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Course Plan and Position

Event generators: model and understand (LHC) events

Complementary to the “textbook” picture of particle physics,
since event generators are close to how things work “in real life”.

Lecture 1 Introduction, generators, Monte Carlo methods
Lecture 2 Parton showers: final and initial
Lecture 3 Multiparton interactions, other soft physics
Lecture 4 Hadronization, generator news, conclusions

+ 2 lectures on “Matching and merging” by Simon Plätzer

+ 3 hands-on tutorials with event generators

Learn more:

A. Buckley et al., “General-purpose event generators for LHC
physics”, Phys. Rep. 504 (2011) 145 [arXiv:1101.2599[hep-ph]]
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The structure of an event – 1

Warning: schematic only, everything simplified, nothing to scale, . . .

p
p/p

Incoming beams: parton densities
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The structure of an event – 2

p
p/p

u
g

W+

d

Hard subprocess: described by matrix elements
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The structure of an event – 3
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Resonance decays: correlated with hard subprocess
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The structure of an event – 4
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Initial-state radiation: spacelike parton showers
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The structure of an event – 5
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Final-state radiation: timelike parton showers
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The structure of an event – 6
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Multiple parton–parton interactions . . .
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The structure of an event – 7
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. . . with its initial- and final-state radiation
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The structure of an event – 8

Beam remnants and other outgoing partons
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The structure of an event – 9

Everything is connected by colour confinement strings
Recall! Not to scale: strings are of hadronic widths
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The structure of an event – 10

The strings fragment to produce primary hadrons
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The structure of an event – 11

Many hadrons are unstable and decay further
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The structure of an event – 12





These are the particles that hit the detector
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A tour to Monte Carlo

. . . because Einstein was wrong: God does throw dice!
Quantum mechanics: amplitudes =⇒ probabilities
Anything that possibly can happen, will! (but more or less often)

Event generators: trace evolution of event structure.
Random numbers ≈ quantum mechanical choices.
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The Monte Carlo method

Want to generate events in as much detail as Mother Nature
=⇒ get average and fluctutations right

=⇒ make random choices, ∼ as in nature

σfinal state = σhard process Ptot,hard process→final state

(appropriately summed & integrated over non-distinguished final states)

where Ptot = Pres PISR PFSR PMPIPremnants Phadronization Pdecays

with Pi =
∏

j Pij =
∏

j

∏
k Pijk = . . . in its turn

=⇒ divide and conquer

an event with n particles involves O(10n) random choices,
(flavour, mass, momentum, spin, production vertex, lifetime, . . . )
LHC: ∼ 100 charged and ∼ 200 neutral (+ intermediate stages)

=⇒ several thousand choices
(of O(100) different kinds)
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Why generators?

Allow theoretical and experimental studies of
complex multiparticle physics

Large flexibility in physical quantities that can be addressed

Vehicle of ideology to disseminate ideas
from theorists to experimentalists

Can be used to

predict event rates and topologies
⇒ can estimate feasibility

simulate possible backgrounds
⇒ can devise analysis strategies

study detector requirements
⇒ can optimize detector/trigger design

study detector imperfections
⇒ can evaluate acceptance corrections
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The workhorses: what are the differences?

Herwig, PYTHIA and Sherpa offer convenient frameworks
for LHC physics studies, covering all aspects above,
but with slightly different history/emphasis:

PYTHIA (successor to JETSET, begun in 1978):
originated in hadronization studies,
still special interest in soft physics.

Herwig (successor to EARWIG, begun in 1984):
originated in coherent showers (angular ordering),
cluster hadronization as simple complement.

Sherpa (APACIC++/AMEGIC++, begun in 2000):
had own matrix-element calculator/generator
originated with matching & merging issues.
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MCnet

Herwig
PYTHIA
Sherpa
MadGraph

Plugin:
Ariadne
DIPSY
HEJ

CEDAR:
Rivet
Professor
HepForge
LHAPDF
HepMC

EU-funded 2007–10,
2013–16, 2017–20

Generator development

Services to community

PhD student training

Common activities

Summer schools
2016: DESY (w. CTEQ)
2017: Lund, 3 - 7 July

Short-term studentships
(3 - 6 months).
Formulate your project!
Experimentalists welcome!

