Higgs Physics Diversity in composite models

Alex Pomarol (Univ. Autonoma Barcelona)

work in progress with B. Gripaios, F. Riva and J. Serra

A possible solution to the hierarchy problem:

The Higgs is a composite particle

Inspired by QCD:

$$
m_{\pi}<m_{\rho}, m_{a_{1}}, \ldots \ll M_{P}
$$

Pseudo-Goldstone Boson (PGB)

Higgs as a PGB
(from a strong sector or from extra dimensions)

Although the dynamics of the strong sector can be unknown, the low-energy effective lagrangian for a PGB Higgs can be determined by symmetries (as chiral lagrangian for pions physics). It depends on:

- Spontaneous symmetry breaking of the strong sector $\mathrm{G} \rightarrow \mathrm{H}$, delivering the PGB parametrizing G / H
- Explicit symmetry breaking from SM couplings:
a) Gauging of the $S M$ subgroup $\in H$
b) SM Fermion couplings to the new sector

Potential for the Higgs $\mathrm{V}(\mathrm{h} / \mathrm{f})$ that forces EWSB:

$$
\langle h\rangle \sim \mathrm{f} \text { (Higgs decay constant) }
$$

Approach here: no Little Higgs !

EWSB: $\mathrm{V}(\mathrm{h} / \mathrm{f})$ fully determined by SM loops
EWPT: From the S-parameter: v/f < I/2-I/3 $\longrightarrow f>500-800 \mathrm{GeV}$

Global Symmetry Breaking patterns $G \rightarrow H$

Requirements: G must contain SM gauge group
G must contain an $O(4)$ symmetry under which the Higgs is a 4

When the Higgs gets a VEV, $O(4) \rightarrow O(3)$

$$
\left.H=\left(\begin{array}{l}
0 \\
0 \\
0 \\
v
\end{array}\right)\right\} \begin{array}{r}
\mathrm{O}(3) \text { unbroken subgoup: Custodial symmetry } \\
\text { P. Sikivie, L. Susskind, M.B. Voloshin, V.I. Zakharov }
\end{array}
$$

Assure no-tree contributions to T-parameter ($\Delta \rho$) and Zbb that can be of order $(\langle h\rangle / f)^{2}$

Recall: $\mathrm{SO}(4) \sim \mathrm{SU}(2) \times S U(2)$
reps: $4=(2,2)$

G	H	PGB
$\mathrm{SO}(5)$	$\mathrm{O}(4)$	$4=(2,2)$
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	$5=(2,2)+(1,1)$
	$\mathrm{O}(4) \times \mathrm{O}(2)$	$8=(2,2)+(2,2)$
$\mathrm{SO}(7)$	$\mathrm{SO}(6)$	$6=(2,2)+(1,1)+(1,1)$
	$\mathrm{O}(4) \times \mathrm{O}(3)$	$12=(2,2)+(2,2)+(2,2)$
\ldots	\ldots	\ldots

Each case gives a very different (rich) Higgs physics !!

G	H	PGB	one Higgs Pheno: modifications of Higgs couplings to SM fields \qquad See Talks of Grojean and Contino
SO(5)	$\mathrm{O}(4)$	$4=(2,2)$	
SO(6)	$\mathrm{SO}(5)$	$5=(2,2)+(1,1)$	
	$\mathrm{O}(4) \times \mathrm{O}(2)$	$8=(2,2)+(2,2)$	
$\mathrm{SO}(7)$	$\mathrm{SO}(6)$	$6=(2,2)+(1,1)+(1,1)$	
	$\mathrm{O}(4) \mathrm{xO}(3)$	$12=(2,2)+(2,2)+(2,2)$	
...	

Each case gives a very different (rich) Higgs physics !!

G	H	PGB
$\mathrm{SO}(5)$	$\mathrm{O}(4)$	$4=(2,2)$
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	$5=(2,2)+(\mathrm{I}, \mathrm{I})$
	$\mathrm{O}(4) \times \mathrm{O}(2)$	$8=(2,2)+(2,2)$
$\mathrm{SO}(7)$	$\mathrm{SO}(6)$	$6=(2,2)+(1, \mathrm{I})+(\mathrm{I}, \mathrm{I})$

Each case gives a very different (rich) Higgs physics !!

