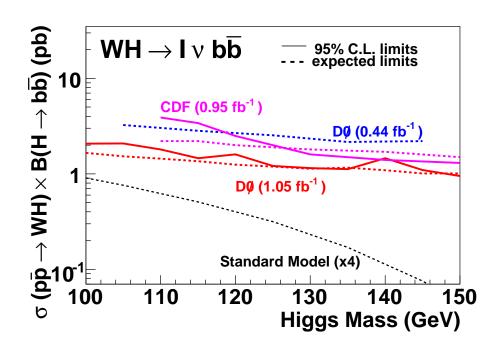
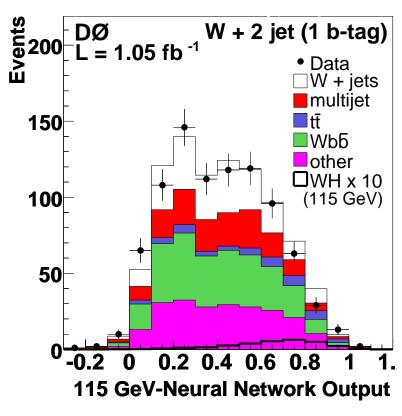
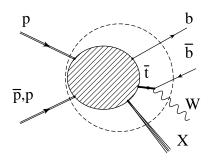

Associated production of W/Z bosons with b-jets

Laura Reina

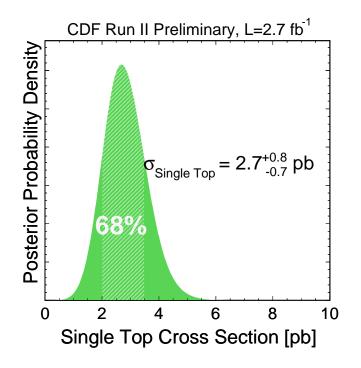

Workshop on Higgs Physics Phenomenology, Zürich, January 09

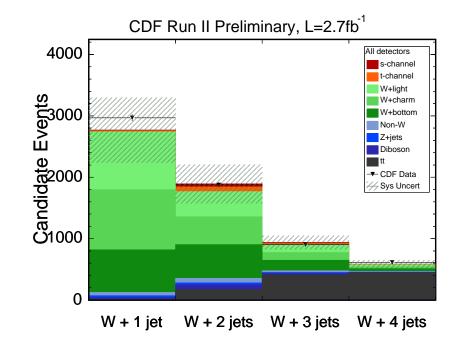

- Motivations: main background to
 - $\rightarrow WH/ZH$ associated production;
 - \rightarrow $H/A + b\bar{b}$ and other signals of new physics;
 - \rightarrow single-top production;
 - $\rightarrow t\bar{t}$ production;
 - \rightarrow several non-standard model signatures.
- New studies:
 - $\rightarrow Wb\bar{b}/Zb\bar{b}$ at NLO, b massive (F. Febres Cordero, L. R., D. Wackeroth)
 - \rightarrow W + 1 b-jet, 4FNS and 5FNS merged at NLO (J. Campbell, K. Ellis, F. Febres Cordero, F. Maltoni, L. R., D. Wackeroth, S. Willenbrock)
- Outlook

Associated production of SM Higgs with weak vector bosons



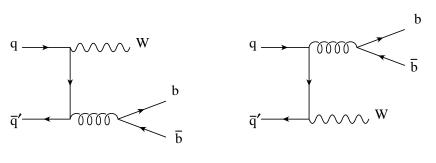
- → NNLO QCD corrections have been calculated for the signal [O.Brien, A.Djouadi and R.Harlander, 2004]
- $\longrightarrow O(\alpha)$ EW corrections have been calculated for the signal [M.L.Ciccolini, S.Dittmaier and M.Kramer, 2003]
- \rightarrow Results for WH associated production, August 2008