Nodes:
Manchester
CERN
Durham
Glasgow
Göttingen
Heidelberg
Karlsruhe
UC London
Louvain
Lund

Monash (Au)
SLAC (US)
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Other Relevant Software

Some examples (with apologies for many omissions):
Other event/shower generators: PhoJet, Ariadne, Dipsy, Cascade, Vincia

Matrix-element generators: MadGraph aMC@NLO, Sherpa, Helac,
Whizard, CompHep, CalcHep, GoSam

Matrix element libraries: AlpGen, POWHEG BOX, MCFM, NLOjet++,
VBFNLO, BlackHat, Rocket

Special BSM scenarios: Prospino, Charybdis, TrueNoir

Mass spectra and decays: SOFTSUSY, SPHENO, HDecay, SDecay

Feynman rule generators: FeynRules

PDF libraries: LHAPDF

Resummed (p⊥) spectra: ResBos

Approximate loops: LoopSim

Jet finders: anti-k⊥ and FastJet

Analysis packages: Rivet, Professor, MCPLOTS

Detector simulation: GEANT, Delphes

Constraints (from cosmology etc): DarkSUSY, MicrOmegas

Standards: PDG identity codes, LHA, LHEF, SLHA, Binoth LHA, HepMC

Can be meaningfully combined and used for LHC physics!
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Putting it together

Standardized interfaces essential!
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PDG particle codes

A. Fundamental objects

1 d 11 e− 21 g 32 Z′
0

39 G

2 u 12 νe 22 γ 33 Z′′
0

41 R0

3 s 13 µ− 23 Z0 34 W′+ 42 LQ
4 c 14 νµ 24 W+ 35 H0 51 DM0

5 b 15 τ− 25 h0 36 A0

6 t 16 ντ 37 H+ . . . . . .

add − sign for
antiparticle,
where appropriate

+ diquarks, SUSY,
technicolor, . . .

B. Mesons
100 |q1|+ 10 |q2|+ (2s + 1) with |q1| ≥ |q2|
particle if heaviest quark u, s, c, b; else antiparticle

111 π0 311 K0 130 K0
L 221 η0 411 D+ 431 D+

s

211 π+ 321 K+ 310 K0
S 331 η′

0
421 D0 443 J/ψ

C. Baryons
1000 q1 + 100 q2 + 10 q3 + (2s + 1)
with q1 ≥ q2 ≥ q3, or Λ-like q1 ≥ q3 ≥ q2

2112 n 3122 Λ0 2224 ∆++ 3214 Σ∗0

2212 p 3212 Σ0 1114 ∆− 3334 Ω−
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Les Houches LHA/LHEF event record

At initialization:

beam kinds and E ’s

PDF sets selected

weighting strategy

number of processes

Per process in initialization:

integrated σ

error on σ

maximum dσ/d(PS)

process label

Per event:

number of particles

process type

event weight

process scale

αem

αs

(PDF information)

Per particle in event:

PDG particle code

status (decayed?)

2 mother indices

colour & anticolour indices

(px , py , pz ,E ),m

lifetime τ

spin/polarization
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Detour: Monte Carlo techniques

“Spatial” problems: no memory/ordering

1 Integrate a function

2 Pick a point at random according to a probability distribution

“Temporal” problems: has memory

1 Radioactive decay: probability for a radioactive nucleus
to decay at time t, given that it was created at time 0

In reality combined into multidimensional problems:

1 Random walk (variable step length and direction)

2 Charged particle propagation through matter
(stepwise loss of energy by a set of processes)

3 Parton showers (cascade of successive branchings)

4 Multiparticle interactions (ordered multiple subcollisions)
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Integration and selection

Assume function f (x),
studied range xmin < x < xmax,
where f (x) ≥ 0 everywhere

Two connected standard tasks:

1 Calculate (approximatively)∫ xmax

xmin

f (x ′) dx ′

2 Select x at random according to f (x)

In step 2 f (x) is viewed as “probability distribution”
with implicit normalization to unit area,
and then step 1 provides overall correct normalization.
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Integral as an area/volume

Theorem

An n-dimensional integration ≡ an n + 1-dimensional volume∫
f (x1, . . . , xn) dx1 . . .dxn ≡

∫ ∫ f (x1,...,xn)

0
1 dx1 . . .dxn dxn+1

since
∫ f (x)
0 1 dy = f (x).

