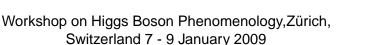
When Higgs Production & Decay QCD Dressed, Met EW

Giampiero PASSARINO

Dipartimento di Fisica Teorica, Università di Torino, Italy
INFN, Sezione di Torino, Italy
HEPTOOLS Network



Based on work done in collaboration with Stefano Actis, Christian Sturm and Sandro Uccirati

Thanks: M. Grazzini, M. Spira, P. Kant

Outlines

(1, 2,)

From the analytical structure of EW NNLOs

to their numerical evaluation and their interplay with OCD.

what else, but the inevitable:

Outlines

From the analytical structure of EW NNLOs

their numerical evaluation and their interplay with OCD,

what else, but the inevitable!

Outlines

(1, 2,)

• From the analytical structure of EW NNLOs

to their numerical evaluation and their interplay with OCD,

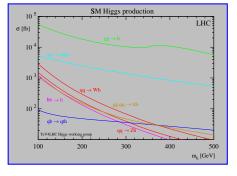
what else, but the inevitable!

Part I

Preludio

Introduction & Motivation

Higgs production



Dominant production mechanism:Gluon fusion

NLO QCD

- Heavy top-quark limit:
 Dawson; Djouadi, Spira, Zerwas
- Entire Higgs-mass range:
 Djouadi, Graudenz, Spira, Zerwas; Harlander,
 Kant; Anastasiou, Beerli, Bucherer, Daleo,
 Kunszt; Adlietti, Bonciani, Degrassi, Vincini

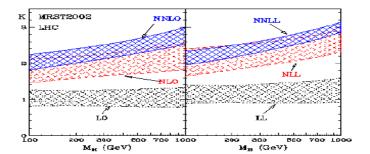
NNLO QCD

Harlander; Catani, Florian, Grazzini; Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, Neerven; Anastasiou, Melnikov, Petriello; Catani, Grazzini

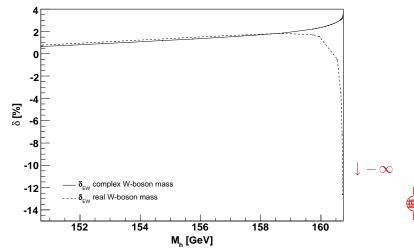
QCD & K - factor(s)

The bulk

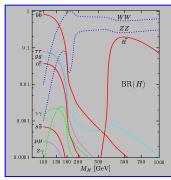
From LO to NNLO and NNLL



What about EW? NLO for $\gamma\gamma$



Introduction & Motivation



Diouadi, Graudenz, Spira, Zerwas

- H → WW, ZZ dominant process for heavy Higgs boson
- $H \rightarrow b\overline{b}$ dominant process for light Higgs, but huge QCD background.
- $H \rightarrow \gamma \gamma$ rare process Br $\sim 10^{-3}$, but experimentally clean
- NLO EW
 - corrections of $\mathcal{O}(G_f m_t^2)$ Liao,Li; Fugel, Kniehl, Steinhauser
 - corrections of $\mathcal{O}(G_f m_h^2)$ Korner, Melnikov, Yakovlev
 - exact light-fermion contribution
 Aglietti, Bonciani, Degrassi, Vincini
 - Contributions involving top-quark and weak bosons exp. in $M_h^2/(4M_w^2)$ Degrassi, Maltoni
- ← full EW corrections: in this talk

