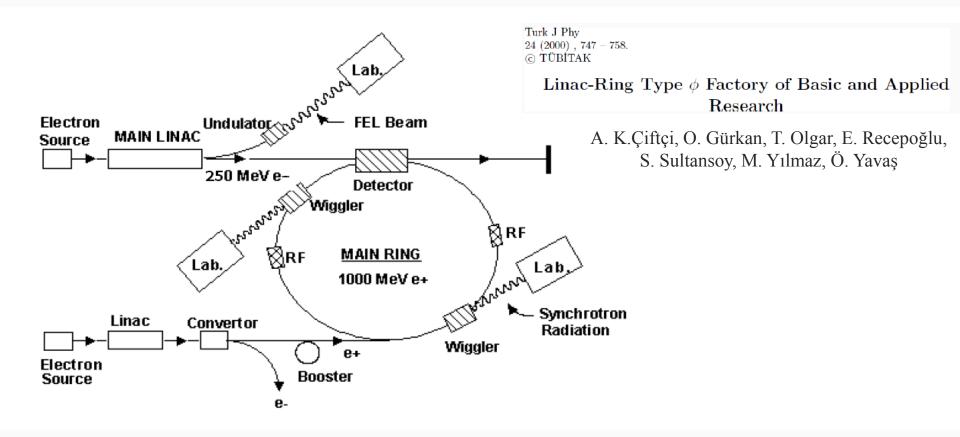
Deutsch-Türkischer Wissenschaftstag Alman-Türk Bilim Günü

# **Overview Turkish Projects TAC / TARLA**


#### Avni Aksoy

on behalf of TAC team Ankara University Institute of Accelerator Technologies



## TAC was born

- The TAC project was proposed in 2000's as linac-ring type  $e^+-e^-$  collider with 1 GeV center of mass energy as  $a \Phi$  -factory.
- Additionally in the proposal ;
  - ► Electron linac of the complex maybe used to drive SASE undulators
  - ► Positron ring of the complex may be used as SR source.





## **Project Phases**

- Ist phase: Preliminary phase (1997-2001)
  - ► A preliminary report Report in 2001 has been reported
    - Turkish Accelerator Center (TAC) Project was proposed
- Ind phase: Feasibility Report (2002-2005)
  - ► A Feasibility Report in 2005 has been reported
    - Change from Phi factory to Charm factory
    - Main parameters of the proposed facilities
    - types and technologies of accelerators
    - research potential of proposed facilities of TAC
- 3rd phase (current phase): First Facility (2006 ...)
  - Started in 2006 as collaboration of 12 Turkish universities under the coordination of Ankara University
  - ► Goal of the phase
    - Establishment of The Institute of Accelerator Technologies (IAT)
    - Establishment of (Oscillator mode IR FEL & Bremsstrahlung) TARLA Facility
    - Completing the Conceptual/Technical Design Report of TAC Synchrotron Radiation Facility
    - Completing the Conceptual/Technical Design Reports of TAC SASE FEL, Proton Accelerator
    - Writing Feasibility Report of TAC Particle Factory.

## **TAC** collaboration

- TAC is an Inter University Collaboration
- Project Team: 78 staf with PhD + 78 graduate students and engineers