So, for 1 + 1 dimension, selection of x according to f (x) is
equivalent to uniform selection of (x , y) in the area

xmin < x < xmax, 0 < y < f (x).
Therefore∫ x

xmin

f (x ′) dx ′ = R

∫ xmax

xmin

f (x ′) dx ′

(area to left of selected x is uniformly
distributed fraction of whole area)
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Analytical solution

If know primitive function F (x) and know inverse F−1(y) then

F (x)− F (xmin) = R (F (xmax)− F (xmin)) = R Atot

=⇒ x = F−1(F (xmin) + R Atot)

Proof: introduce z = F (xmin) + R Atot. Then

dP
dx

=
dP
dR

dR

dx
= 1

1
dx
dR

=
1

dx
dz

dz
dR

=
1

dF−1(z)
dz

dz
dR

=
dF (x)

dx
dz
dR

=
f (x)

Atot
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Hit-and-miss solution

If f (x) ≤ fmax in xmin < x < xmax

use interpretation as an area

1 select
x = xmin + R (xmax − xmin)

2 select y = R fmax (new R!)

3 while y > f (x) cycle to 1

Integral as by-product:

I =

∫ xmax

xmin

f (x) dx = fmax (xmax − xmin)
Nacc

Ntry
= Atot

Nacc

Ntry

Binomial distribution with p = Nacc/Ntry and q = Nfail/Ntry,
so error

δI

I
=

Atot

√
p q/Ntry

Atot p
=

√
q

p Ntry
=

√
q

Nacc
<

1√
Nacc
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Importance sampling

Improved version of hit-and-miss:
If f (x) ≤ g(x) in
xmin < x < xmax

and G (x) =
∫

g(x ′) dx ′ is simple
and G−1(y) is simple

1 select x according to g(x)
distribution

2 select y = R g(x) (new R!)

3 while y > f (x) cycle to 1
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Multichannel

If f (x) ≤ g(x) =
∑

i gi (x),

where all gi “nice” (Gi (x) invertible)
but g(x) not

1 select i with relative probability

Ai =

∫ xmax

xmin

gi (x
′) dx ′

2 select x according to gi (x)

3 select y = R g(x) = R
∑

i gi (x)

4 while y > f (x) cycle to 1

Works since∫
f (x) dx =

∫
f (x)

g(x)

∑
i

gi (x) dx =
∑

i

Ai

∫
gi (x) dx

Ai

f (x)

g(x)
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Temporal methods: radioactive decays – 1

Consider “radioactive decay”:
N(t) = number of remaining nuclei at time t
but normalized to N(0) = N0 = 1 instead, so equivalently
N(t) = probability that (single) nucleus has not decayed by time t
P(t) = −dN(t)/dt = probability for it to decay at time t

Naively P(t) = c =⇒ N(t) = 1− ct.
Wrong! Conservation of probability
driven by depletion:
a given nucleus can only decay once

Correctly
P(t) = cN(t) =⇒ N(t) = exp(−ct)
i.e. exponential dampening
P(t) = c exp(−ct)

There is memory in time!
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Temporal methods: radioactive decays – 2

For radioactive decays P(t) = cN(t), with c constant,
but now generalize to time-dependence:

P(t) = −dN(t)

dt
= f (t) N(t) ; f (t) ≥ 0

Standard solution:

dN(t)

dt
= −f (t)N(t) ⇐⇒ dN

N
= d(lnN) = −f (t) dt

lnN(t)−lnN(0) = −
∫ t

0
f (t ′) dt ′ =⇒ N(t) = exp

(
−

∫ t

0
f (t ′) dt ′

)
F (t) =

∫ t

f (t ′) dt ′ =⇒ N(t) = exp (−(F (t)− F (0)))

Assuming F (∞) = ∞, i.e. always decay, sooner or later:

N(t) = R =⇒ t = F−1(F (0)− lnR)
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The veto algorithm: problem

What now if f (t) has no simple F (t) or F−1?
Hit-and-miss not good enough, since for f (t) ≤ g(t), g “nice”,

t = G−1(G (0)− lnR) =⇒ N(t) = exp

(
−

∫ t

0
g(t ′) dt ′

)
P(t) = −dN(t)

dt
= g(t) exp

(
−

∫ t

0
g(t ′) dt ′

)
and hit-or-miss provides rejection factor f (t)/g(t), so that

P(t) = f (t) exp

(
−

∫ t

0
g(t ′) dt ′

)
(modulo overall normalization), where it ought to have been

P(t) = f (t) exp

(
−

∫ t

0
f (t ′) dt ′

)
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The veto algorithm: solution

The veto algorithm

1 start with i = 0 and t0 = 0

2 i = i + 1

3 ti = G−1(G (ti−1)− lnR), i.e ti > ti−1

4 y = R g(t)

5 while y > f (t) cycle to 2

That is, when you fail, you keep on going from the time when you
failed, and do not restart at time t = 0. (Memory!)
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The veto algorithm: proof – 1

Study probability to have i intermediate failures before success:

Define Sg (ta, tb) = exp
(
−

∫ tb
ta

g(t ′) dt ′
)

(“Sudakov factor”)

P0(t) = P(t = t1) = g(t) Sg (0, t)
f (t)

g(t)
= f (t) Sg (0, t)

P1(t) = P(t = t2)

=

∫ t

0
dt1 g(t1)Sg (0, t1)

(
1− f (t1)

g(t1)

)
g(t) Sg (t1, t)

f (t)

g(t)

= f (t) Sg (0, t)

∫ t

0
dt1 (g(t1)− f (t1)) = P0(t) Ig−f

P2(t) = · · · = P0(t)

∫ t

0
dt1 (g(t1)− f (t1))

∫ t

t1

dt2 (g(t2)− f (t2))

= P0(t)

∫ t

0
dt1 (g(t1)− f (t1))

∫ t

0
dt2 (g(t2)− f (t2)) θ(t2 − t1)

= P0(t)
1

2

(∫ t

0
dt1 (g(t1)− f (t1))

)2

= P0(t)
1

2
I 2
g−f
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The veto algorithm: proof – 2

t1

t2
t1 = t2

0
0

t

t
Generally, i intermediate times
corresponds to i !
equivalent ordering regions.

Pi (t) = P0(t)
1

i !
I i
g−f

P(t) =
∞∑
i=0

Pi (t) = P0(t)
∞∑
i=0

I i
g−f

i !
= P0(t) exp(Ig−f )

= f (t) exp

(
−

∫ t

0
g(t ′) dt ′

)
exp

(∫ t

0
(g(t ′)− f (t ′)) dt ′

)
= f (t) exp

(
−

∫ t

0
f (t ′) dt ′

)
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The winner takes it all

Assume “radioactive decay” with two possible decay channels 1&2

P(t) = −dN(t)

dt
= f1(t)N(t) + f2(t)N(t)

Alternative 1:
use normal veto algorithm with f (t) = f1(t) + f2(t).
Once t selected, pick decays 1 or 2 in proportions f1(t) : f2(t).

Alternative 2:

The winner takes it all

select t1 according to P1(t1) = f1(t1)N1(t1)
and t2 according to P2(t2) = f2(t2)N2(t2),
i.e. as if the other channel did not exist.
If t1 < t2 then pick decay 1, while if t2 < t1 pick decay 2.

Equivalent by simple proof.
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Multijets – the need for Higher Orders

2 → 6 process or 2 → 2 dressed up by bremsstrahlung!?
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Perturbative QCD

Perturbative calculations ⇒ Matrix Elements.
Improved calculational techniques allows
? more legs (= final-state partons)
? more loops (= virtual partons not visible in final state)
but with limitations, especially for loops.

Parton Showers:
approximations to matrix element behaviour,
most relevant for multiple emissions at low energies and/or angles.
To be described next.