The SO(6)/SO(5) Model

Breaking achieved by theVEV of the 6 a of $\mathrm{SU}(4) \sim \mathrm{SO}(6)$

$$
\Sigma_{0}=\left(\begin{array}{cc}
i \sigma_{2} & 0 \\
0 & i \sigma_{2}
\end{array}\right)
$$

that is invariant under $\mathrm{Sp}(4) \sim \mathrm{SO}(5)$

PGB: $5=(1, I)+(2,2) \quad$ of $S U(2) \times S U(2)$

parametrizing the $\mathrm{SU}(4) / \mathrm{Sp}(4)$ coset:

$$
\Sigma=e^{\frac{i}{\sqrt{2}} \Pi / f} \Sigma_{0} \quad \Pi=\left(\begin{array}{c}
\eta \eta^{\eta} \\
-i\left(-H^{c} H\right)^{\dagger}
\end{array} \begin{array}{c}
i\left(-H^{c} H\right) \\
-\eta \mathbb{1}
\end{array}\right)
$$

η shifts under $\mathrm{U}(\mathrm{I})_{\eta}: \mathrm{T}=\operatorname{Diag}(\mathrm{I}, \mathrm{I},-\mathrm{I},-\mathrm{I})$
Not broken by the SM gauging \longrightarrow Gauge loops do not give a mass to eta !

Lowest dim operator of the PGB lagrangian for the neutral Higgs h and eta:

$$
\begin{aligned}
\frac{f^{2}}{8} \operatorname{Tr}\left|D_{\mu} \Sigma\right|^{2}= & \frac{f^{2}}{2}\left(\partial_{\mu} h\right)^{2}+\frac{f^{2}}{2}\left(\partial_{\mu} \eta\right)^{2}+\frac{f^{2}}{2} \frac{\left(h \partial_{\mu} h+\eta \partial_{\mu} \eta\right)^{2}}{1-h^{2}-\eta^{2}} \\
& +\frac{g^{2} f^{2}}{4} h^{2}\left[W^{\mu+} W_{\mu}^{-}+\frac{1}{2 \cos ^{2} \theta_{W}} Z^{\mu} Z_{\mu}\right]
\end{aligned}
$$

Lowest dim operator of the PGB lagrangian for the neutral Higgs h and eta:

$$
\frac{f^{2}}{8} \operatorname{Tr}\left|D_{\mu} \Sigma\right|^{2}=\frac{f^{2}}{2}\left(\partial_{\mu} h\right)^{2}+\frac{f^{2}}{2}\left(\partial_{\mu} \eta\right)^{2}+\frac{f^{2}}{2} \frac{\left(h \partial_{\mu} h+\eta \partial_{\mu} \eta\right)^{2}}{1-h^{2}-\eta^{2}}
$$

$h \eta \eta$ coupling:

$$
-\frac{f^{2}\langle h\rangle}{2} \eta^{2} \partial_{\mu}^{2} h
$$

can induce the decay $h \rightarrow \eta \eta$
Fixed by symmetries !!

Couplings to SM fermions

Fixed by choosing the SM fermions embedding in reps of $\mathrm{G}=\mathrm{SO}(6)$ Example: 6 of $\mathrm{SO}(6)$

$$
\begin{aligned}
& 6=(2,2)_{0}+(I, I)_{1}+(1, I)_{-1} \text { of } \mathrm{SU}(2) \times S U(2) \times U(I)_{\eta} \\
& q_{L} \quad u_{R}, d_{R} \\
& \text { To assign the proper hypercharges } \\
& \mathrm{G} \text { must be enlarged to } \mathrm{SO}(6) \times \mathrm{U}(\mathrm{I})_{X} \text { : } \\
& Y=T_{3}^{R}+X
\end{aligned}
$$

No complete embedding possible \longrightarrow explicit breaking of $\mathrm{SO}(6)$ Potential at one-loop level for h and eta

But, for u_{R}, d_{R} embedded in only one of the two singlets, the $\mathrm{U}(\mathrm{I})_{\eta}$ subgroup of $\mathrm{SO}(6)$ is not broken by the coupling to the SM fermions

