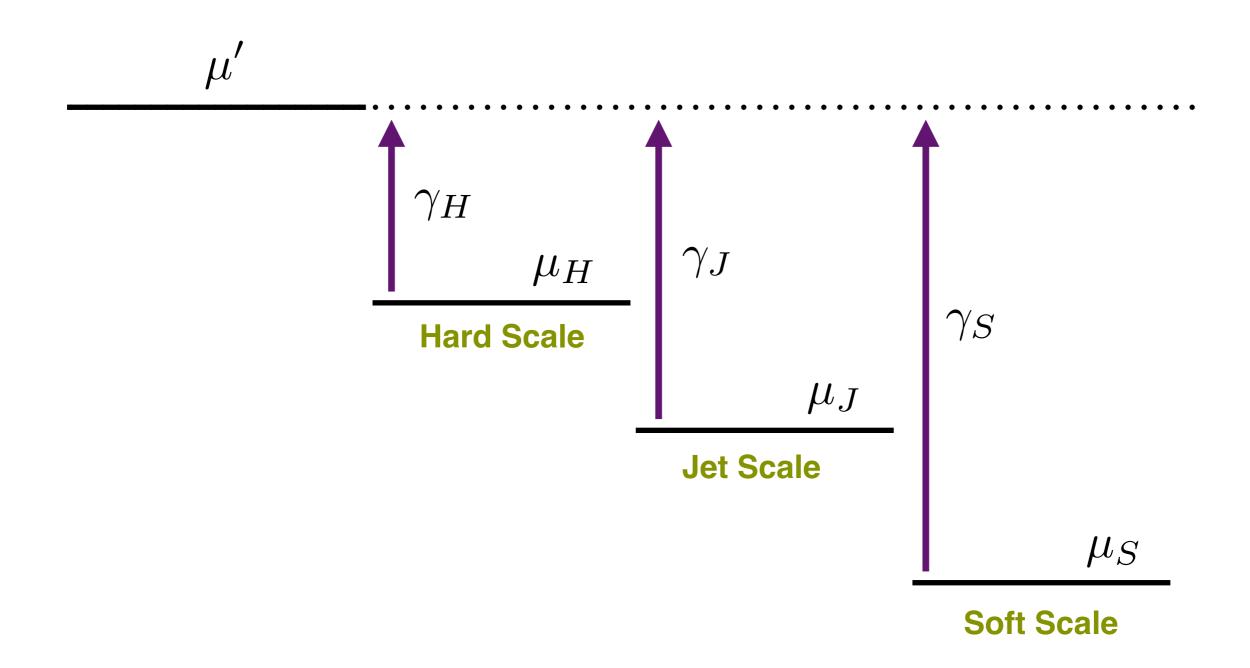
$$J_{\bar{n}}^{(\bar{b})}(\mu) = 1 + \frac{\alpha_{s}(\mu)C_{F}}{2\pi} J_{\text{alg}}^{q}(\mu).$$

RG Evolution Factor

$$\Pi(\mu, \mu_H, \mu_\Lambda, \mu_{J_{\bar{n}}}, \mu_{J_n}, \mu_{S^{\text{meas}}}) = \prod_{i=H, J_{\bar{n}}, S^{\text{unmeas}}} \exp(K_i(\mu, \mu_i)) \left(\frac{\mu_i}{m_i}\right)^{\omega_i(\mu, \mu_i)} \times \frac{1}{\Gamma(-\Omega(\mu_{J_n}, \mu_{S^{\text{meas}}}))} \times \prod_{i=J_n, S^{\text{meas}}} \exp(K_i(\mu, \mu_i) + \gamma_E \omega_i(\mu, \mu_i)) \left(\frac{\mu_i}{m_i}\right)^{j_i \omega_i(\mu, \mu_i)}$$

Resummation of Logarithms

Evolve each function to common scale using RG



Resumming Logarithms

$$A = a + \alpha \left(b_1 + b_2 \log \left(\frac{\mu}{\mu_0} \right) \right)$$

$$+ \alpha^2 \left(c_1 + c_2 \log \left(\frac{\mu}{\mu_0} \right) + c_3 \log^2 \left(\frac{\mu}{\mu_0} \right) \right)$$

$$+ \alpha^3 \left(d_1 + d_2 \log \left(\frac{\mu}{\mu_0} \right) + d_3 \log^2 \left(\frac{\mu}{\mu_0} \right) + d_4 \log^3 \left(\frac{\mu}{\mu_0} \right) \right)$$

$$+ \alpha^4 \left(e_1 + e_2 \log \left(\frac{\mu}{\mu_0} \right) + e_3 \log^2 \left(\frac{\mu}{\mu_0} \right) + e_4 \log^3 \left(\frac{\mu}{\mu_0} \right) + e_5 \log^4 \left(\frac{\mu}{\mu_0} \right) \right)$$