#### Ankara University





Gazi University

İstanbul University





Uludağ University

Dumlupnar University





Osmangazi University

#### Boğaziçi University





Doğuș University

Erciyes University



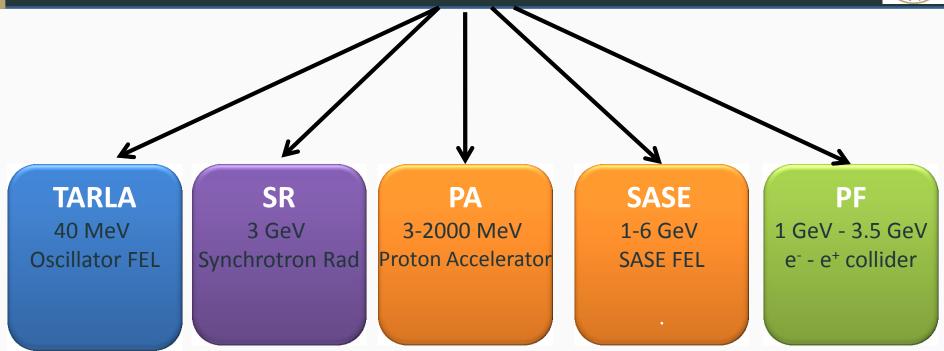


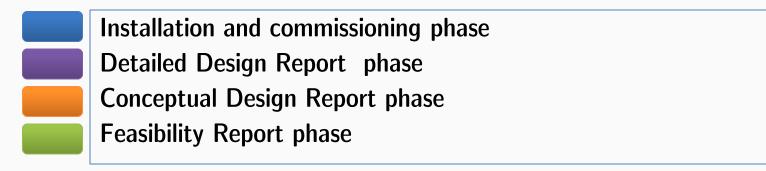
Süleyman Demirel Uni.

Niğde University





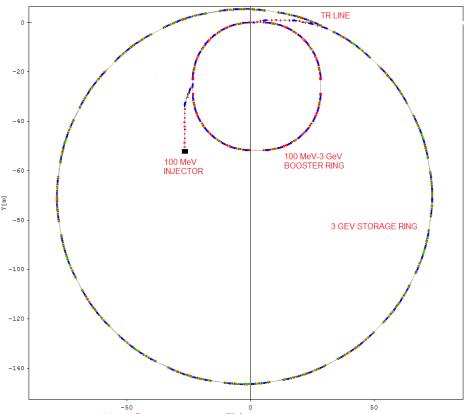

Gebze Technical University




## **TAC** sub-projects

## TAC Project

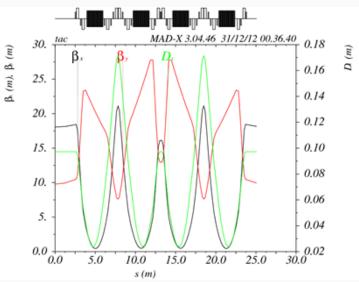







## Proposed Light sources of TAC SR & SASE/Seeded FEL

## TAC SR source






#### Main Cell of Storage Ring

- Four bending magnet of each 2 m length and 5° deflection angle
- 16 quadrupole magnets (4 different type)
- 5 family of sextupoles are placed along the main cell to correct the chromaticity
- The ring consist of 18 main cells.
- The length of straight sections between cells are 5 m

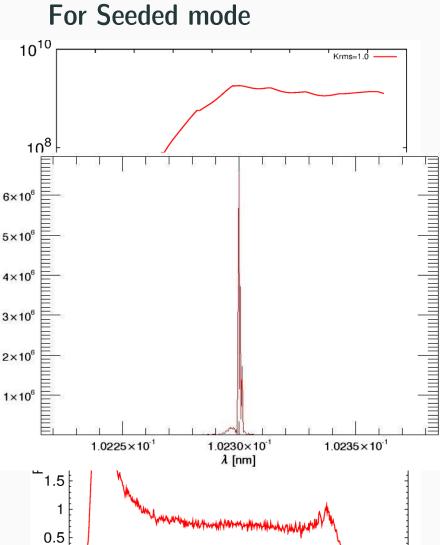
- The design Goals
  - ► 3 GeV electron beam energy.
  - ► Low emittance for high brillance
  - Short circumference
  - Long lifetime
  - High dynamical aperture
- Sections
  - 100 MeV Injector (standard S band linac)
  - ▶ 0.10 → 3 GeV Booster Ring (500 MHz Multi-cel structure)
  - ► 3 GeV SR Ring (500 MHz single cell)