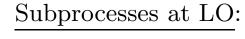



SM Single-Top production

- → NLO QCD corrections have been thoroughly studied [T.Stelzer, Z.Sullivan and S.Willenbrock, 1998; B.W.Harris, E.Laenen, L.Phaf, Z.Sullivan and S.Weinzierl, 2002; ...]
- → NLO EW corrections have been calculated for the (SM and MSSM) signal [M.Beccaria, G.Macorini, F.M.Renard and C.Verzegnassi, 2006]

\rightarrow Summer 2008

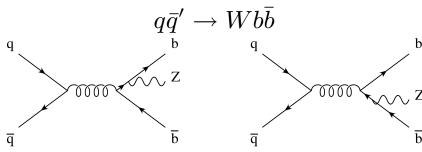


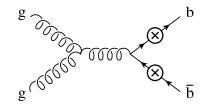

$Wb\bar{b}/Zb\bar{b}$ production at NLO, some history ...

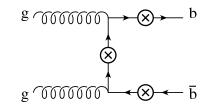
- $V \longrightarrow 4 \text{ partons (1-loop massless amplitudes) (Bern, Dixon, Kosower (97))}$
- $p\bar{p}, pp \to Vb\bar{b}$ (at NLO, 4FNS, $m_b = 0$) (Campbell, Ellis (99))
- $p\bar{p}, pp \to Vb + j$ (at NLO, 5FNS) (Campbell, Ellis, Maltoni, Willenbrock (05,07))
- $p\bar{p}, pp \to Wb\bar{b}$ (at NLO, 4FNS, $m_b \neq 0$) (Febres Cordero, L.R., Wackeroth (06))
- $p\bar{p}, pp \to Zb\bar{b}$ (at NLO, 4FNS, $m_b \neq 0$) (Febres Cordero, L.R., Wackeroth (08))
- $p\bar{p}, pp \to W + 1 b$ -jet (at NLO, 5FNS+4FNS with $m_b \neq 0$) (Campbell, Ellis, Febres Cordero, Maltoni, L.R., Wackeroth, Willenbrock (08))

$Wb\bar{b}/Zb\bar{b}$ production with full m_b effects

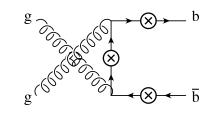
LO Feynman diagrams:




 $\longrightarrow Wb\bar{b}: q\bar{q}' \to Wb\bar{b}$


 $\longrightarrow Zb\bar{b}: q\bar{q} \to Zb\bar{b}$ and

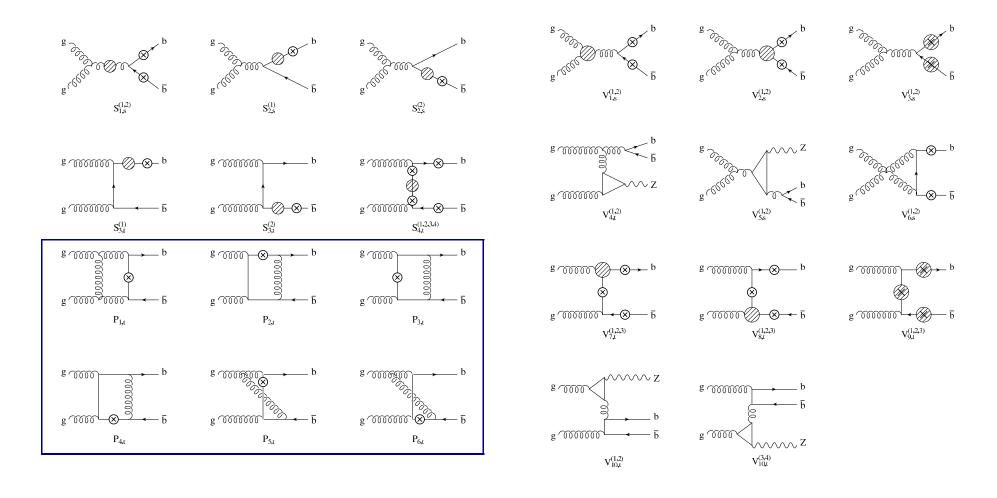
 $gg o Zb \overline{b}$



$$q \bar q o Z b \bar b$$

$$gg \to Zb\bar{b}$$

Including $O(\alpha_s)$ corrections


$$\hat{\sigma}_{ij}^{\text{NLO}}(x_1, x_2, \mu) = \alpha_s^2(\mu) \left\{ f_{ij}^{\text{LO}}(x_1, x_2) + \frac{\alpha_s(\mu)}{4\pi} f_{ij}^{\text{NLO}}(x_1, x_2, \mu) \right\}$$