Actis, Passarino, C.S., Uccirati

From PO to RO

from $gg \rightarrow H$ to $pp \rightarrow gg(\rightarrow H) + X$

QCD, light Higgs →

NLO K-fact. $\approx 1.7 - 1.9$

EW < 2008 ¬

- approximate
- incomplete
- divergent

∃ Uncertainty

From PO to RO

from $gg \rightarrow H$ to $pp \rightarrow gg(\rightarrow H) + X$

QCD, light Higgs \sim

NLO K-fact. $\approx 1.7 - 1.9$ NNLO K-fact. $\approx 2.0 - 2.2$

EW < 2008 ¬

- approximate
- incomplete
- divergent

∃ Uncertainty

From PO to RO

from $gg \rightarrow H$ to $pp \rightarrow gg(\rightarrow H) + X$

QCD, light Higgs \rightsquigarrow

NLO K-fact. $\approx 1.7 - 1.9$ NNLO K-fact. $\approx 2.0 - 2.2$

EW < 2008 ¬

- approximate
- incomplete
- divergent

∃ Uncertainty

From PO to RO

from $gg \rightarrow H$ to $pp \rightarrow gg(\rightarrow H) + X$

QCD, light Higgs \rightsquigarrow

NLO K-fact. $\approx 1.7 - 1.9$ NNLO K-fact. $\approx 2.0 - 2.2$

EW < 2008 ¬

- approximate
- incomplete
- divergent

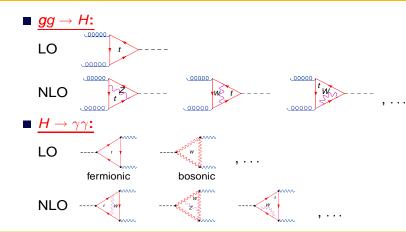
∃ Uncertainty

Part II

Intermezzo

Introduction & Motivation

...some diagrams contributing to the EW 2-loop corrections



C. Sturm

Brookhaven Forum, Terra Incognita: from LHC to Cosmology, November 7th, 2008

Calculation & Techniques

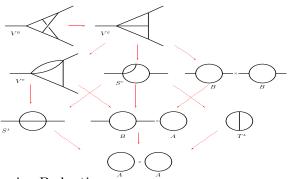
2-loop contributions are computed numerically:

- Diagrams: GraphShot S. Actis, A. Ferroglia, G. Passarino, M. Passera, C.S., S. Uccirati Form3 based package for automatic generation and manipulation of 1- and 2-loop Feynman diagrams: insert Feynman-rules, perform traces, remove reducible scalar products, symmetrize integrals, reduction, counter terms, renormalization....
- UV-finite integrals classified into: scalar, vector and tensor type integrals
 mapped on form factors
- Form factors are evaluated numerically in parametric space
- Before num. integration: Cancel collinear sing. + Study threshold For a moment consider $H \rightarrow \gamma \gamma$ without loss of generality

C. Sturm

Brookhaven Forum, Terra Incognita: from LHC to Cosmology, November 7th, 2008

Generating the Amplitude: reduction



Recursive Reduction

Generic child topologies of the V^n parent topology. The five-line V^c diagram is obtained by removing one line of the V^n diagram; the second line contains the child topologies of V^c (V^a , S^c and $B \times B$). The third line contains the topologies S^A , $B \times A$ and T^A , obtained by removing one line from the diagrams above. The arrows indicate the correspondences between parent and child topologies.

Generating the Ampitude

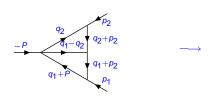
Strategy

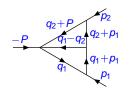
group diagrams into families, paying attention to permutation of external legs

Rooting

Strategy

mapping onto a standard rooting for loop momenta



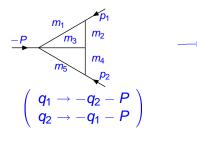


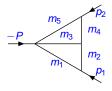
$$\left(egin{array}{c} q_1
ightarrow -q_1 - P \ q_2
ightarrow -q_2 - P \end{array}
ight)$$

Symmetry

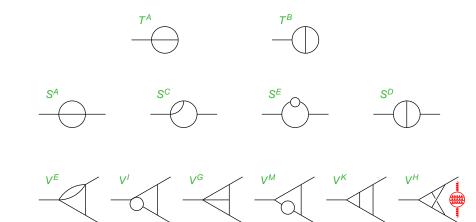
Strategy

apply symmetries to identify identical objects





List-of-diagrams: all what is needed



All-you-can-do-analytic

rule-of-the-game

Adelante Numerics, cum judicio

UV

- UV poles, of course
- beware, overlapping divergencies

- Collinear logs, of course

upshot

Cancellations, if any, enforced analytically

All-you-can-do-analytic

rule-of-the-game

Adelante Numerics, cum judicio

UV

- UV poles, of course
- beware, overlapping divergencies

IR/Coll

- IR poles, of course
- Collinear logs, of course

upshot

Cancellations, if any, enforced analytically

Collinear

Example

double divergency → double subtraction

$$\int_{0}^{1} dx dy \frac{1}{xyA(x,y) + \lambda B(x,y)} = \int_{0}^{1} dx dy \left\{ \frac{1}{xyA(x,y) + \lambda B(x,y)} \Big|_{++} \right.$$

$$\left. + \frac{1}{xyA(x,0) + \lambda B(x,0)} \Big|_{+} + \frac{1}{xyA(0,y) + \lambda B(0,y)} \Big|_{+} \right.$$