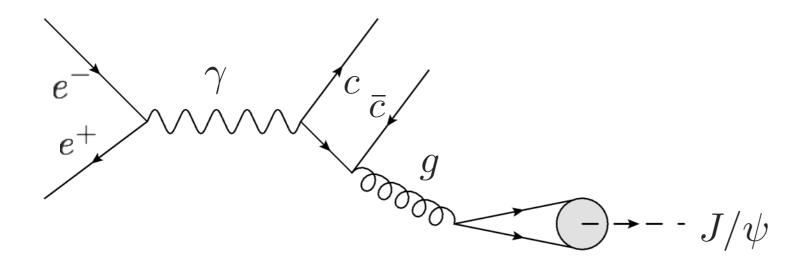
$$+ \dots$$

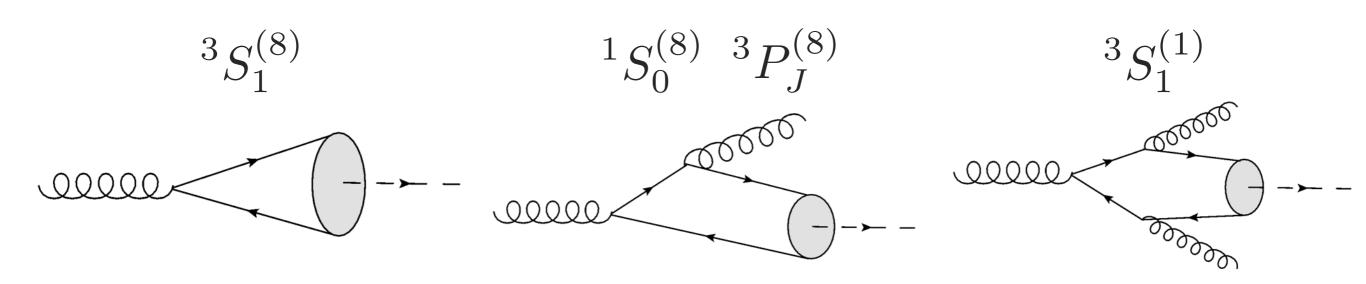
$$N^{n-m}LL \sim \sum \alpha_s^n \log^m \left(\frac{\mu}{\mu_0}\right)$$