$$\equiv \hat{\sigma}_{ij}^{\text{LO}}(x_1, x_2, \mu) + \delta \hat{\sigma}_{ij}^{\text{NLO}}(x_1, x_2, \mu) ,$$

$$\delta \hat{\sigma}_{ij}^{\text{NLO}} = \hat{\sigma}_{ij}^{\text{virt}} + \hat{\sigma}_{ij}^{\text{real}} .$$

- Virtual Corrections: consist of one-loop diagrams interfered with corresponding LO amplitude
 - $Wb\bar{b}$: one subprocess, $q\bar{q}' \to Wb\bar{b}$
 - $Zb\bar{b}$: two subprocesses, $q\bar{q} \to Zb\bar{b}$ and $gg \to Zb\bar{b}$
- Real Corrections: consist of tree level diagrams with one extra parton
 - $-Wb\bar{b}+k$: two subprocess, $q\bar{q}'\to Wbb+g$ and $q(\bar{q})g\to Wb\bar{b}+q'(\bar{q}')$
 - $Zb\bar{b}+k$: three subprocesses, $q\bar{q}\to Zb\bar{b}+g$, $gg\to Zb\bar{b}+g$ and $q(\bar{q})g\to Zb\bar{b}+q(\bar{q})$

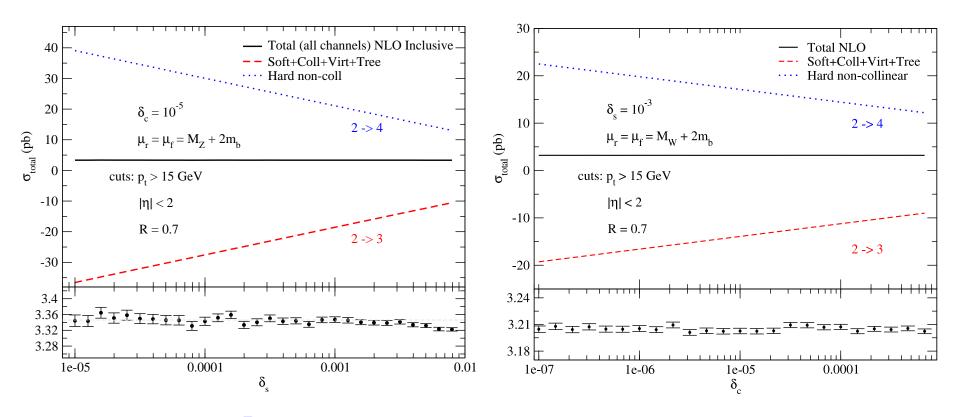
NLO at a glance: the $gg \to Zb\bar{b}$ virtual diagrams.

Checking boxes and pentagons using unitarity methods.


The one-loop amplitude can be written as

$$\mathcal{M} = \sum_{i} d_{i} I_{4}^{i} + \sum_{i} c_{i} I_{3}^{i} + \sum_{i} b_{i} I_{2}^{i} + \sum_{i} a_{i} I_{1}^{i}$$

- → tadpoles, bubbles and vertices are easy in FD's language;
- boxes and pentagons are the real hurdle (tensor integrals up to rank 4)


 I_4^i scalar 4-point functions originate from box and pentagon diagrams. Calculating d_i with unitarity methods is a powerful check!

easy using quadrupole cuts!

Britto, Cachazo, Feng Bern, Dixon, Kosower

Real corrections: phase space slicing with 2 cutoffs.

