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A possible solution to the hierarchy problem:

The Higgs is a composite particle

Pseudo-Goldstone Boson (PGB) 

mπ < mρ, ma1
, ... << MP

Inspired by QCD:

Higgs as a PGB

(from a strong sector or from extra dimensions)



• Spontaneous symmetry breaking of the strong sector    
G → H, delivering the PGB parametrizing G/H

• Explicit symmetry breaking from SM couplings: 

Although the dynamics of the strong sector can be unknown, 
 

a) Gauging of the SM subgroup      H

b) SM Fermion couplings to the new sector

∈

Potential for the Higgs V(h/f) that forces EWSB:

〈h〉~  f    (Higgs decay constant)

the low-energy effective lagrangian for a PGB Higgs can be          

It depends on:
determined by symmetries (as chiral lagrangian for pions physics).



Approach here:  no Little Higgs !

EWSB:   V(h/f) fully determined by SM loops

EWPT:  From the S-parameter:   v/f < 1/2-1/3
                              f > 500-800 GeV



Requirements:  G must contain SM gauge group
  

Global Symmetry Breaking patterns G    H 

G  must contain an O(4) symmetry 
under which the Higgs is a 4 

When the Higgs gets a VEV,  O(4)        O(3)

O(3) unbroken subgoup: Custodial symmetry 

Assure no-tree contributions to T-parameter (      )
                        

∆ρ

(〈h〉/f)2

Recall:   SO(4)~SU(2)xSU(2)

reps: 4=(2,2) 

H =





0
0
0
v



}

and Zbb  that can be of order
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G H PGB

SO(5) O(4) 4=(2,2)

SO(6) SO(5) 5=(2,2)+(1,1)

O(4)xO(2) 8=(2,2)+(2,2)

SO(7) SO(6) 6=(2,2)+(1,1)+(1,1)

O(4)xO(3) 12=(2,2)+(2,2)+(2,2)

... ... ...

Each case gives a very different (rich) Higgs physics !!
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 b) two Higgs doublets

Gripaios,  AP, Riva, Serra



The SO(6)/SO(5) Model 

Breaking achieved by the VEV of the 6a of SU(4)~SO(6)

3

SO(4) ∼= SU(2)L × SU(2)R. The bi-doublet can be associated to the usual SM Higgs doublet H responsible for
EWSB, while the singlet, which we denote by η, corresponds to an extra pseudoscalar state. The breaking of SU(4)
down to Sp(4) can be achieved by a 4× 4 antisymmetric matrix

Σ0 =
(

iσ2 0
0 iσ2

)
, (2)

corresponding to the VEV of a field transforming as the 10 of SU(4):

Σ0 → UΣ0U
T . (3)

The unbroken generators T a satisfy

T aΣ0 + Σ0T
aT = 0 , (4)

and correspond to the generators of Sp(4) ∼= SO(5), while the broken ones, T â, satisfy

T âΣ0 − Σ0T
âT = 0. (5)

Among the unbroken generators we can identify the six corresponding to the subgroup SU(2)L × SU(2)R as

T a
L =

(
σa/2 0

0 0

)
, T a

R =
(

0 0
0 σa/2

)
, (6)

while the remaining four can be taken to be

1√
2

(
0 σa/2

σa/2 0

)
and

1
2
√

2

(
0 −i1

+i1 0

)
. (7)

The fluctuations along the broken generators correspond to the NGB that parametrize the SU(4)/Sp(4) coset

Σ = e
i√
2
Π/fΣ0 , (8)

where

Π =
(

η1 i(−Hc H)
−i(−Hc H)† −η1

)
, (9)

with H =
(

h3 + ih4

h1 + ih2

)
and Hc = iσ2H∗. This can be written as

Σ =





(
c + i ηs√

η2+h2

)
iσ2

s√
η2+h2

(H Hc)

− s√
η2+h2

(H Hc)T

(
c− i ηs√

η2+h2

)
iσ2



 , (10)

where

s = sin
√

η2 + h2

√
2f

, c = cos
√

η2 + h2

√
2f

, and h =
√

h2
i . (11)

By a suitable SU(2)L rotation, we can eliminate the 3 NGB to be eaten by the SM gauge bosons, and keep only the
physical Higgs h and η. In this gauge, the kinetic term for the PNGB is given by

f2

8
Tr|DµΣ|2 =

f2

2
(∂µh)2 +

f2

2
(∂µη)2 +

f2

2
(h∂µh + η∂µη)2

1− h2 − η2
+

g2f2

4
h2

[
Wµ+W−

µ +
1

2 cos2 θW
ZµZµ

]
, (12)

where we have performed the following redefinition of the PGB fields:

h2s2

η2 + h2
→ h2 ,

η2s2

η2 + h2
→ η2 . (13)