## TAC SR source






## TAC SASE FEL



| S-Band based inject                        | tor + X-Band                                            | ba    | Parameter              | Unit | Parameter           |
|--------------------------------------------|---------------------------------------------------------|-------|------------------------|------|---------------------|
| Gun İnjector BC1                           | Linac1 BC2 L                                            | _ina  | Beam energy            | GeV  | 6                   |
|                                            |                                                         |       | Bunch charge           | рС   | 250                 |
| S-band S-band X-band                       | X-band                                                  | X-bar | Electron Energy        | GeV  | 6                   |
| 1.5 Cell ~20MV/m ~65MV/m<br>~100MV/m _075m | ~65MV/m ~                                               | GENAN | Emittance              | μm   | <0.5                |
| Modulator                                  | 5                                                       |       | Peak Current           | kA   | 3                   |
| Klystron                                   | 4                                                       |       | Energy Spread (sliced) | %    | 0.01                |
|                                            | amod 2                                                  |       | Undulator Period       | mm   | 15                  |
| RF Pulse<br>Compressor                     | 0 500 1×10 <sup>3</sup> 1.5×10 <sup>3</sup>             |       | FEL wavelength         | nm   | 0.1                 |
| Element                                    | 0 500 1×10 <sup>3</sup> 1.5×10 <sup>3</sup><br>time, ns |       | Und. Strength          | #    | 1                   |
| TE01,90° bend                              | Inline RF distribution netwo                            | ork   | Mean Und Beta          | m    | 15                  |
| RF transfer line                           |                                                         |       | Sat. Length            | m    | ~60                 |
| Beam pine                                  |                                                         |       | Sat. Power             | GW   | ~1                  |
| Beam pipe ->-                              |                                                         |       | Pulse Length           | fs   | ~15                 |
| Quadrupole                                 | re î<br>Girder fram                                     | ne    | Photons/Pulse          | #    | ~5x10 <sup>10</sup> |

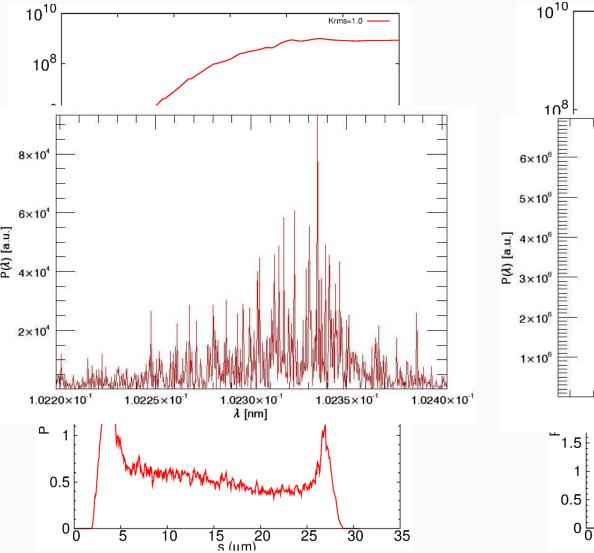
### Sample FEL simulation for 1 Å FEL

(FODO type of lattice housing 2x4m undulator) For SASE mode



15 2 s (um)

20


5

10

25

30

35



## **TARLA Project**

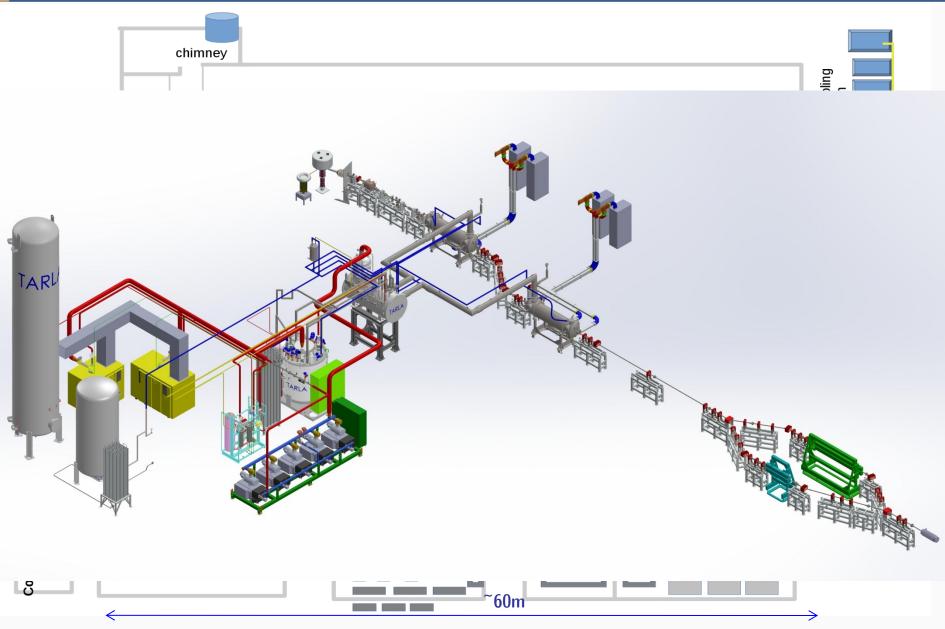




- TARLA project which is essentially one of the sub-project of national project (TAC) has been coordinated by Ankara University since 2006.
- TARLA facility is in the same place with the Institute of Accelerator Technologies (IAT) of Ankara University (located in Gölbası, 15 km south of Ankara) and the main role of IAT is to coordinate TARLA studies.
- The institute which is 4 years old is the first institute established in Turkey as research in the fields of accelerators and related topics
- We have 16 full-time employee in the institute (12 technical, 4 administrative)
- About 5 part time collaborator from different universities