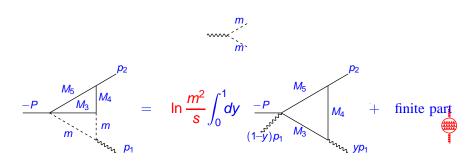
$$\left. + \frac{1}{xyA(0,0) + \lambda B(0,0)} \right\}, \quad \lambda \to 0$$

- First term \rightarrow set $\lambda = 0$
- Second (third) term \rightarrow integrate in $y(x) \rightsquigarrow \ln \lambda$ Last term \rightarrow integrate in x and $y \rightsquigarrow \ln^2 \lambda$

Extracting Collinear divergencies

Theorem

Coefficients of collinear logarithms are integrals of one-loop functions



Extracting Collinear divergencies

Example

Sometimes the answer is explicit

$$= \ln \frac{m^2}{s} \ln \frac{m'^2}{s} \operatorname{Li}_2\left(\frac{s}{M^2}\right) + \left(\ln \frac{m^2}{s} + \ln \frac{m'^2}{s}\right)$$

$$\left[\operatorname{Li}_3\left(\frac{s}{M^2}\right) + 2 S_{12}\left(\frac{s}{M^2}\right) - \ln \frac{M^2}{s} \operatorname{Li}_2\left(\frac{s}{M^2}\right)\right] + \text{ finite part}$$

General results I

Coll. behavior of arbitrary two-loop *q* -scalar, UV-finite diagrams

General results II

Generalization to tensor integrals

$$\stackrel{p}{\sim} \sqrt{q^{\nu_1} \dots q^{\nu_r}} \qquad q_a^{\nu_1} \dots q_a^{\nu_m} \qquad = \qquad \ln \frac{m^2}{s} \left[1 - \frac{\epsilon}{2} \Delta_W(s) - \frac{\epsilon}{4} \ln \frac{m^2}{s} \right]$$

$$\stackrel{p}{\sim} \sqrt{q^{\nu_1} \dots q^{\nu_r}} \qquad q_a^{\nu_1} \dots q_a^{\nu_m} \qquad = \qquad \ln \frac{m^2}{s} \left[1 - \frac{\epsilon}{2} \Delta_W(s) - \frac{\epsilon}{4} \ln \frac{m^2}{s} \right]$$

$$\times \int_{0}^{1} dz (-z)^{r} \left(q_{a}^{\mu_{1}} \dots q_{a}^{\mu_{m}}\right) p^{\nu_{1}} \dots p^{\nu_{r}} + \text{c. f.}$$

General results III

$$\omega = -P^{2}/M^{2}, I_{\omega} = \ln(1 - \omega)$$

$$V_{dc}^{H} = \left[P^{2}M^{2} + 2P^{2}q_{1} \cdot p_{1} - 4(q_{1} \cdot p_{1})^{2}\right] \xrightarrow{P} M M M M$$

$$= 2\left(1 - \frac{1 + \omega}{\omega}I_{\omega}\right)LL' + 2\left[1 + \frac{1 + \omega}{\omega}I_{\omega}(I_{\omega} - 1) + \text{Li}_{2}(\omega)\right](L + L')$$

$$- 2\int_{0}^{1} dz \left[(1 - z)P^{2}L + (P^{2} + 2q \cdot p_{2})L'\right] \xrightarrow{P} M M$$

Extracting Ultraviolet divergencies

$$\begin{split} V' &= & \stackrel{p_2}{-P} \underbrace{ \begin{array}{c} m_5 \\ m_2 \\ m_3 \end{array} } \begin{array}{c} m_2 \\ m_4 \\ p_1 \\ \end{array} = \underbrace{ \frac{1}{\pi^4} \int \underbrace{ \begin{array}{c} d^n q_1 \ d^n q_2 \\ \hline{[1][2][3][4][5]}, \end{array} }_{X} \underbrace{ \begin{array}{c} [1] = q_1^2 + m_1^2 \\ [2] = (q_1 - q_2)^2 + m_2^2 \\ [3] = q_2^2 + m_3^2 \\ [4] = (q_2 + p_1)^2 + m_2^2 \\ [5] = (q_2 + P)^2 + m_5^2 \\ \end{array} \\ &= & C_\epsilon \int_0^1 \! dx \int dS_3(y_1, y_2, y_3) \left[x \, (1 - x) \right]^{-\epsilon/2} \left(1 - y_1 \right)^{\epsilon/2 - 1} \, V^{-1 - \epsilon} \end{split}$$

The single pole can always be expressed in terms of 1L.