Up-quark sector:

$$
\begin{aligned}
& q_{L} \in 6=\Psi_{q}=\frac{1}{2}\left(\begin{array}{cc}
0 & \left(0 q_{L}\right) \\
-\left(0 q_{L}\right)^{T} & 0
\end{array}\right) \\
& u_{R} \in 6=\Psi_{d}=\frac{\alpha}{2}\left(\begin{array}{cc}
0 & 0 \\
0 & i \sigma_{2} u_{R}
\end{array}\right)+\frac{\beta}{2}\left(\begin{array}{cc}
i \sigma_{2} u_{R} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

it will be useful to define $\epsilon=\alpha \beta / 2$ that it is zero when the SM fermion is embedded in one of the singlets with definite charge under $\mathrm{U}(\mathrm{I})_{\eta}$

Effective lagrangian for PGB and SM fermions

Lowest dimensional operators for the up-quark sector:

$$
\begin{aligned}
& \sum_{r=q, u} \Pi_{r} \operatorname{tr}\left[\bar{\Psi}_{r} \Sigma\right] \not D \operatorname{tr}\left[\Psi_{r} \Sigma^{*}\right]+\tilde{M}_{u} \operatorname{tr}\left[\bar{\Psi}_{q} \Sigma\right] \operatorname{tr}\left[\Psi_{u} \Sigma^{*}\right]+h . c .+\cdots \\
& \quad M_{u} h \bar{u}_{L} u_{R}\left[\sqrt{1-\eta^{2}-h^{2}}+i \eta \sqrt{\frac{1-\epsilon_{u}}{1+\epsilon_{u}}}\right]
\end{aligned}
$$

ϵ_{u} parametrizes the embedding of u_{R} in the singlets of 6
$\epsilon_{u}=0 \quad$ Embedding in one of the singlets: No breaking of $\mathrm{U}(\mathrm{I})_{\eta}$
$\epsilon_{u}=1$ No linear coupling of eta to up-quarks: $\quad \eta \rightarrow-\eta$ invariance

Effective lagrangian for PGB and SM fermions

Lowest dimensional operators for the up-quark sector:

$$
\sum_{r=q, u} \Pi_{r} \operatorname{tr}\left[\bar{\Psi}_{r} \Sigma\right] \not D \operatorname{tr}\left[\Psi_{r} \Sigma^{*}\right]+\tilde{M}_{u} \operatorname{tr}\left[\bar{\Psi}_{q} \Sigma\right] \operatorname{tr}\left[\Psi_{u} \Sigma^{*}\right]+h . c .+\cdots
$$

$$
M_{u} h \bar{u}_{L} u_{R}\left[\sqrt{1-\eta^{2}-h^{2}}\right. \text { Resonable assumption: }
$$

SM fermion couplings to the strong sector
$\epsilon_{u}=0 \quad$ Embedding in one of th
$\epsilon_{u}=1 \quad$ No linear coupling of eta proportional to $\sqrt{M_{f}}$

$\epsilon_{f} \neq 0$

$\epsilon_{f} \neq 1$

$$
\eta \rightarrow f \bar{f} \quad \Gamma \propto m_{f}
$$

If $\epsilon_{f}=1 \forall$ fermion, eta can be stable!
two scalars $\left\{\begin{array}{l}\mathrm{h}(\mathrm{CP}-\text { even }) \sim \text { SM Higgs } \\ \text { eta (CP-odd) } \\ \text { coupled to fermions unless } \epsilon_{f}=1\end{array}\right.$
Pheno strongly depending on the values of epsilons:
For $0<$ epsilons $<\mathrm{I}$, eta potential from top-loops

$$
m_{\eta} \sim m_{h} \sim 100-200 \mathrm{GeV}
$$

eta behaves similarly to the CP-odd scalar A of the MSSM One important difference: No Zhn coupling

If eta gets a VEV, CP-violation in the Higgs sector:

Light- η scenario

For $\epsilon_{f} \rightarrow 0$, eta mass goes to zero \longrightarrow eta $=P Q$-axion Mass only from anomalies

