Spectroscopy Methods & Techniques at PETRA III

Wolfgang Drube DESY

DESY/European XFEL - Turkey Workshop, Jan. 26, 2016

Examples of PETRA III spectroscopy techniques

- X-ray absorption spectroscopy
 - transmission
 - fast scanning
 - fluorescence detection

Inelastic X-ray scattering

- resonant
- non-resonant
- Photoelectron spectroscopy
 - soft X-rays
 - hard X-rays

Examples of PETRA III spectroscopy techniques

X-ray absorption spectroscopy

XAFS is a key technique in materials science and chemistry

Two "brand new" XAFS beamlines at the PETRA III extension (north)

Currently under commissioning

X-ray absorption spectroscopy

X-ray absorption beamline P65

 $4 - 44 \text{ keV} / \text{ beamsize: } 1 \times 1 \text{ mm}^2$ flux : > $10^{11} \text{ s}^{-1} (10^{-4} \text{ BW})$ 1 - 5 mins per scan (~1200 eV)

Accessible Elements: K-edges: Ca – Nd L-edges: Sb - Uuo Easy operating procedures also for inexperienced users

- Focus on in-situ experiments:
- o Catalytical chemistry
- o Energy storage / batteries
- o Material science

...

o Environmental and geoscience

In-situ cell (capillary) with oven and gas supply during first user experiments (Nov. 2015)

Contact: Edmund Welter January 26, 2016

X-ray absorption beamline P64

energies: (2.4)4 – 50 keV flux: ~10¹³ ph/s (tuned undulator) ~10¹² ph/s (tapered undulator) resolution: 1.4•10⁻⁴ to 5•10⁻⁵ flexible beam size: ~50 μm – 1 mm scan times: 20ms (QEXAFS) – 300s 100-element Ge-detector (ΔE <260eV) high-resolution emission spectrometer

Two cryo monochromators:

o fast scanning conventional XAFS o QEXAFS (10-50Hz) undulator tapering

High flux applications:

o XAFS of diluted systems o time resolved XAFS (ms) o high-resolution (resonant) X-ray emission spectroscopy (RXES, RIXS, HERFD-XAFS)

Diluted systems: fluorescence detection

ms time-resolved studies: QEXAFS

J. Stötzel et al, J. Phys. Chem. C 116, 599 (2012)

Oscillatory behavior, suitable time resolution needed to monitor intermediate states

Contact: Wolfgang Caliebe

Federal Ministry of Education and Research

High-resolution fluorescence detection

o High-resolution (resonant) X-ray emission spectroscopy o emission line fine structure (HERFD-XAFS) oxidation states, ligands, site-selectivity, ...

Up to 16 analyzer Si-crystals (111), (311), (400), (220) cylindrically bent

Two area detectors (Lambda) emission spectrum $\Delta E = 50-150 \text{ eV}$

SPONSORED BY THE

Federal Ministry

of Education and Research

BMBF funded (M. Bauer, Univ. Paderborn)

Example: Co nanoparticles with CoOx-shell

Energy Transfer [eV]

T.J. Kühn et al, Appl. Organometal. Chem. 25, 577-584 (2011)

7704 7706 7708 7710 7712 7714 7716 Excitation Energy [eV]

Kβ fluorescence as a function of excitation energy in the pre-edge region (RIXS-plane), reference sample CoO ("RXES-plane")

Kβ fluorescence of Co-foil, completely oxidized Co nanoparticles (Co-nano-ox), and of Co-core CoOxshell nano-particles, and fractions of Co-foil and Conano-ox in Co-core CoOx-shell particles.

Examples of PETRA III spectroscopy techniques

Inelastic X-ray scattering - resonant → previous example - non-resonant

Non-resonant inelastic (Raman) X-ray scattering

P01 X-ray Raman scattering instrument

X-ray Raman scattering under extreme conditions

X-ray Raman scattering on liquids

Wolfgang Drube | DESY | January 26, 2016

Variable Polarization XUV Beamline P04

Photon energy range: Resolving power: Photon flux: Spot size at sample (h x v): Polarization (switching rate): (<100) 250 - 3000 eV > 10,000 > 10¹² photons/s 10 μm x 10 μm circular, linear hor./vert (<0.1 Hz)

Contact: Jens Viefhaus

P04 User Endstation ASPHERE III for ARPES

P04 User Endstation Spin-resolved ARPES

TaS₂: CDW induced Ta 4f splitting

excited with circularly polarized X-rays

Using hard X-rays for XPS (~3 - 12 keV)

fast electrons → high volume sensitivity e.g. to study chemical & electronic properties of "device relevant" interfaces

HAXPES & nano-layered materials

- energy materials (conversion, storage)
- electronic materials (e.g. non-volatile memory)
- spintronics
- sensors
- catalysts

Read head

Wolfgang Drube | DESY | January 26, 2016

devices multi (nm)-layered structures with functional interfaces

HAXPES

"probing depth" nicely matches typical multilayer stack heights

P09 (P22) HAXPES instrument

7926.3 eV Si(444) Au VB

Benchmark spectra at 7926 eV

 $\Delta E \sim 50 \text{ meV}$ (photons)

 $\Delta E \sim 110 \text{ meV}$ (total)

2m spectroscopy X-ray undulator Photon flux ~ $2x10^{13}$ s⁻¹ into $\Delta E/E = 10^{-4}$ variable photon polarization

• SPECS Phoibos 225 HV (10.5 kV) with wide angle lens

- Delay-line detector (65 mm MCPs)
- 5-axis manipulator LHe cooling down to < 15 K
- sample mount with 4 electrical contacts
- Mg/Cr X-ray twin anode (1.2/ 5.4 keV) for offline work
- EELS up to 20 keV

SPONSORED BY THE

and Research

Federal Ministry of Education

Sputter gun / flood gun

Contact: Wolfgang Drube | DESY | January 26, 2016

Next: Multichannel spin detection for HAXPES

Resolving lateral nano structures: HAXPEEM

C.M. Schneider et al.

full field electron imaging: energy filtered PEEM

Resolving lateral nano structures: HAXPEEM

Electronic & magnetic properties of buried layers

Magnetic properties of thin buried layers: core level magnetic dichroism

40000 GdFe T = 100 K35000 AIG; (2 mm) Intensity (Counts/s) GdFe (30 nm) 30000 MgO buffer (10 nm) 25000 20000 MgO (001) substrate 15000 Gd 3d MCD -1240 -1230 -1220 -1210 -1200 -1190 -1180 -1170 Binding energy (eV) hv = 5.9 keV8000 $\Delta E = 150 \text{ meV}$ 6000 Difference (Coun 4000 2000 -2000 -4000 -1240 -1230 -1220 -1210 -1200 -1190 -1180 -1170 Binding energy (eV) H.J. Elmers et al, PRB 88, 174407 (2013)

Band alignment at the Gd/Al₂O₃ interface in Fe/Gd/Al₂O₃/Si heterostrucures

PETRA III is an excellent source for X-ray spectroscopy techniques

Wolfgang Drube | DESY | January 26, 2016