N₃LL

J/ψ Production Mechanisms

Diagrams for each singlet/octet channels



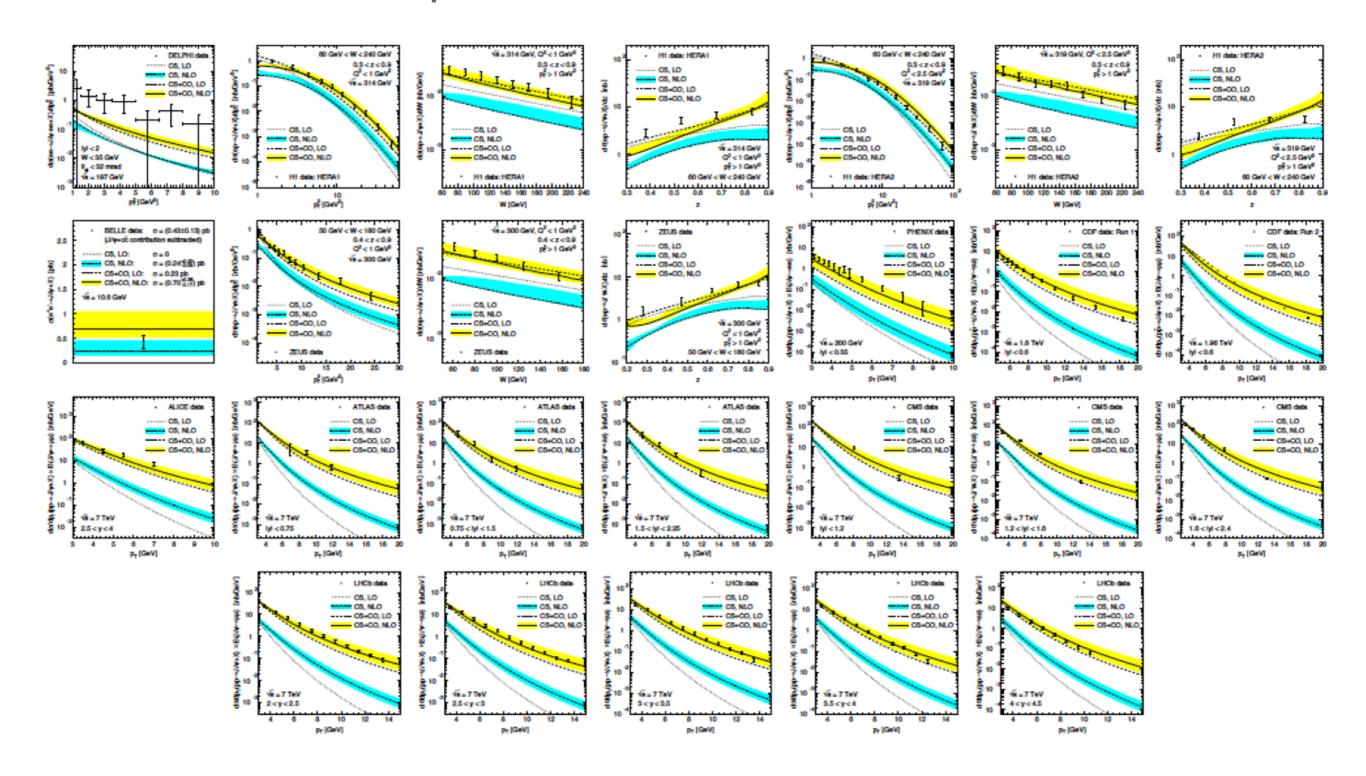


Characteristic Scales in Factorization Theorem



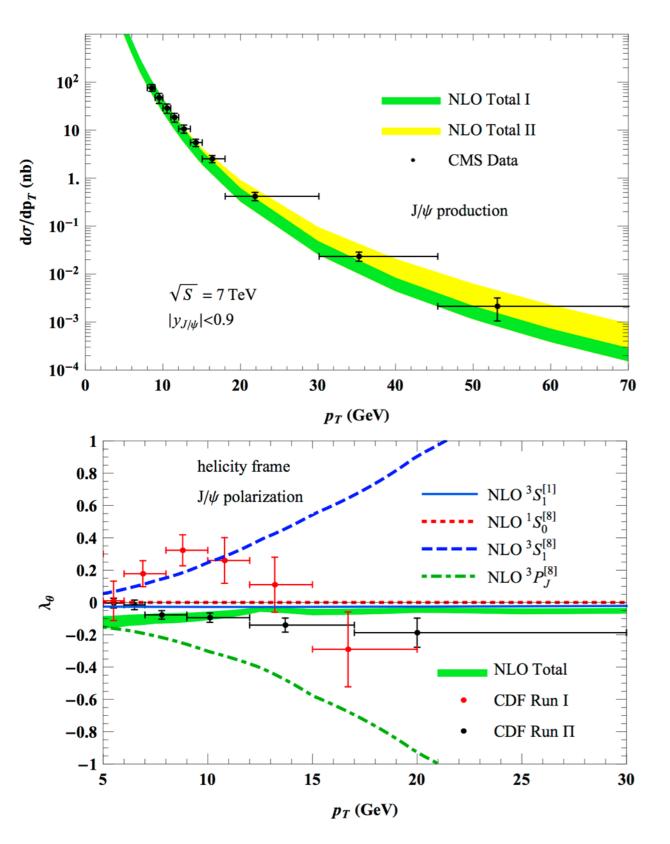
Global Fits to World's Data

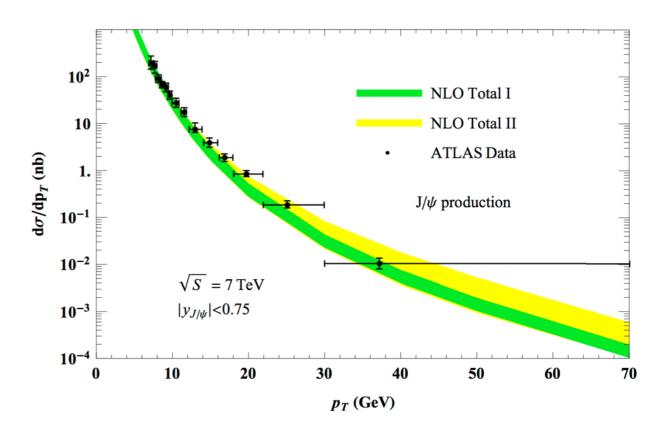
Fit done on 194 data points, 26 data sets



Attempts to Fix Polarization Problem

Simultaneous NLO fit to CMS, ATLAS high pt production, polarization





Chao, et al. (2012),arXiv:1201.2675

$\frac{\langle \mathcal{O}(^{3}\!S_{1}^{[1]})\rangle}{\text{GeV}^{3}}$	$\frac{\langle \mathcal{O}(^{1}\!S_{0}^{[8]})\rangle}{10^{-2}\mathrm{GeV}^{3}}$	$\langle \mathcal{O}(^{3}S_{1}^{[8]})\rangle$ 10^{-2}GeV^{3}	$\frac{\langle \mathcal{O}(^{3}P_{0}^{[8]})\rangle/m_{c}^{2}}{10^{-2}\text{GeV}^{3}}$
1.16	8.9 ± 0.98	0.30 ± 0.12	0.56 ± 0.21
1.16	0	1.4	2.4
1.16	11	0	0

Inconsistent with global fits!