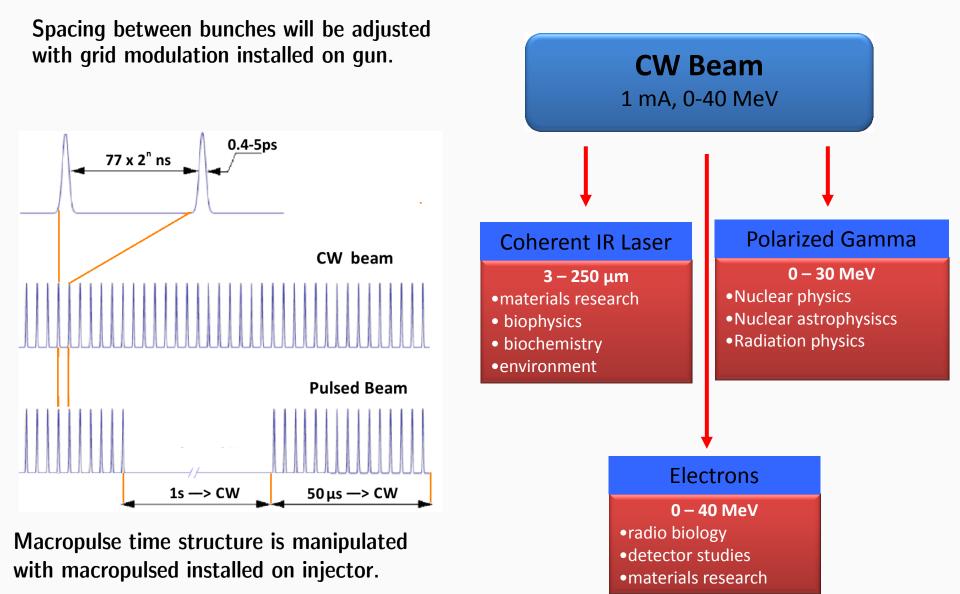
## Scope of TARLA




Constructing accelerator based research facility in order to serve our country and our region within the frame of Turkish Accelerator Center Project.

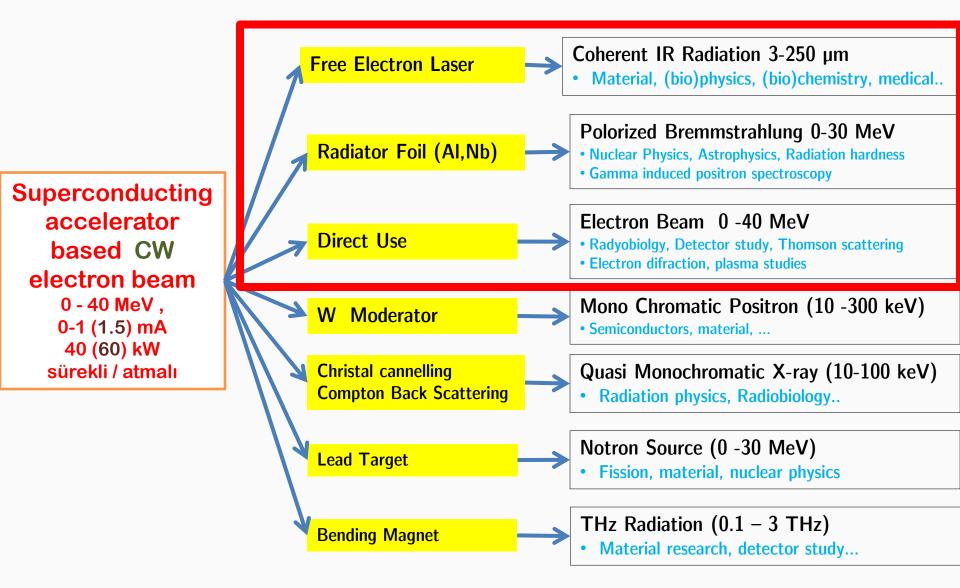
#### □ In TARLA facility we propose;