From now on, h and η will refer to the redefined fields. The gauging of the SM group breaks the global symmetry
SU(4) down to SU(2)L× U(1)Y×U(1)η where Y = T 3

R and the generator of U(1)η is

T η =
1

2
√

2
Diag(1, 1,−1,−1) . (14)

Since this latter is the symmetry under which the PNGB η shifts, gauge boson loops will only generate a potential
for h but not for η.

that is invariant under Sp(4)~SO(5)

PGB:   5=(1,1)+(2,2)    of SU(2)xSU(2)
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shifts under U(1)  :   T=Diag(1,1,-1,-1)η
Not broken by the SM gauging             Gauge loops do not give a mass to eta !

η

parametrizing  the SU(4)/Sp(4) coset:
singlet doublet



Lowest dim operator of the PGB lagrangian for the neutral Higgs h and eta:
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T âΣ0 − Σ0T
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, T a

R =
(

0 0
0 σa/2

)
, (6)

while the remaining four can be taken to be

1√
2

(
0 σa/2

σa/2 0

)
and

1
2
√

2

(
0 −i1

+i1 0

)
. (7)

The fluctuations along the broken generators correspond to the NGB that parametrize the SU(4)/Sp(4) coset

Σ = e
i√
2
Π/fΣ0 , (8)

where

Π =
(

η1 i(−Hc H)
−i(−Hc H)† −η1

)
, (9)

with H =
(

h3 + ih4

h1 + ih2

)
and Hc = iσ2H∗. This can be written as

Σ =





(
c + i ηs√

η2+h2

)
iσ2

s√
η2+h2

(H Hc)

− s√
η2+h2

(H Hc)T

(
c− i ηs√

η2+h2

)
iσ2



 , (10)

where

s = sin
√

η2 + h2

√
2f

, c = cos
√

η2 + h2

√
2f

, and h =
√

h2
i . (11)

By a suitable SU(2)L rotation, we can eliminate the 3 NGB to be eaten by the SM gauge bosons, and keep only the
physical Higgs h and η. In this gauge, the kinetic term for the PNGB is given by

f2

8
Tr|DµΣ|2 =

f2

2
(∂µh)2 +

f2

2
(∂µη)2 +

f2

2
(h∂µh + η∂µη)2

1− h2 − η2
+

g2f2

4
h2

[
Wµ+W−

µ +
1

2 cos2 θW
ZµZµ

]
, (12)

where we have performed the following redefinition of the PGB fields:

h2s2

η2 + h2
→ h2 ,

η2s2

η2 + h2
→ η2 . (13)

From now on, h and η will refer to the redefined fields. The gauging of the SM group breaks the global symmetry
SU(4) down to SU(2)L× U(1)Y×U(1)η where Y = T 3

R and the generator of U(1)η is

T η =
1

2
√

2
Diag(1, 1,−1,−1) . (14)

Since this latter is the symmetry under which the PNGB η shifts, gauge boson loops will only generate a potential
for h but not for η.
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determination of the CP-properties of the Higgs. A recent possibility is to use the top-strahlung pp → tt̄ + Higgs to
use the top pair distributions to measure CP violation.

Light-η scenario: In the limit in which εi → 0, the η mass goes to zero, and we are driven to a very different
scenario for Higgs physics. The mass of η can be below mh/2, implying that the Higgs h can decay to two η’s. From
Eq. (44) we find a hηη coupling:

−f2〈h〉
2

η2∂2
µh , (32)

that leads to a Higgs partial width

Γ(h → ηη) =
m3

hm2
W β

8πg2f4
, β =

√
1− 4m2

η/m2
h (33)

This decay channel can dominate over the bb̄ channel. In the limit of mη % mh < 2mW , we find

Γ(h → ηη)
Γ(h → bb̄)

& 8.5
( mh

120 GeV

)2(500 GeV
f

)4
. (34)

This opens up the possibility [11] that the Higgs could in fact be somewhat lighter than the LEP SM Higgs bound of
114 GeV, since h might have escaped detection at LEP due to the non-standard decay mode h → ηη. For example,
if mh ' mη ! 10 GeV, the dominant decay mode of η is η → bb̄ and the experimental lower bound on mh from
h → 4b searches is around 110 GeV. This bound can even go down to 86 GeV for 10 GeV ! mη ! 3.5 GeV, where the
dominant decay mode is η → τ τ̄ .