$$V' = \frac{m_3^2}{m_3} \times \frac{m_1}{m_3} \times \frac{p_2}{m_3} + \text{ finite part.}$$

Checks

Off-shell WSTIs involving special sources contracted sources → black circles physical ones → gray boxes

$$\Box \overset{\gamma}{\longrightarrow} + \Box \overset{\gamma}{\longrightarrow} + \Box \overset{\gamma}{\longrightarrow} + \Box \overset{\gamma}{\longrightarrow} + \Box \overset{\gamma}{\longrightarrow} =$$

Tasting numerical evaluation

Finite parts

Write the **finite part** of a FD in one of the following forms:

- \bigcirc $\int dx Q(x) \ln^n V(x);$

Typical integrand with k Feynman variables:

$$z_1^{n_1} \cdots z_k^{n_k} V^{\mu}(z_1, \dots, z_k) \ln^m V(z_1, \dots, z_k),$$

 $\mu = -1, -2, \quad \{z\} \subseteq [0, 1]^k$

V quadratic with respect to a subset of $\{z\}$ in which each z_i^2 is proportional to one squared external momentum.

bite-and-run strategy I

Multivariate Polylogs

- V is not complete
 - $\mu = -1$ and m = 0 (m > 0 similar)

$$\frac{1}{ax+b} = \partial_x \frac{1}{a} \ln \left(1 + \frac{a}{b} x \right)$$

• $\mu = -2$ and m = 0 (m > 0 similar)

$$\frac{1}{(axy+bx+cy+d)^2} = -\frac{\partial_x \partial_y}{ad-bc}$$

$$\times \ln\left\{1 + \frac{(ad-bc)x}{b(axy+bx+cy+d)}\right\}$$

00000000000000000

bite-and-run strategy II

Multivariate PolyLogs

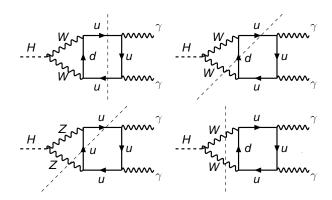
V is complete

$$\begin{array}{rcl} V(z) & = & z^t \, H \, z + 2 \, K^t \, z + L = (z^t - Z^t) \, H \, (z - Z) + B \\ & = & Q(z) + B, \\ Z & = & -K^t H^{-1}, \ B = L - K^t H^{-1} K, \\ \mathcal{P}^t \partial_z \, Q(z) & = & -Q(z), \ \mathcal{P} = -(z - Z)/2, \\ V^{\mu}(z) & = & \left(\beta - \mathcal{P}^t \, \partial_z\right) \int_0^1 \! \mathrm{d} y \, y^{\beta - 1} \left[Q(z) \, y + B \right]^{\mu} \\ \mathrm{e.g.} \ V^{-1} & = & \left(1 - \mathcal{P}^t \, \partial_z\right) \frac{1}{Q} \ln \left(1 + \frac{Q}{B}\right) \end{array}$$

Part III

Andante

Around threshold



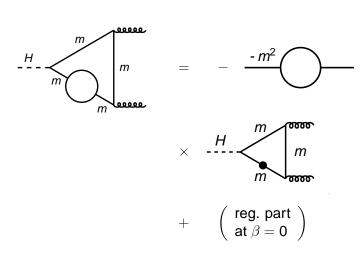
Singularities

• FD have a complicated analytical structure

 A frequently encountered singular behavior is associated with the so-called normal thresholds: the leading Landau singularities of self-energy-like diagrams

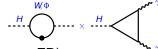
 which can appear, in more complicated diagrams, as sub-leading singularities.

$1/\beta$ -behavior

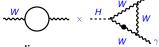


Origin of $1/\beta$

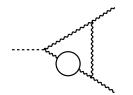
• (1-loop diagrams) ⊗ (H wave-function FR)



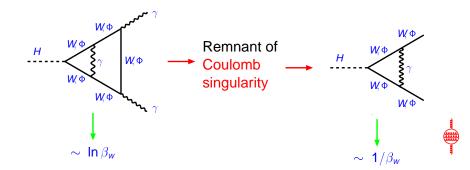
(1-loop diagrams) ⊗ (W mass FR)

