

Prompt photons + jet in DIS

P. Bussey, O. <u>Hlushchenko</u>, O. Kuprash,

D. Saxon, I. Shyrma,

I. Skillicorn, N. Zhmak

November 2015 ZAF meeting

Outline:

- Observables to study
- Control plots
- Purity
- Acceptance
- Cross sections
- Conclusion

Observables to study

•
$$x_{\gamma} = \frac{\sum_{jet,\gamma}(E - p_z)}{2y_{Bj}E_e}$$
 • $\Delta \eta_{\gamma,jet} = \eta_{jet} - \eta_{\gamma}$ • $\Delta \eta_{\gamma,e} = \eta_e - \eta_{\gamma}$
• $x_p = \frac{\sum_{jet,\gamma}(E + p_z)}{2E_p}$ • $\Delta \varphi_{\gamma,jet} = \varphi_{jet} - \varphi_{\gamma}$ • $\Delta \varphi_{e,\gamma} = \varphi_e - \varphi_{\gamma}$

Similar kind of analysis was previously done for photoproduction (Q^2 <1).

New variables

- Mooved to new bins
- Moved to new fitting region excluding the first bin from the fit
 - A bin by bin $min\chi^2$ -fitting procedures is done. The minimized function:

```
\label{eq:Data-Photons} \textit{Data-Photons}_{\textit{MC}} * \textit{a} - \textit{Background}_{\textit{MC}} * (1-\textit{a}) , where \textit{a} – fitting parameter, \textit{Phorons}_{\textit{MC}} - \mathsf{LL}_{\textit{MC}} \text{ and QQ}_{\textit{MC}} \text{ photons (scaled to the number of photon candidates in data before the fitting procedure)}
```

• Recalculated acceptances, purities etc.

Acceptance

 $Acc = \frac{N_{detector\ level}}{N_{true\ level}}$ acceptance can be calculated as the relation of corresponding histograms scaled to data luminosity

Δφ bin-by-bin fit

See appendix for more plots

Conclusions

- Based on previous works we will continue studies of prompt photon with accompanying jet production in DIS region
- Come up with final bins and compare results to theoretical models

Resulting control plots for $\Delta \eta$'s

Resulting control plots for $\Delta \phi$'s

Resulting control plots for x_{γ} and x_{p}

is defined as the relation of found with Appendix. Purity - detector level cuts photons to actual

Appendix. Cross sections

• For a given observable Y, the production cross section:

$$\frac{d\sigma}{dY} = \frac{A_{QQ} \cdot N(\gamma_{QQ})}{\mathcal{L} \cdot \Delta Y} + \frac{d\sigma_{LL}^{MC}}{dY}$$

 $N(\gamma_{QQ})$ - number of QQ photons extracted from the fit,

 ΔY - bin width,

 \mathcal{L} -total integrated luminosity, σ_{LL}^{MC} - cross section for LL photons

• $A_{QQ} = \frac{N_{detector\ level}}{N_{true\ level}}$ - acceptance correction for QQ photons

Appendix. Fitting procedure

- For the control plots the next procedures was applied for each bin in terms of new variables separately:
 - LL_{MC} and background_{MC} are scaled to the level of data luminosity
 - QQ_{MC} is scaled to the number of photons candidates in data sample after substraction of predicted LL photons.
 - Background_{MC} was scaled to number of photon candidates in data.
 - A bin by bin $min\chi^2$ -fitting procedures is done. The minimized function:

```
\label{eq:Data-Photons} \textit{Data-Photons}_{\textit{MC}} * \textit{a} - \textit{Background}_{\textit{MC}} * (1-\textit{a}) \\ \textit{, where } \textit{a} - \text{fitting parameter,} \\ \textit{Phorons}_{\textit{MC}} - \text{LL}_{\textit{MC}} \text{ and QQ}_{\textit{MC}} \text{ photons (scaled to the number of photon candidates in data before the fitting procedure)} \\
```

 a – illustrates the prompt photons fraction in data photon candidates sample

Appendix. Event selection

DIS selection

- $10 < Q_{el}^2 < 350 \ GeV^2$
- Electron cuts:
 - $E_{e,corr} > 10 \text{ GeV}$
 - $140^{\circ} < \theta_{el} < 180^{\circ}$
 - |X| < 14.8, cm
 - |Y| < 14.8, cm

Prompt photon selection

- $4 < E_T^{\gamma} < 15, GeV$
- $-0.7 < \eta_{\gamma} < 0.9$
- $E_{\gamma} \div E_{jet\ with\ \gamma} > 0.9$
- $\Delta R < 0.2$ no tracks
- $E_{EMC} \div (E_{EMC} + E_{HAC})$

• Jet selection (zufos used)

- $E_T^{jet} > 2.5, GeV$
- $-1.5 < \eta_{jet} < 1.8$
- Use jet with $E_{T,max}^{jet}$

Cleaning

- Triggers
 - SPP02 for 0405e
 - SPP09 for 06e, 0607p
- $|Z_{vtx}| < 40, cm$
- $35 < E p_z < 65$, GeV
- Number of vertex tracks not in RCAL > 1

Appendix. x_{γ} per-bin fitting results

Appendix. x_n per-bin fitting results

Appendix. $\Delta\phi_{e,\gamma}$ per-bin fitting results

Appendix. $\Delta \eta_{e,\gamma}$ per-bin fitting results ®vents 00€ Events 250 $-4.5 < \Delta \eta_{e, \gamma} < -2.8$ -2.8 < Δη_{e,γ} < -2.2 $-2.2 < \Delta \eta_{e,y} < -1.8$ QQ phot. fraction: 0.38 ± 0.05 QQ phot. fraction: 0.35 ± 0.04 QQ phot. fraction: 0.44 ± 0.64 fit range: bins 2 to 17 fit range: bins 2 to 17 fit range: bins 2 to 17 200 100 150 $\chi^2/13 = 1.44$ $\chi^2/13 = 0.66$ $\chi^2/13 = 1.65$ N_{Data} = 1454 150 N_{Data} = 1062 N_{Data} = 1596 100 100 50 50 50 0.5 0.5 0.5 1.5 δZ Exents 0550 Exents 07 $-1.8 < \Delta \eta_{e,\gamma} < -1.2$ $-1.2 < \Delta \eta_{e,\gamma} < 0.0$ QQ phot. fraction: 0.46 ± 0.04 QQ phot. fraction: 0.54 ± 0.06 100 fit range: bins 2 to 17 fit range: bins 2 to 17 200 $\chi^2/13 = 0.74$ $\chi^2/13 = 0.69$ 150 N_{Data} = 1433 N_{Data} = 622 100 50

0.5

1.5

0.5

Appendix. $\Delta\eta$ per-bin fitting results