Deriving the Cross Section

Measure Hadron z and Jet T

$$\frac{1}{\sigma_0} \frac{d\sigma^{(i)}}{d\tau_a dz} = H(\mu) S^{unmeas}(\mu) J_{\omega_1}^{(1)}(\mu) \sum_j \left[\left(S^{meas}(\mu) \otimes \frac{\mathcal{J}_{ij}(\mu)}{2(2\pi)^3} \right) (\tau_a) \bullet D_j^H(\mu) \right] (z)$$

Convolutions of the form

$$[f \otimes g](\tau_a) \equiv \int d\tau' f(\tau - \tau') g(\tau')$$

$$[f \bullet g](z) \equiv \int_{z}^{1} \frac{dx}{x} f(x)g(z/x)$$

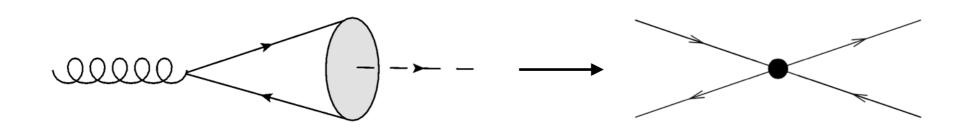
Definitions

$$\bar{\omega}_H = \prod_{i=1}^N \omega_i^{\mathbf{T}_i^2/\mathbf{T}^2}$$

$$\mathbf{T}^2 = \sum_{i=1}^N \mathbf{T}_i^2$$

NRQCD Fragmentation Functions

Matching QCD and NRQCD



Perturbatively Calculable Frag. Functions

$$D_{g\to J/\psi}^{^{3}S_{1}^{(8)}}(z,2m_{c}) = \frac{\pi\alpha_{s}(2m_{c})}{24m_{c}^{3}} \langle \mathcal{O}^{J/\psi}(^{3}S_{1}^{(8)})\rangle \delta(1-z)$$

Braaten, Chen, hep-ph/9610401 Braaten, Chen, hep-ph/9604237 Braaten, Yuan, hep-ph/9302307

Definitions of Operators

QCD Fragmentation Function

$$D_q^h(z) = z \int \frac{dx^+}{4\pi} e^{ik^- x^+/2} \frac{1}{4N_c} \operatorname{Tr} \sum_X \langle 0 | \, \bar{n}\psi(x^+, 0, 0_\perp) \, | Xh \rangle \, \langle Xh | \, \bar{\psi}(0) \, | 0 \rangle \big|_{p_h^\perp = 0}$$

SCET Fragmentation Function

$$D_q^h(\frac{p_h^-}{\omega},\mu) = \pi\omega \int dp_h^+ \frac{1}{4N_c} \operatorname{Tr} \sum_X \not \!\!/ \!\!\!/ \langle 0 | \delta_{\omega,\bar{\mathcal{P}}} \delta_{0,\mathcal{P}_\perp} \chi_n(0) | Xh \rangle \langle Xh | \chi_n(0) | 0 \rangle$$

SCET Jet Function

$$J(p^{\mu}) = \frac{1}{8\pi N(\bar{n} \cdot p)} \sum_{X} \int d^{4}x e^{ipx} \operatorname{Tr}\left[\langle \Omega | \bar{\chi}_{n}(x) | X_{n} \rangle \langle X_{n} | \bar{m}\chi_{n}(0) | \Omega \rangle\right]$$

SCET Fragmenting Jet Function

$$\mathcal{G}_{q,\mathrm{bare}}^h(s,z) = \int\!\mathrm{d}^4y\,e^{\mathrm{i}k^+y^-/2}\,\int\!\mathrm{d}p_h^+\,\sum_X\,\frac{1}{4N_c}\,\mathrm{tr}\,\Big[\frac{\vec{n}}{2}\big\langle 0\big|[\delta_{\omega,\overline{\mathcal{P}}}\,\delta_{0,\mathcal{P}_\perp}\chi_n(y)]\big|Xh\big\rangle\big\langle Xh\big|\bar{\chi}_n(0)\big|0\big\rangle\Big]$$