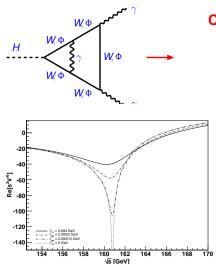


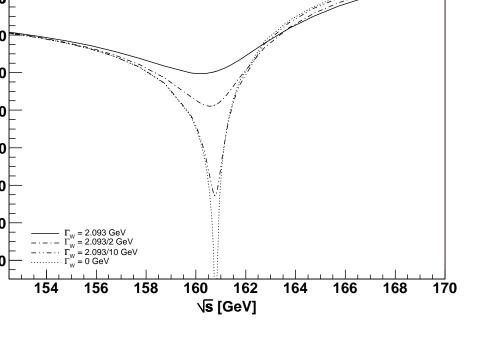
Pure 2-loop diagrams



Logarithmic singularities







Part IV

Impetuoso

RM scheme - none

 where masses are the real on-shell ones; it gives the extension of the generalized minimal subtraction scheme up to two loop level.

MCM scheme - minimal

- start by removing the Re label in those terms that, coming from finite renormalization, violate WSTIs.
- split the amplitude

$$\mathcal{A}^{ ext{NLO}} = \sum_{i = WZ} rac{\mathcal{A}_{ ext{SR},i}}{eta_i} + \mathcal{A}_{ ext{LOG}} \ln \left(-eta_W^2 - i 0
ight) + \mathcal{A}_{ ext{REM}},$$

RM scheme - none

 where masses are the real on-shell ones; it gives the extension of the generalized minimal subtraction scheme up to two loop level.

MCM scheme - minimal

- start by removing the Re label in those terms that, coming from finite renormalization, violate WSTIs.
- split the amplitude

$$\mathcal{A}^{ ext{NLO}} = \sum_{i = WZ} rac{\mathcal{A}_{ ext{SR},i}}{eta_i} + \mathcal{A}_{ ext{LOG}} \ln \left(-eta_W^2 - i 0
ight) + \mathcal{A}_{ ext{REM}},$$

MCM scheme - minimal

 After proving that all coefficients, gauge-parameter independent by construction, satisfy the WST identities, we minimally modify the amplitude introducing the complex-mass scheme of for the divergent terms.

$$\begin{array}{lcl} m_i^2 & = & M_i^2 \left[1 + \frac{G_F M_W^2}{2\sqrt{2} \, \pi^2} \mathrm{Re} \Sigma_i^{(1)}(M_i^2) \right] & \Rightarrow \\ \\ m_i^2 & = & s_i \left[1 + \frac{G_F s_W}{2\sqrt{2} \, \pi^2} \Sigma_i^{(1)}(s_i) \right], \end{array}$$

pitfalls

A nice feature of the MCM scheme is its simplicity

MCM scheme - minimal

• The MCM, however, does not deal with cusps associated with the crossing of normal thresholds.

MCM scheme - minimal

 The large and artificial effects arising around normal thresholds in the MCM scheme (or in RM scheme) are aesthetically unattractive.

 In addition, they represent a concrete problem in assessing the impact of two-loop EW corrections on processes

pitfalls

A nice feature of the MCM scheme is its simplicity

MCM scheme - minimal

 The MCM, however, does not deal with cusps associated with the crossing of normal thresholds.

MCM scheme - minimal

 The large and artificial effects arising around normal thresholds in the MCM scheme (or in RM scheme) are aesthetically unattractive.

 In addition, they represent a concrete problem in assessing the impact of two-loop EW corrections on processes

CM scheme - complete

 The procedure described for the divergent terms has been extended to the remainder A_{REM}. In particular, all two-loop diagrams have been computed with complex masses for the internal vector bosons.

CM scheme - complete

 In the full CM setup, the real parts of the W and Z self-energies induced by one-loop renormalization of the masses and the couplings have to be traded for the associated complex expressions.

CM scheme - complete

 The procedure described for the divergent terms has been extended to the remainder A_{REM}. In particular, all two-loop diagrams have been computed with complex masses for the internal vector bosons.

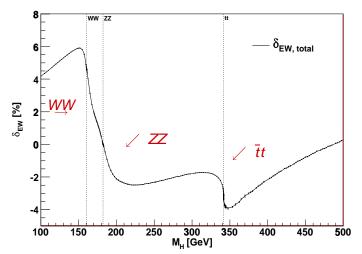
CM scheme - complete

 In the full CM setup, the real parts of the W and Z self-energies induced by one-loop renormalization of the masses and the couplings have to be traded for the associated complex expressions.