 δ_s run for the $Zb\bar{b}$ total cross section

 δ_c run for the $Wb\bar{b}$ total cross section

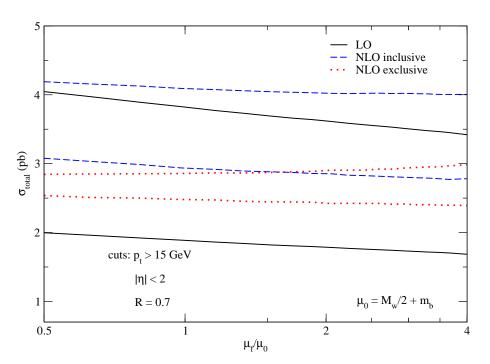
- \longrightarrow Cross section independent of unphysical cutoffs δ_s and δ_c
- \longrightarrow In the following we fix $\delta_s = 10^{-3}$ and $\delta_c = 10^{-5}$

W/Z + 2 b-jets

Febres Cordero, L.R., Wackeroth (06-08)

- We use the k_T jet algorithm with R = 0.7 and study two cases:
 - \rightarrow Inclusive Cross Section: events with two $(b + \bar{b})$ or three $(b + \bar{b} + j)$ jets resolved contribute to the cross section.
 - \rightarrow Exclusive Cross Section: only events with two $(b + \bar{b})$ jets resolved contribute to the cross section.

Same convention used by MCFM (used to obtain the results for $m_b = 0$).

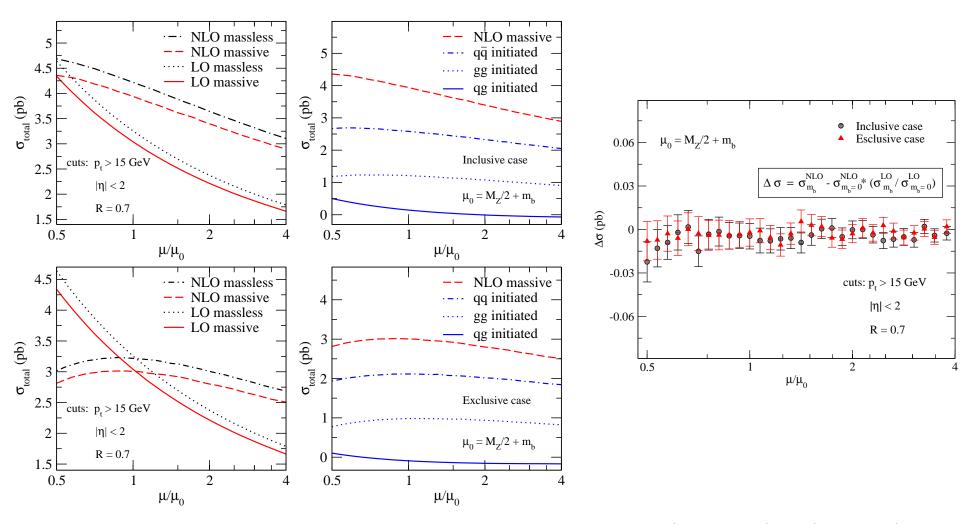

- *b*-jet kinematical cuts:
 - \rightarrow Transverse momentum of the *b*-jets: $p_t > p_{t, min}$ (15-25 GeV) for both *b* and \overline{b} jets.
 - \rightarrow Pseudorapidity: $|\eta| < \eta_{max}$ (2-2.5) for both b and \overline{b} jets.
- PDF: for LO results we use 1-loop evolution of α_s and CTEQ6L1, while for NLO results 2-loop evolution of α_s and CTEQ6M.

Summary of LO and NLO total cross sections, Tevatron massive and massless calculation, setting $\mu_r = \mu_f = M_V + 2m_b \ (V = W, Z)$.