There is a priori no reason to assume that all εi are close but different from zero, and therefore one could think
that the light-η scenario is not very much motivated. Nevertheless, it is reasonable to consider that the values of εu

are different from εd, or even from εl. In these cases, as we will see, the η can be naturally light. It is also possible
that εi takes different value for the different families. These possibilities lead to a very different phenomenology for
η. Let us discuss them in turn.

Let us first consider the case of family symmetric values of εi. In order for the η to be light, we will assume εu = 0,
that corresponds to an embedding of the up-quarks into one of the singlets of the 6. If now we assume εb ∼ 1, we
have that η receives its mass mostly from bR one-loops. Assuming that bR and bL have equal couplings to the strong
sector, we have that this coupling must be ∼

√
mb/v. In this case,

m2
η &

hbΛ3

16π2f
& (30 GeV)2

(
Λ

2 TeV

)3 (
500 GeV

f

)
, (35)

that is light enough to allow the decay of h to two η. The η will mainly decay to bb̄, unless εb = 1. In this latter case,
we have bd = 0 and therefore η does not couple to bb̄ and decays to τ τ̄ . This decay channel can also be zero if εl = 1,
implying that η will mostly decay to cc̄. The decay to photons can become sizable in this latter case:

Γ(η → γγ)
Γ(η → cc̄)

& ...
( mh

120 GeV

)2(500 GeV
f

)4
. (36)

In this scenario we could be able to learn important information about the strong group, in the same way as π → γγ
told us about the numbers of colors in QCD.

The last possibility is to have εu = εb = 0 but εl )= 0. Then the mass of η comes from loops of τ (similar as Eq. (27)
but with hb → hτ ), leading to a little bit lighter η. In this case, it could be kinematically forbidden for η to decay
into bb̄, being then its main decay either into cc̄ or τ τ̄ respectively depending whether εl = 1 or not.

FCNC: Let us now consider the case in which the values of εi are not family symmetric. We expect FCNC effects
mediated at tree-level by η that couple linearly to f̄ i

Lf j
R with a strength (assuming 〈η〉 = 0 and 〈h〉 % 1)

Mij =
mi

f
UR ik

bk

ak
U†

R kj , (37)

where UR is the rotation in the right-handed sector needed to diagonalize the fermion mass matrices and i, j, k runs
over all right-handed fermions. Since UR is unitary, URU†

R = 1, we have that, as expected,M is diagonal for universal
values of bi/ai. We will assume that UR is of the same order as the CKM matrix V and study the implications of
non-universality of bi/ai on flavor observables.
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114 GeV, since h might have escaped detection at LEP due to the non-standard decay mode h → ηη. For example,
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h → 4b searches is around 110 GeV. This bound can even go down to 86 GeV for 10 GeV ! mη ! 3.5 GeV, where the
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that corresponds to an embedding of the up-quarks into one of the singlets of the 6. If now we assume εb ∼ 1, we
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that is light enough to allow the decay of h to two η. The η will mainly decay to bb̄, unless εb = 1. In this latter case,
we have bd = 0 and therefore η does not couple to bb̄ and decays to τ τ̄ . This decay channel can also be zero if εl = 1,
implying that η will mostly decay to cc̄. The decay to photons can become sizable in this latter case:
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In this scenario we could be able to learn important information about the strong group, in the same way as π → γγ
told us about the numbers of colors in QCD.

The last possibility is to have εu = εb = 0 but εl )= 0. Then the mass of η comes from loops of τ (similar as Eq. (27)
but with hb → hτ ), leading to a little bit lighter η. In this case, it could be kinematically forbidden for η to decay
into bb̄, being then its main decay either into cc̄ or τ τ̄ respectively depending whether εl = 1 or not.

FCNC: Let us now consider the case in which the values of εi are not family symmetric. We expect FCNC effects
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where UR is the rotation in the right-handed sector needed to diagonalize the fermion mass matrices and i, j, k runs
over all right-handed fermions. Since UR is unitary, URU†

R = 1, we have that, as expected,M is diagonal for universal
values of bi/ai. We will assume that UR is of the same order as the CKM matrix V and study the implications of
non-universality of bi/ai on flavor observables.
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This opens up the possibility [11] that the Higgs could in fact be somewhat lighter than the LEP SM Higgs bound of
114 GeV, since h might have escaped detection at LEP due to the non-standard decay mode h → ηη. For example,
if mh ' mη ! 10 GeV, the dominant decay mode of η is η → bb̄ and the experimental lower bound on mh from
h → 4b searches is around 110 GeV. This bound can even go down to 86 GeV for 10 GeV ! mη ! 3.5 GeV, where the
dominant decay mode is η → τ τ̄ .