Matching and Merging:
methods to combine matrix elements (at high scales)
with parton showers (at low scales),
with a consistent and smooth transition.
To be covered in lectures by Simon Plätzer.
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In the beginning: Electrodynamics

An electrical charge, say an electron,
is surrounded by a field:

For a rapidly moving charge
this field can be expressed in terms of
an equivalent flux of photons:

dnγ ≈
2αem

π

dθ

θ

dω

ω

Equivalent Photon Approximation,
or method of virtual quanta (e.g. Jackson)
(Bohr; Fermi; Weiszäcker, Williams ∼1934)

e
−

e
−

e
−

e
−

.

θ: collinear divergence, saved by me > 0 in full expression.

ω: true divergence, nγ ∝
∫

dω/ω = ∞, but Eγ ∝
∫

ω dω/ω finite.

These are virtual photons: continuously emitted and reabsorbed.
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In the beginning: Bremsstrahlung

When an electron is kicked into a new direction,
the field does not have time fully to react:

e
−

Initial State Radiation (ISR):
part of it continues ∼ in original direction of e
Final State Radiation (FSR):
the field needs to be regenerated around outgoing e,
and transients are emitted ∼ around outgoing e direction

Emission rate provided by equivalent photon flux in both cases.
Approximate cutoffs related to timescale of process:
the more violent the hard collision, the more radiation!
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the field needs to be regenerated around outgoing e,
and transients are emitted ∼ around outgoing e direction

Emission rate provided by equivalent photon flux in both cases.
Approximate cutoffs related to timescale of process:
the more violent the hard collision, the more radiation!
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In the beginning: Exponentiation

Assume
∑

Eγ � Ee such that energy-momentum conservation is
not an issue. Then

dPγ = dnγ ≈
2αem

π

dθ

θ

dω

ω
is the probability to find a photon at ω and θ,
irrespectively of which other photons are present.

Uncorrelated ⇒ Poissonian number distribution:

Pi =
〈nγ〉i

i !
e−〈nγ〉

with

〈nγ〉 =

∫ θmax

θmin

∫ ωmax

ωmin

dnγ ≈
2αem

π
ln

(
θmax

θmin

)
ln

(
ωmax

ωmin

)
Note that

∫
dPγ =

∫
dnγ > 1 is not a problem:

proper interpretation is that many photons are emitted.

Exponentiation: reinterpretation of dPγ into Poissonian.
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QED: Fixed Order Perturbation Theory

Order-by-order perturbative ME calculation contains
fully differential distributions of multi-γ emissions,

but integrating the main contributions (leading logs) gives

σ0γ

σ0
≈ 1 −αemN +α2

em
N2

2 −α3
em

N3

6

σ1γ

σ0
≈ +αemN −α2

emN2 +α3
em

N3

2

σ2γ

σ0
≈ +α2

em
N2

2 −α3
em

N3

2

σ3γ

σ0
≈ +α3

em
N3

6

which is the expanded form of the Poissonian Pi = 〈nγ〉i e−〈nγ〉 /i !
with 〈nγ〉 = αemN.

For practical applications two different regions
• large θ, ω ⇒ rapidly convergent perturbation theory
• small θ, ω ⇒ exponentiation needed, even if approximate
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So how is QCD the same?

A quark is surrounded by a gluon field

dPg = dng ≈
8αs

3π

dθ

θ

dω

ω

i.e. only differ by substitution αem → 4αs/3.

An accelerated quark emits gluons
with collinear and soft divergences,
and as Initial and Final State Radiation.

e−

q

Typically 〈ng〉 =
∫

dng � 1 since αs � αem

⇒ even more pressing need for exponentiation.
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So how is QCD different?

QCD is non-Abelian, so a gluon
is charged and is surrounded
by its own field:
emission rate 4αs/3 → 3αs,
field structure more complicated,
interference effects more important.

αs(Q
2) diverges for Q2 → Λ2

QCD,

with ΛQCD ∼ 0.2 GeV = 1 fm−1.

Confinement: gluons below ΛQCD

not resolved ⇒ de facto cutoffs..

Unclear separation between
“accelerated charge” and “emitted radiation”:
many possible Feynman graphs ≈ histories.
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