Cross Section, $Wb\bar{b}$	$m_b \neq 0 \text{ (pb) [ratio]}$	$m_b = 0 \text{ (pb) [ratio]}$
$\sigma^{ m LO}$	2.20[-]	2.38[-]
$\sigma^{ m NLO}$ inclusive	3.20[1.45]	3.45[1.45]
$\sigma^{ m NLO}$ exclusive	2.64[1.2]	2.84[1.2]

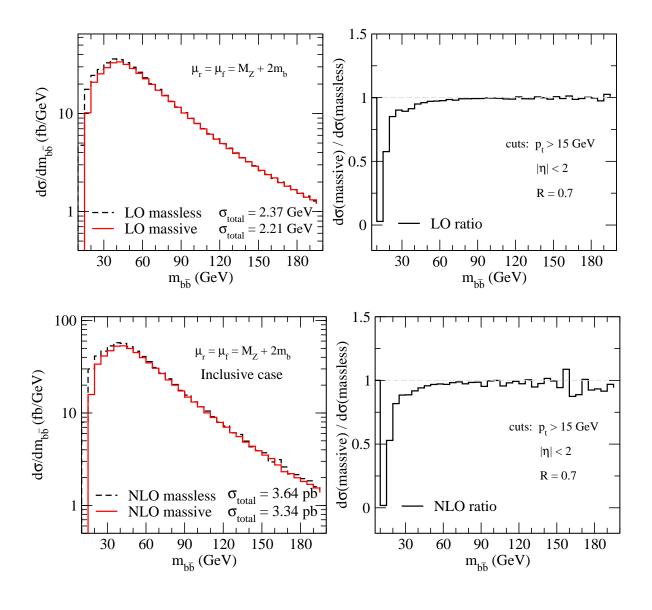
Cross Section, $Zb\bar{b}$	$m_b \neq 0 \text{ (pb) [ratio]}$	$m_b = 0 \text{ (pb) [ratio]}$
$\sigma^{ m LO}$	2.21[-]	2.37[-]
$\sigma^{ m NLO}$ inclusive	3.34[1.51]	3.64[1.54]
$\sigma^{ m NLO}$ exclusive	2.75[1.24]	3.01[1.27]

Scale dependence and theoretical uncertainty at NLO, Tevatron

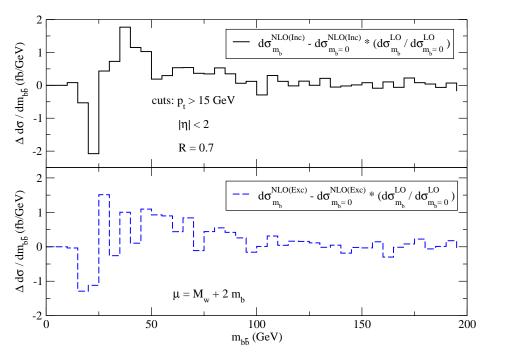


 $Wb\bar{b}$: Tevatron (PRD 74 (2006) 034007)

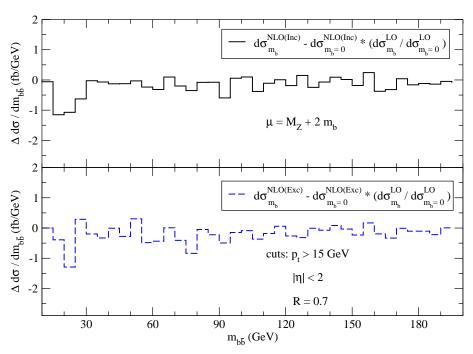
 $Zb\bar{b}$: Tevatron (PRD 78 (2008) 074014)


- Bands obtained by varying both μ_R and μ_F between $\mu_0/2$ and $4\mu_0$ (with $\mu_0 = m_b + M_V/2$ (V = W, Z)).
 - LO uncertainty $\sim 40\%$.
 - Inclusive NLO uncertainty $\sim 20\%$.
 - Exclusive NLO uncertainty $\sim 10\%$.