- To generate Free Electron Laser between 3-250 µm using 15-40 MeV electron beam and two different optical resonator system housing two different undulators with 25 mm and 90 mm period length
- To generatre Bremsstrahlung radiation using 0-30 MeV electron beam and three different radiator-colimator setup and study nuclear physics
- To use 0-40 MeV electron directly in order to make fixed target experiments


## TARLA layout

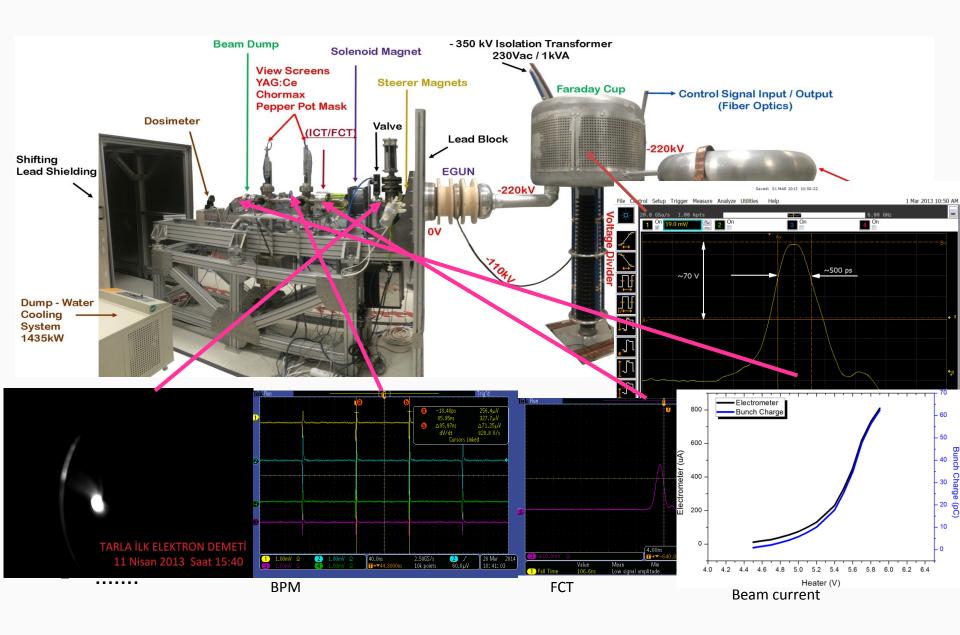





### **TARLA Electron Beam**

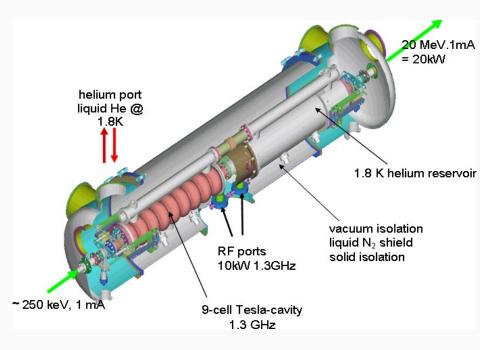





## Research Potential of TARLA



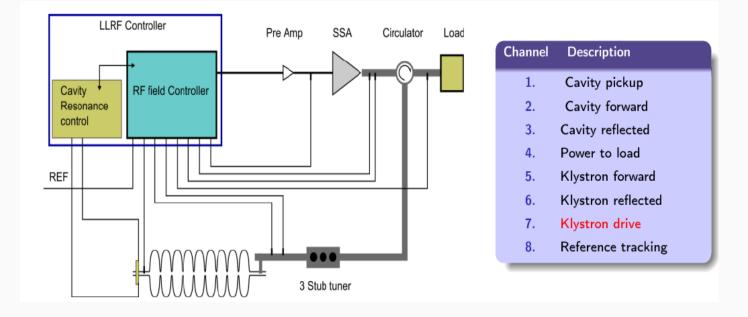



#### Electron gun test setup





#### **TARLA Superconducting accelerating module**

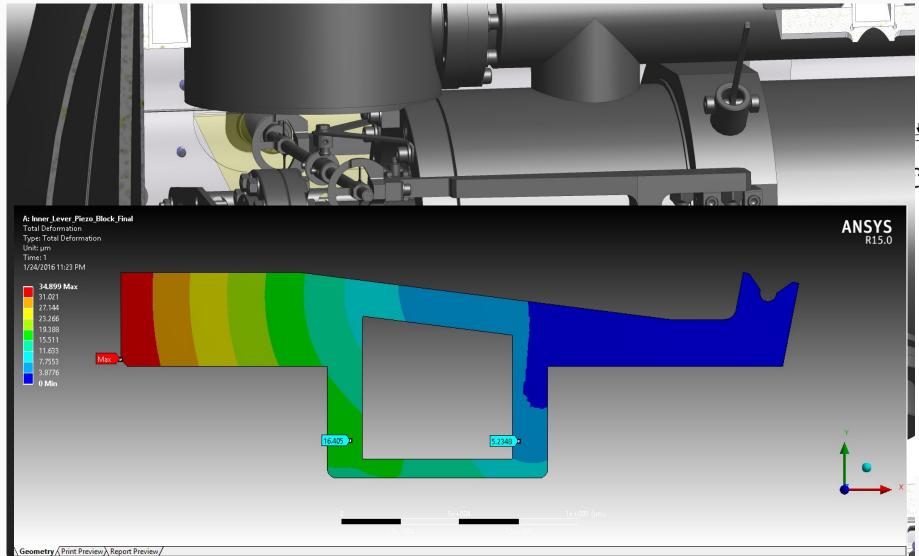

- Super conducting RF accelerating modules is being manufactured by Research instruments (Contract in 2012 Oct)
- This module is compact and houses two TESLA cavities It is designed for continuous operation with accelerating gradient up to 15 MV/m.
- The cryostat design has been developed by ELBE team (HZDR) and is used under a license agreement.
- Modules will be delivered by the mid of 2016



| Module Parameters                         |                                               |            |
|-------------------------------------------|-----------------------------------------------|------------|
| Frequency (@ 2K)<br>Tuning range          | $\begin{array}{c}1300\pm0.05\\120\end{array}$ | MHz<br>kHz |
| External Q of input couplers              | $(1.2 \pm 0.2) 	imes 10^7$                    |            |
| External Q of HOM couplers                | $> 5 \times 10^{11}$                          |            |
| Accelerating voltage / module             | >20                                           | MV         |
| Total cryogenic losses at 20 MV (@ cw)    | < 75                                          | W          |
| Power coupler performance (standing wave) | <u>≥8</u>                                     | kW         |

# DESY µTCA LLRF controller @ TARLA






- Based on MoU with DESY and XFEL we develope LLRF control system of TARLA together with DESY MSK group.
- We are going to sign with DESY contract/addendum soon for the deliverables of;
  - ► Field controller
  - heater controller
  - stepper motor driver
  - ► piezo controller
- Contract issues are continuing..