There is a priori no reason to assume that all εi are close but different from zero, and therefore one could think
that the light-η scenario is not very much motivated. Nevertheless, it is reasonable to consider that the values of εu
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that corresponds to an embedding of the up-quarks into one of the singlets of the 6. If now we assume εb ∼ 1, we
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we have bd = 0 and therefore η does not couple to bb̄ and decays to τ τ̄ . This decay channel can also be zero if εl = 1,
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In this scenario we could be able to learn important information about the strong group, in the same way as π → γγ
told us about the numbers of colors in QCD.

The last possibility is to have εu = εb = 0 but εl )= 0. Then the mass of η comes from loops of τ (similar as Eq. (27)
but with hb → hτ ), leading to a little bit lighter η. In this case, it could be kinematically forbidden for η to decay
into bb̄, being then its main decay either into cc̄ or τ τ̄ respectively depending whether εl = 1 or not.

FCNC: Let us now consider the case in which the values of εi are not family symmetric. We expect FCNC effects
mediated at tree-level by η that couple linearly to f̄ i
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R with a strength (assuming 〈η〉 = 0 and 〈h〉 % 1)

Mij =
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where UR is the rotation in the right-handed sector needed to diagonalize the fermion mass matrices and i, j, k runs
over all right-handed fermions. Since UR is unitary, URU†

R = 1, we have that, as expected,M is diagonal for universal
values of bi/ai. We will assume that UR is of the same order as the CKM matrix V and study the implications of
non-universality of bi/ai on flavor observables.
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For  0< epsilons < 1,  eta potential from top-loops 

two scalars { h  (CP-even) ~ SM Higgs
eta  (CP-odd)   coupled to fermions unless 

If eta gets a VEV,  CP-violation in the Higgs sector:

eta behaves similarly to the CP-odd scalar A of the MSSM
One important difference:  No Zhη coupling

εf = 1

mη ∼ mh ∼ 100− 200 GeV

could be seen in decays to WW/ZZ or taus
hep-ph/0608079



a)  For              (only for all up-type quarks):  
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Light-η  scenario
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determination of the CP-properties of the Higgs. A recent possibility is to use the top-strahlung pp → tt̄ + Higgs to
use the top pair distributions to measure CP violation.

Light-η scenario: In the limit in which εi → 0, the η mass goes to zero, and we are driven to a very different
scenario for Higgs physics. The mass of η can be below mh/2, implying that the Higgs h can decay to two η’s. From
Eq. (44) we find a hηη coupling:

−f2〈h〉
2

η2∂2
µh , (32)

that leads to a Higgs partial width

Γ(h → ηη) =
m3

hm2
W β

8πg2f4
, β =

√
1− 4m2

η/m2
h (33)

This decay channel can dominate over the bb̄ channel. In the limit of mη % mh < 2mW , we find

Γ(h → ηη)
Γ(h → bb̄)

& 8.5
( mh

120 GeV

)2(500 GeV
f

)4
. (34)

This opens up the possibility [11] that the Higgs could in fact be somewhat lighter than the LEP SM Higgs bound of
114 GeV, since h might have escaped detection at LEP due to the non-standard decay mode h → ηη. For example,
if mh ' mη ! 10 GeV, the dominant decay mode of η is η → bb̄ and the experimental lower bound on mh from
h → 4b searches is around 110 GeV. This bound can even go down to 86 GeV for 10 GeV ! mη ! 3.5 GeV, where the
dominant decay mode is η → τ τ̄ .

There is a priori no reason to assume that all εi are close but different from zero, and therefore one could think
that the light-η scenario is not very much motivated. Nevertheless, it is reasonable to consider that the values of εu

are different from εd, or even from εl. In these cases, as we will see, the η can be naturally light. It is also possible
that εi takes different value for the different families. These possibilities lead to a very different phenomenology for
η. Let us discuss them in turn.