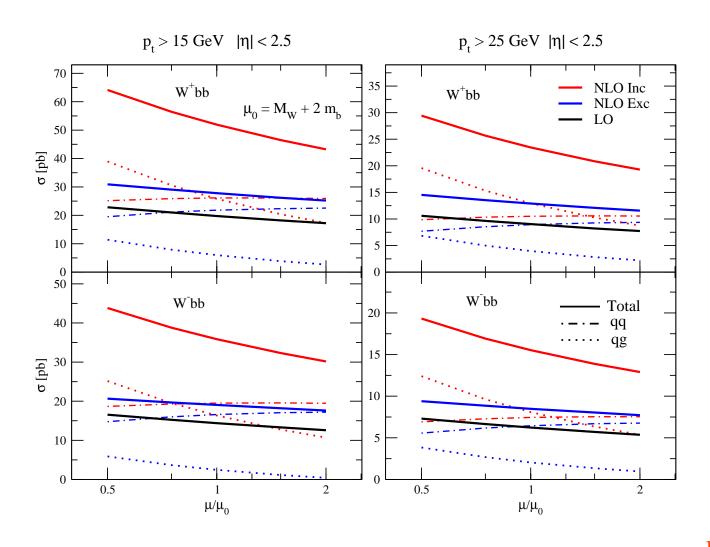
$Zb\bar{b}$, scale dependence: LO vs NLO and massless vs massive

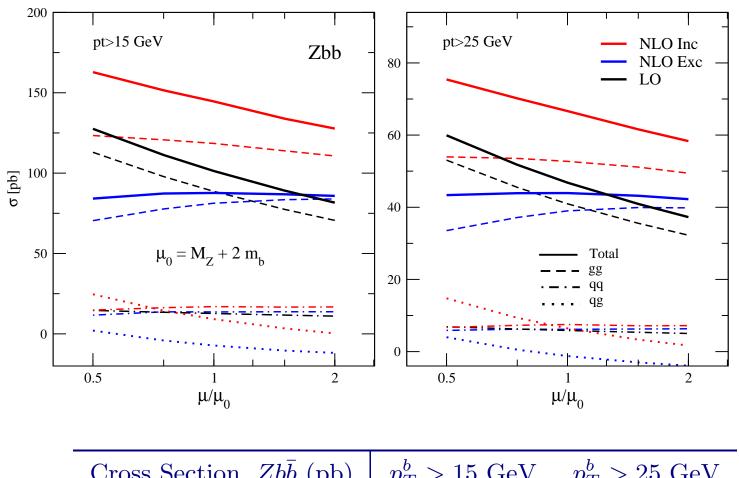


(PRD 78 (2008) 074014)


 $Zb\bar{b}$: $m_{b\bar{b}}$ distributions, massive vs massless

$Wb\bar{b}/Zb\bar{b}, m_{b\bar{b}}$ distributions: testing rescaling LO \rightarrow NLO


 $Wb\bar{b}$: PRD 74 (2006) 034007

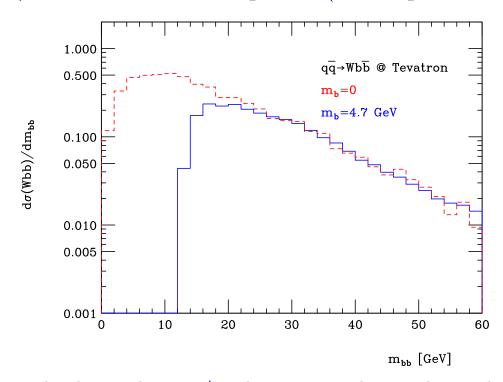


 $Zb\bar{b}$: PRD 78 (2008) 074014

Clear effect in the low $m_{b\bar{b}}$ invariant mass region.

Scale dependence and theoretical uncertainty at NLO, LHC

Cross Section, $Zb\bar{b}$ (pb)	$p_T^b > 15 \text{ GeV}$	$p_T^b > 25 \text{ GeV}$
$\sigma^{ m LO}$	$101.3~(\pm 22\%)$	$46.8~(\pm 23\%)$
$\sigma^{ m NLO}$ inclusive	$144.6 \ (\pm 12\%)$	$66.6~(\pm 13\%)$
$\sigma^{\rm NLO}$ exclusive	87.7 (±3%)	$43.9~(\pm 2\%)$