#### Change on TARLA tuning system with DESY support



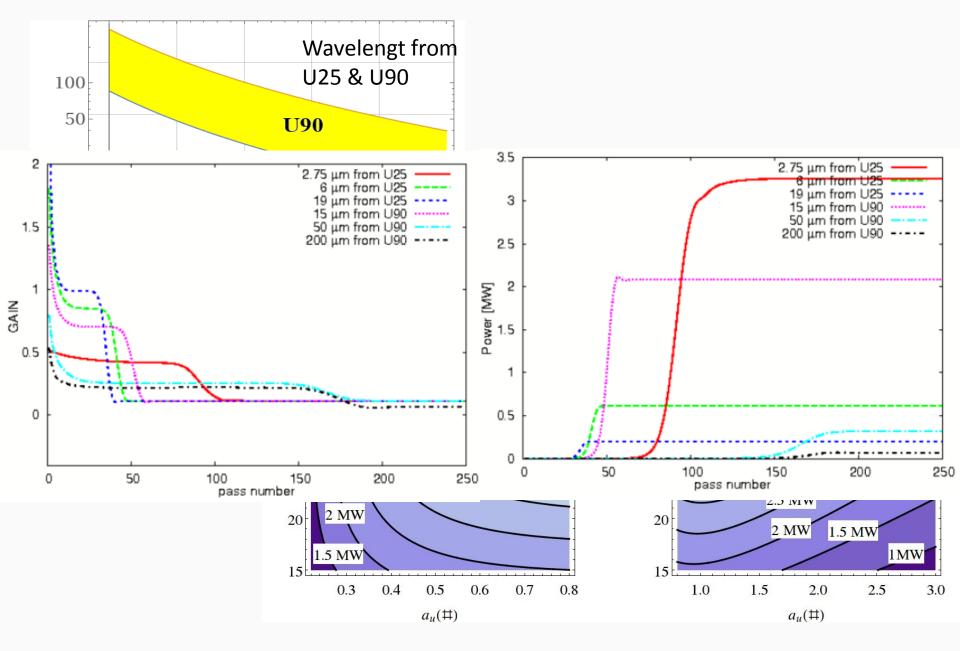
57



## Helyum Plant






### **TARLA Electron Beam Parameters**

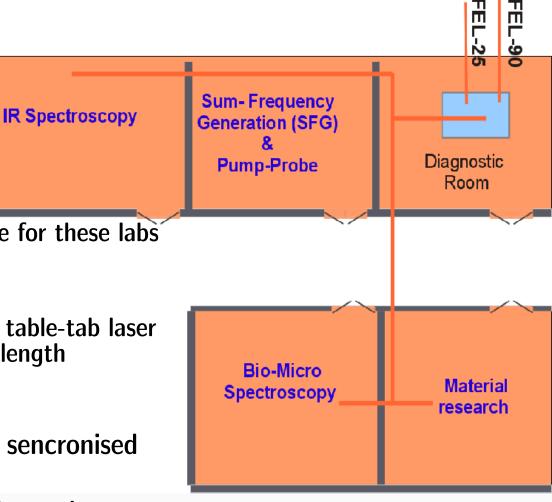


| Parameter                   | Unit    | Base                | Upgrade            |
|-----------------------------|---------|---------------------|--------------------|
| Beam Energy                 | MeV     | 10-40               | 10-40              |
| Max average beam current    | mA      | 1                   | 1.5                |
| Max bunch charge (@ 13 MHz) | рС      | 77                  | 115                |
| Horizontal emittance        | mm.mrad | < 15                | < 16               |
| Vertical emittance          | mm.mrad | < 12                | <13                |
| Longitudinal emittance      | keV.ps  | < 85                | <100               |
| Bunch lenght                | Ps      | 0.4-6               | 0.4-6              |
| Bunch repetition            | MHz     | 13                  | 13-26              |
| Macropulse duration         | μs      | $50 \rightarrow CW$ | 50→CW              |
| Macropulse repetition       | Hz      | $1 \rightarrow CW$  | $1 \rightarrow CW$ |