Let us first consider the case of family symmetric values of εi. In order for the η to be light, we will assume εu = 0,
that corresponds to an embedding of the up-quarks into one of the singlets of the 6. If now we assume εb ∼ 1, we
have that η receives its mass mostly from bR one-loops. Assuming that bR and bL have equal couplings to the strong
sector, we have that this coupling must be ∼

√
mb/v. In this case,

m2
η &

hbΛ3

16π2f
& (30 GeV)2

(
Λ

2 TeV

)3 (
500 GeV

f

)
, (35)

that is light enough to allow the decay of h to two η. The η will mainly decay to bb̄, unless εb = 1. In this latter case,
we have bd = 0 and therefore η does not couple to bb̄ and decays to τ τ̄ . This decay channel can also be zero if εl = 1,
implying that η will mostly decay to cc̄. The decay to photons can become sizable in this latter case:

Γ(η → γγ)
Γ(η → cc̄)

& ...
( mh

120 GeV

)2(500 GeV
f

)4
. (36)

In this scenario we could be able to learn important information about the strong group, in the same way as π → γγ
told us about the numbers of colors in QCD.

The last possibility is to have εu = εb = 0 but εl )= 0. Then the mass of η comes from loops of τ (similar as Eq. (27)
but with hb → hτ ), leading to a little bit lighter η. In this case, it could be kinematically forbidden for η to decay
into bb̄, being then its main decay either into cc̄ or τ τ̄ respectively depending whether εl = 1 or not.

FCNC: Let us now consider the case in which the values of εi are not family symmetric. We expect FCNC effects
mediated at tree-level by η that couple linearly to f̄ i

Lf j
R with a strength (assuming 〈η〉 = 0 and 〈h〉 % 1)

Mij =
mi

f
UR ik

bk

ak
U†

R kj , (37)

where UR is the rotation in the right-handed sector needed to diagonalize the fermion mass matrices and i, j, k runs
over all right-handed fermions. Since UR is unitary, URU†

R = 1, we have that, as expected,M is diagonal for universal
values of bi/ai. We will assume that UR is of the same order as the CKM matrix V and study the implications of
non-universality of bi/ai on flavor observables.

εf → 0
Mass only from anomalies

Other possibilities: 

εu = 0



 In this case, h decays mainly into 2 η:
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114 GeV, since h might have escaped detection at LEP due to the non-standard decay mode h → ηη. For example,
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that is light enough to allow the decay of h to two η. The η will mainly decay to bb̄, unless εb = 1. In this latter case,
we have bd = 0 and therefore η does not couple to bb̄ and decays to τ τ̄ . This decay channel can also be zero if εl = 1,
implying that η will mostly decay to cc̄. The decay to photons can become sizable in this latter case:
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In this scenario we could be able to learn important information about the strong group, in the same way as π → γγ
told us about the numbers of colors in QCD.

The last possibility is to have εu = εb = 0 but εl )= 0. Then the mass of η comes from loops of τ (similar as Eq. (27)
but with hb → hτ ), leading to a little bit lighter η. In this case, it could be kinematically forbidden for η to decay
into bb̄, being then its main decay either into cc̄ or τ τ̄ respectively depending whether εl = 1 or not.
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mediated at tree-level by η that couple linearly to f̄ i

Lf j
R with a strength (assuming 〈η〉 = 0 and 〈h〉 % 1)

Mij =
mi

f
UR ik

bk

ak
U†

R kj , (37)

where UR is the rotation in the right-handed sector needed to diagonalize the fermion mass matrices and i, j, k runs
over all right-handed fermions. Since UR is unitary, URU†

R = 1, we have that, as expected,M is diagonal for universal
values of bi/ai. We will assume that UR is of the same order as the CKM matrix V and study the implications of
non-universality of bi/ai on flavor observables.

Dominant decay chain

h→ ηη → τ τ̄τ τ̄

h→ ηη → bb̄bb̄

or if 

h→ ηη → cc̄cc̄

But if εd = 1

εd = εl = 1

In all these cases, 
Higgs h can be lighter 

than LEP bound 114 GeV
Chang, Dermisek, Gunion,Weiner



Experiment AdS5

Γ(ω → πγ) 0.75 0.86
Γ(ω → 3π) 7.6 6.1
Γ(ρ → πγ) 0.068 0.072

Γ(ω → πµµ) 8.2 · 10−4 7.9 · 10−4

Γ(ω → πee) 6.5 · 10−3 7.8 · 10−3

Table 2: Prediction of the anomalous partial decay widths in MeV where M5, L and α have been
determined from the experimental values of Fπ = 87 MeV, mρ = 775 MeV and Fω/Fρ = 0.88.