W + 1 b-jet

Campbell, Ellis, Febres Cordero, Maltoni, L.R., Wackeroth, Willenbrock (0809.3003)

Consistently combine 4FNS $(m_b \neq 0)$ and 5FNS $(m_b = 0)$ at NLO in QCD:

- 1. $q\bar{q}' \to Wb\bar{b}$ at tree level and one loop $(m_b \neq 0)$
- 2. $q\bar{q}' \to Wb\bar{b}g$ at tree level $(m_b \neq 0)$
- 3. $bq \to Wbq'$ at tree level and one loop $(m_b = 0)$
- 4. $bq \to Wbq'g$ and $bg \to Wbq'\bar{q}$ at tree level $(m_b = 0)$
- 5. $gq \to Wb\bar{b}q'$ at tree level $(m_b \neq 0)$ (\to avoiding double counting.)

- improved scale dependence: NLO corrections to $gq \to Wb\bar{b}q'$ partially included;
- need to keep $m_b \neq 0$ for final state b quarks (one b quark has low p_T)

- four signatures studied: exclusive/inclusive, with single and double-b jets, using $p_T^j > 15$ GeV, $|\eta^j| < 2 2.5$, cone algorithm with $\Delta R = 0.7$:
 - $\rightarrow Wb, W(b\bar{b}) \text{ (exclusive)}$
 - $\rightarrow Wb$ and Wb + j, $W(b\bar{b})$ and $W(b\bar{b}) + j$ (inclusive)

which can be combined to obtain different backgrounds, ...

• both contributions play important complementary roles (Tevatron/LHC, inclusive/exclusive);

• NLO results at a glance:

	Exclusive cross sections (pb)	
Collider	Wb	$W(bar{b})$
$TeV W^+ (= W^-)$	8.02+0.62[-0.05]=8.64	3.73 - 0.02[-0.02] = 3.71
LHC W^+	40.0+48.4[22.6]=88.4	22.7+11.7[11.7]=34.4
LHC W^-	29.8+29.4[12.6]=59.2	17.2 + 6.5[6.5] = 23.7

	Inclusive cross sections (pb)	
Collider	Wb + X	$W(b\bar{b}) + X$
$TeV W^+(=W^-)$	11.77+2.40[0.77]=14.17	4.17 + 0.39[0.39] = 4.56
LHC W^+	53.6+136.1[68.9]=189.7	25.1+35.9[35.9]=61.0
LHC W^-	39.3+88.2[44.6]=127.5	18.9+23.6[23.6]=42.5

- \longrightarrow first number: Processes 1 + 2 (pure 4FNS)
- \longrightarrow second number: Processes $3+\cdots+5$ (pure 5FNS plus $qg\to Wb\bar{b}+q'$)
- \longrightarrow number in square brackets: Process 5 alone $(qg \to Wb\bar{b} + q')$

Ongoing and future activity on $W/ZQ\bar{Q}$ production ...

- Final results for $W/Zb\bar{b}$ production at the LHC soon to appear.
- Provide input to experimentalists:
 - \triangleright DØ, CDF, both Higgs and single-top working groups: provide parton level distributions with specific cuts;
 - ▶ CMS Higgs working group: provide parton level distributions with specific cuts and interface with NLO parton shower Monte Carlo (POWHEG).
- Z + 1b-jet using both 4FNS with $m_b \neq 0$ and 5FNS NLO calculations: quite different pattern!
 - $\triangleright bg \rightarrow Zb$ at tree level and one loop (with $m_b = 0$);
 - $\triangleright bg \rightarrow Zb + g, bq \rightarrow Zb + q \text{ (with } m_b = 0);$
 - $ightharpoonup q\bar{q}, gg \to Zb\bar{b}$ at tree level and one loop (with $m_b \neq 0$);
 - $ightharpoonup q\bar{q}, gg \to Zb\bar{b} + g \text{ and } gq(g\bar{q}) \to Zb\bar{b} + q(\bar{q}) \text{ (with } m_b \neq 0).$

NNLO $bg \rightarrow Zb$ could be comparable to 4FNS NLO.