## FEL performance

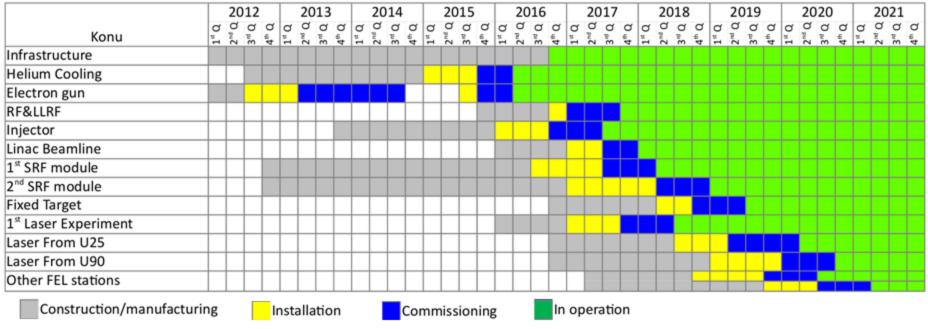





## FEL Parameters of TARLA



|                      | Parameter                          | Unit | U25      | U90     |  |
|----------------------|------------------------------------|------|----------|---------|--|
| LTS                  | Period Length                      | mm   | 25       | 90      |  |
| ers                  | Number of Poles                    | #    | 60       | 40      |  |
| nete                 | Туре                               | #    | Planar   | Planar  |  |
| arar                 | Pole Material                      | #    | NdFeB    | NdFeB   |  |
| Resonator Parameters | Undulator Strength                 | #    | 0.25-0.7 | 0.8-2.4 |  |
| ato                  | Minimum gap                        | mm   | 15       | 30      |  |
| son                  | Resonator Length                   | m    | 11.53    | 11.53   |  |
| Re                   | Curveture of mirrors $(R_1 = R_2)$ | m    | 5.86     | 6.32    |  |
|                      | Outcoupling hole radius            | mm   | TBD      | TBD     |  |
|                      | Wavelength                         | μm   | 3-19     | 18-250  |  |
|                      | Micropulse repetition              | MHz  | 13       | 13      |  |
| net∈                 | Micropulse Length                  | ps   | 0.5-10   | 0.5-10  |  |
| Pai                  | Maximum Peak Power                 | MW   | ~5       | 2.5     |  |
|                      | Maximum Average Power              | W    | 100      | 50      |  |
|                      | Max Pulse energy                   | μJ   | ~10      | ~8      |  |
| La                   | Macropulse duration                | μm   | 40-CW    | 40-CW   |  |
|                      | Macropulse Repetition              | Hz   | 10-CW    | 10-CW   |  |


## **Proposed FEL User-Stations**

- Proposed FEL stations are:
  - ► IR spectroscopy lab.
  - ► SFG-PP lab.
  - Bio-Micro Spectroscopy lab.
  - Material research lab.
- Main FEL parameters are available for these labs
  - ► wavelength range: 3-250 m
  - ► Average FEL power: 1-100 W
- Each room will be occuppied with table-tab laser sources with 700 – 1000 nm wavelength
  - ► Ti-sapphire laser
  - Nd:Yag laser
- FEL and external lasers will be sencronised
   Δσ<100 fs</li>
- The rooms will have class 1000 standart



## Conclusion-TARLA

- TARLA is the first step of TAC project and will be the first FEL user facility in Turkey and around our region.
- The facility will give opportunity to scientists and industry to make research about material biotechnology optics semiconductors medicine chemistry and



► We expect to get first lasing by 2019.

## Conclusions-TAC

- Turkey has ambitions to build electron and proton accelerators to strengthen her scientific infrastructure.
  - ► In this frame, collaboration with German Institutes play very crucial role and we want more closer collaboration for proposed facilities with German industry, also.
- It is expected that TAC will be officially defined as a National Research
  - Research Center by new law in 2014; management, financial and personnel structure will be reorganized. (We already started negoations with ministry)
- We have a road map for proposed TAC facilities up to 2030.
- TAC collaboration aims to accomplish the following steps in next years
  - Make more collaboration with DESY for accelerator R&D
  - ► Join Euro XFEL project as a member state
  - ► Formal involvement in DESY-PETRA-III scientific and technical activities
- These activities will boost our efforts to build large scale scientific infrastructure in Turkey



|          | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 |
|----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| TARLA    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| SR       |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| SASE FEL |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| LE PA    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| HE PA    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| PF       |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |

 Feasibility
 CDR
 TDR
 Build. and Installation
 In operation

- **TARLA** :Turkish Accelerator and Radiation Laboratory in Ankara (Oscillator FEL)
- **LE PA** :Low Energy Proton Accelerator
- **HE PA** :High Energy Proton Accelerator
- **SR** :Synchrotron Radiation
- **SASE FEL** :Self Amplified Spontaneous Emission Free Electron Laser
- **PF** : Particle Factory (Super Charm Factory)

## Law for Research Centers



- Law for Research Infrastructure published in July 2014. The objective is to define issues related to support to ensure a more effective use of research infrastructure and their sustainability. it brings;
  - ► Legal entity
    - Independent from many governmental agencies, direct connection to ministry or large coordination unit.
  - Effective coordination
    - It will have own management structure including, industry, university, ministry, advisory committee and director.
    - Opportunity to hire professional administrator
  - ► Human resource; opportunities
    - to hire high qualified staff with high salary
    - to make short time contract with employee
    - to hire foreign employee
  - Sustainable financing
    - Be able to have its own revenue and expenditure
    - Financed for operation from the central budget based on performance
    - Tax exemptions
  - Collaboration with related industry, institutions (also with foreign institutions)



#### Thank you for your attention!

#### Dikkatiniz için teşekkür ederim!

#### Danke für Ihre Aufmerksamkeit!