fπ(z) = 1/(a(z)Nπ) and, for the AdS metric, fV = zJ1(MV z)/(NV L) with MV " 3π/(4L) " mρ =

mω where in both cases N2
i =

∫
dz a(z)f 2

i (z)/L. Inserting Eq. (26) into the CS term, we obtain

the couplings between the pions and two vectors:

LπV V = −
Nc

48π2

1

Fπ
π0F (γ)

µν F̃ (γ) µν −
Nc

16π2

gρππ

Fπ

[
1

α
π0F (ω) µν +

1

3
πaF (ρa) µν

]
F̃ (γ)

µν

−
Nc

16π2

g2
ρππ

Fπ

x

α
πaF (ω)

µν F̃ (ρa) µν + . . . , (27)

where F̃ µν = εµνρσFρσ/2,

gρππ =
1√

2M5L3

∫
dz a(z)f 2

πfV and x =
1√

2M5L2g2
ρππ

∫
dz fπf 2

V . (28)

The value of x turns to be very close to 1; for AdS we find x " 1.18. We will understand later

why this is the case. We also want to remark that Eq. (27) shows an interesting relation between

the ωγπ (and ργπ) coupling and gρππ, the coupling of the ρ to two pions. This relation is fulfilled

for any five-fimensional space.

From Eq. (27) we can calculate several meson partial decay widths. The first term of Eq. (27)

leads to the decay of the π0 to two photons in accordance with the anomaly prediction. The decay

widths Γ(ω → πγ) and Γ(ρ → πγ) arise from the second term of Eq. (27), while Γ(ω → 3π)

proceeds through virtual rhos, ω → ρ(n) ∗π → 3π. This latter process is dominated by the lowest

state, the ρ, whose ωρπ coupling is given by the third term of Eq. (27):

A[ωµ(p) → π0(q0) + π+(q+) + π−(q−)] =
Nc

4π2

g3
ρππ

Fπm2
ρ

x

α
εµνρσqν

0q
ρ
+qσ

−

[
D((q+ + q−)2)

+ D((q+ + q0)
2) + D((q− + q0)

2)
]
, (29)

where D(p2) = m2
ρ/(m2

ρ − p2). The predictions for these partial decay widths are given in Table 2,

showing a very good agreement with the experimental data.

The CS term also contributes to different pion form factors. For calculating form factors,

however, it is more suitable to work in the holographic basis. We have seen that in this basis the

12

π → γγ

Interesting possibility:

As in QCD,  where the anomalies of the chiral group  
predict  (WZW term):                                                  

η → γγ

Detecting this channel will give us information about the strong group 

Here, similarly, we can expect             

nB , nW , nGwhere                    are related with the anomalies of the global group

9

a custodial symmetry to prevent large corrections to the T -parameter, and are most probably unacceptable from a
phenomenological viewpoint.

For an example which incorporates custodial symmetry, we need look no further that the model based SO(6) ×
U(1)X/SO(5) × U(1)Y that we discussed above. Since SO(6) is locally isomorphic to SU(4), it has anomalous
representations. Other examples are cosets based on SO(6)×U(1)X/SO(4)×U(1)Y (which we discuss in an appendix)
and models based SU(4)× SU(4)/SU(4) (together with appropriate U(1) factors).

These results are confirmed by consideration of the effective Lagrangian. The full form of the WZW term is
somewhat complicated, involving an infinite series of terms in H and η; derivations in the context of holographic
Higgs models are given in [2] and in the context of little Higgs models in [1] (some phenomenological aspects of
anomalies in little Higgs models were discussed in [9]). But for the purposes of phenomenology, we are only interested
in the terms that correspond to operators of the lowest possible dimension. The WZW term begins at dimension
five, and couples an NGB to two gauge bosons, via the epsilon tensor. In a Higgsless model, the effective Lagrangian
should respect the U(1) of electromagnetism, and indeed we can couple the charge neutral NGB that is eaten by the Z
to the electromagnetic field combination FF̃ to form a dimension-five operator. By contrast, the effective Lagrangian
in a model with a Higgs should respect the full SU(2)L ×U(1)Y ; no suitable dimension-five operator is available in a
theory with just a SM Higgs, but once we add a singlet (for example in an SO(6)/SO(5) model, we can write down
a dimension-five term, of the form

L ⊂ η

32π2f
(nBBB̃ + nW WaW̃ a + nGGAG̃A). (40)

Here, GA, Wa and B refer to the field strengths of the SM gauge group and the nB,W,G are integers. They measure
the strengths of the various anomalies and are fixed by the fermion content of the ultraviolet physics (just as the the
axial anomaly of the chiral Lagrangian in hadronic physics is fixed by the quark content of QCD). If we were able to
measure these integers at the LHC, then we would gain quantitative information about the ultraviolet physics, just
as measurement of the decay rate π0 → 2γ in hadronic physics tells us that the number of colours in QCD is three.