Unfortunately, ruled out by searches on $K \rightarrow \pi+a$

Other possibilities:
a) For $\epsilon_{u}=0$ (only for all up-type quarks): η-mass from bottom loops:

$$
m_{\eta}^{2} \simeq \frac{h_{b} \Lambda^{3}}{16 \pi^{2} f} \simeq(30 \mathrm{GeV})^{2}\left(\frac{\Lambda}{2 \mathrm{TeV}}\right)^{3}\left(\frac{500 \mathrm{GeV}}{f}\right)
$$

In this case, h decays mainly into 2η :

$$
\frac{\Gamma(h \rightarrow \eta \eta)}{\Gamma(h \rightarrow b \bar{b})} \simeq 8.5\left(\frac{m_{h}}{120 \mathrm{GeV}}\right)^{2}\left(\frac{500 \mathrm{GeV}}{f}\right)^{4}
$$

Dominant decay chain

$$
h \rightarrow \eta \eta \rightarrow b \bar{b} b \bar{b}
$$

But if $\epsilon_{d}=1$

$$
h \rightarrow \eta \eta \rightarrow \tau \bar{\tau} \tau \bar{\tau}
$$

or if $\epsilon_{d}=\epsilon_{l}=1$

$$
h \rightarrow \eta \eta \rightarrow c \bar{c} c \bar{c}
$$

In all these cases,
Higgs h can be lighter than LEP bound 114 GeV

Interesting possibility:

As in QCD, where the anomalies of the chiral group predict (WZW term):

$$
-\frac{N_{c}}{48 \pi^{2}} \frac{1}{F_{\pi}} \pi^{0} F_{\mu \nu}^{(\gamma)} \widetilde{F}^{(\gamma) \mu \nu} \longrightarrow \pi \rightarrow \gamma \gamma
$$

Here, similarly, we can expect

$$
\frac{\eta}{32 \pi^{2} f}\left(n_{B} B \tilde{B}+n_{W} W_{a} \tilde{W}^{a}+n_{G} G_{A} \tilde{G}^{A}\right)
$$

where n_{B}, n_{W}, n_{G} are related with the anomalies of the global group

Detecting this channel will give us information about the strong group
b) Non Family universal values for $\epsilon_{f i}$

FCNC effects from η

For example:

$$
\begin{gathered}
\Delta m_{K} \simeq \frac{m_{s}^{2}}{2 m_{\eta}^{2} f^{2}}\langle K|\left(\bar{s}_{L} d_{R}\right)^{2}|\bar{K}\rangle \\
\text { but bound not very severe: }
\end{gathered}
$$

$$
m_{\eta} \geq 40 \mathrm{GeV}
$$

Predictions close to experimental bound for Δm_{D}
Interesting pheno: if η is heavier than the top

$$
\eta \rightarrow t \bar{c} \quad \text { with } \mathrm{BR} \sim \mathrm{I}
$$

Leptonic sector: OK with bounds from $\mu \rightarrow 3 \mathrm{e}, \ldots$
Predictions: possibility of sizable $\eta \rightarrow \tau \bar{\mu}$

The $S O(6) /[S O(4) \times S O(2)]$ Model
Breaking achieved by the VEV of the traceless I5 of SU(4)

$$
\Omega_{0}=\operatorname{Diag}(1,1,-1,-1)
$$

that is invariant under $\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{U}(\mathrm{I}) \sim \mathrm{SO}(4) \times \mathrm{SO}(2)$

$$
\text { PGB: } \quad 8=(2,2)_{\mid}+(2,2)_{-1} \quad \text { of } S U(2) \times S U(2) \times U(1)
$$

Two Higgs doublets: Problem with this model:
Both Higgs get aVEV due to the presence of the mixing:

$$
h_{1}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
v_{1}
\end{array}\right) \quad h_{2}=\left(\begin{array}{c}
0 \\
0 \\
v_{2} \\
0
\end{array}\right)
$$

Custodial O(3) symmetry broken by the second doublet

Conclusions

- Models of PGB composite Higgs can have a very rich phenomenology
- Here we presented some example, the $\mathrm{SO}(6) / \mathrm{SO}(5)$ model, which contains an extra singlet, η, and can drastically change the Higgs decays: h can decay to η, FCNC, ...
- Other PGB models worth also to explore