But can we measure these integers at the LHC, or if not, at a future collider? If we cannot measure the integers
themselves, can we even detect the presence of these terms? At first sight, for example, we might hope to be able to
produce the η directly at the LHC via gluon fusion through the ηGG̃ vertex, or if nG were zero, through WW fusion
and the ηWW̃ vertex. Alternatively, we might guess that the η, if sufficiently light, might be produced in a Higgs
decay such as h→ 2η, followed by decays such as η → γγ, γZ, ZZ,W+W−, gg.

The problem, of course, is that, whereas the physics of the WZW term is very simple, being fixed by the group
structure modulo some integer coefficients, the rest of the physics is not. Without knowing, for example, the model-
dependent couplings of the η to fermions, it is not possible to say whether decays of the η via the anomaly will be
observable. However, as we saw in our discussion of the model based on SO(6)/SO(5), such physics is certainly visible
in some corners of parameter space and, in view of its power to reveal information about the UV completion of the
theory, merits further attention.

Let us lastly discuss the connection between the WZW term and discrete symmetries, in particular CP . Discrete
symmetries were, of course, the very reason for the introduction of the WZW term in the chiral Lagrangian of QCD, at
least in Witten’s incarnation thereof. To recall, the leading order (two-derivative) chiral Lagrangian, Tr(∂eiπ∂e−iπ)
is invariant under the näıve parity, P0 : x → −x, as well as baryon number parity, (−1)B : π → −π, and charge
conjugation, C : π → πT . However, of the first two, only the true parity P = P0(−1)B is a symmetry of QCD, and
the WZW term is the leading order term in the chiral Lagrangian that violates P0 and (−1)B individually.

Now, we know that none of these is a symmetry of the electroweak interaction, but we do know that CP is a
symmetry to a very good approximation. Moreover, the observed CP violation is adequately explained by the SM
Yukawa couplings and the CKM matrix, and this is easily reproduced in the model discussed above.

However, we have already seen that there can be an extra, spontaneous source of CP violation in the model based
on SO(6)/SO(5), if η gets a vev. It is also possible that there are further sources of explicit CP violation in the
model. In Appendix II, we show that the Lagrangian representing the gauge and Higgs sector, considered in isolation,
respects CP , even in the presence of the WZW term. Thus, just like in the SM, explicit breaking of CP can arise
only via Yukawa couplings to fermions. That said, since the Yukawa couplings differ from those of the SM, it is not
true to say that the structure of explicit CP -violation is identical to that of the SM...

IV. DISCUSSION

To summarize, we have arrived at an essentially unique model, which we called the Next-to-Minimal Composite
Higgs Model (NMCHM).



b) Non Family universal values for 

s s

d dη
∆mK ! m2

s

2m2
ηf2

〈K|(s̄LdR)2|K̄〉

FCNC effects from η

For example:

but bound not very severe:  

mη ≥ 40 GeV

Interesting pheno:   if η is heavier than the top

η → tc̄ with BR ~ 1

Predictions close to experimental bound for          

Leptonic sector:  OK  with bounds from μ → 3 e, ... 

εf i

∆mD

Predictions:  possibility of sizable    η → τ µ̄



The SO(6)/[SO(4)xSO(2)]  Model 
Breaking achieved by the VEV of the traceless 15 of SU(4)

that is invariant under SU(2)xSU(2)xU(1)~SO(4)xSO(2)

PGB:   8=(2,2) +(2,2)      of SU(2)xSU(2)xU(1)
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The NMCHM is based on the coset SO(6)/SO(5), with fermions in the 6 of SO(6). This model is automatically
consistent with electroweak precision measurements of the T -parameter and Z → bb. We suspect, furthermore that
the model can be made consistent with measurements of the S-parameter with a mild tuning amongst the various
free parameters. The model can possess non-trivial physics in the form of anomalies, which contain quantitative
information about the UV completion of the theory and manifest themselves in the low-energy effective action in
terms of operators coupling the extra Higgs singlet to SM gauge bosons via operators beginning at dimension five.
What is more, the model possesses an additional U(1)P Q symmetry in certain parameter limits, such that the mass
of the Higgs singlet can be arbitrarily light whilst remaining technically-natural.

APPENDIX I: Composite Higgs models based on SO(6)/[SO(4)× SO(2)] and SO(6)/SO(4)

In the case in which the breaking of the SU(4) is achieved by the VEV of the symmetric representation, the 10, the
global SU(4) is broken down to SO(4). In this case, however, the six NBG parametrizing SU(4)/SO(4) transform as
a (3,3) of SO(4) ∼= SU(2)L × SU(2)R that does not contain doublets to be associated with the SM Higgs.

Another option is to break SU(4) by the VEV of the traceless representation, the 15, that we denote by Ω and
transforms as Ω → UΩU†. When the VEV of Ω takes the direction

Ω0 = Diag(1, 1,−1,−1), (41)

the global SU(4) is broken down to SU(2)L × SU(2)R ×U(1) ∼= SO(4)× SO(2), delivering 8 NGB that transform as
(2,2)±2 under the unbroken subgroup. This model has two Higgs doublets that arises the following problem. While
a single Higgs doublet automatically guarantee that, after EWSB, the global symmetry of the strong sector is broken
down to the custodial SO(3) symmetry that protect the T -parameter from receiving large corrections, the presence
of two Higgs doublet spoils this property. The second Higgs doublet can get a VEV breaking the custodial SO(3)
symmetry down to SO(2). To see this explicitly, let us parametrize the NGB by the traceless hermitian matrix

Ω = e
1√
2
iΠΩ/fΩ0 , ΠΩ =

(
0 Ĥ1 + iĤ2

Ĥ†
1 − iĤ†

2 0

)
, (42)

where Ĥi = (Hc
i , Hi). By a SU(2)L rotation we can eliminate 3 out of the 4 components of H1 and write H1 = h1.

For H2 we only consider the SO(3)-breaking direction H2 = h3σ3. For simplicity, we will take the limit h, h3 % f
that allows to expand Eq. (42):

Ω &
(

(1− h2+h2
3

2 )1+ hh3σ3 −i(h1+ h3σ3)
i(h1+ h3σ3) −(1− h2+h2

3
2 )1− hh3σ3

)
. (43)

From the kinetic term of Ω we can read the SM gauge boson masses:

f2

8
Tr|DµΩ|2 = g2f2h2

[
....Wµ+W−

µ +
...

2 cos2 θW
ZµZµ

]
+ · · · , (44)

that shows that if h3 gets a VEV, the custodial symmetry is broken and ρ ≡ m2
W /(m2

Z cos2 θW ) (= 1. Now, let
us choose that the SM top is embedded in a 6 of SU(4) as in Eq. (19) (similar results are obtained for the 10
representation). This implies that the strong sector generates the operator Tr[Ψ̄q ( pΨqΩ] that leads to the coupling
ūL (puLhh3. From a uL loop, this coupling generates (after EWSB 〈h〉 (= 0) a tadpole for h3 that leads to a VEV for
this field and to the breaking of the custodial symmetry. This makes these models inviable.

Finally, we can consider the global symmetry breaking SU(4) → SO(4) achieved by the presence of the VEV of Ω
-Eq. (41)- and Σ -Eq. (2). In this case there are 5 NGB transforming as (1,1)0 ⊕ (2,2)±2. These models, however,
not only suffer from the problems discussed above but can also have sizable FCNC since the Yukawa couplings can
arise from two distinct multiplets, Σ and Ω.

APPENDIX II: CP -invariance

To show that CP is a symmetry of the sigma model representing the Higgs sector of the SO(6)/SO(5) model, we
begin by asserting that the Lie algebra of SO(6) admits two automorphisms, given by

A1 : T a → T a, T â → −T â

A2 : T a → −T aT , T â → T âT (45)

1 -1

Two Higgs doublets:    Problem with this model:  

  Large contributions to the T-parameter

h1 =





0
0
0
v1



 h2 =





0
0
v2

0



 Custodial O(3) symmetry 
broken by the second doublet

Both Higgs get a VEV due to the presence of the mixing:
!

h1 h2



• Models of PGB composite Higgs can have a very rich 
phenomenology

• Here we presented some example, the SO(6)/SO(5) model,  
which contains an extra singlet, η,  and can drastically change the 
Higgs decays:  h can decay to η, FCNC, ... 

• Other PGB models worth also to explore

Conclusions