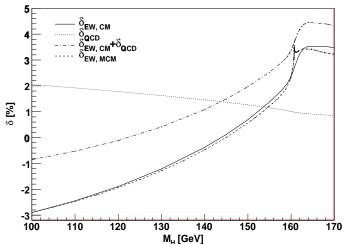
Part V

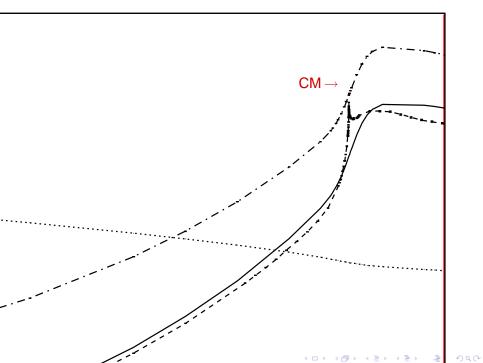
Allegro

EW on gluon-gluon fusion

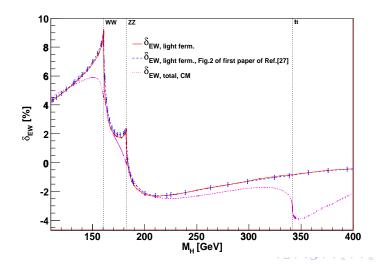


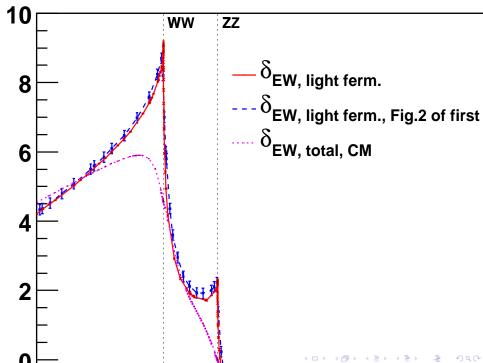
EW on decay ($\gamma\gamma$)



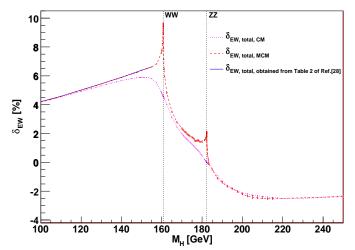


Comparing





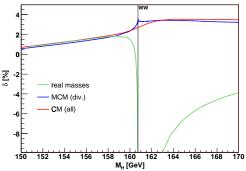
Comparing



Threshold behaviour for $H \rightarrow \gamma \gamma$

Corrections to $qq \rightarrow H$

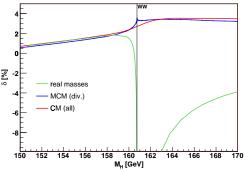
Comparison of EW corrections to $H \rightarrow \gamma \gamma$ around the WW threshold, obtained using different schemes for treating unstable particles



- Result obtained with <u>real masses</u> divergent at WW; good approx. below; completely off above threshold, since no cancellation mechanism occurs
- Result in MCM setup finite, shows cusp; result in CM setup is smooth
- At threshold, result in MCM setup \rightarrow 3.5%; result in CM setup \rightarrow 2.7% ⇒ prediction at the % level requires complete CMS implementation

Threshold behaviour for $H \rightarrow \gamma \gamma$

Comparison of EW corrections to $\underline{H \to \gamma \gamma}$ around the WW threshold, obtained using different schemes for treating unstable particles



- Result obtained with <u>real masses</u> divergent at WW; good approx. below; completely off above threshold, since no cancellation mechanism occurs
- Result in MCM setup finite, shows cusp; result in CM setup is smooth
- At threshold, result in MCM setup → 3.5%; result in CM setup → 2.7%
 ⇒ prediction at the % level requires complete CMS implementation

Part VI

Allegro Con Brio

EW on K-factors - uncertainty

We introduce two options for including NLO electroweak corrections

• CF (Complete Factorization):

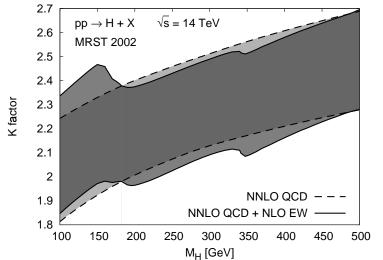
$$\sigma^{(0)} \mathbf{G}_{ij} \rightarrow \sigma^{(0)} \left(1 + \delta_{\scriptscriptstyle \mathrm{EW}} (M_{\scriptscriptstyle H}^2) \right) \mathbf{G}_{ij};$$

PF (Partial Factorization):

$$\sigma^{(0)} \; \boldsymbol{G}_{ij} \rightarrow \sigma^{(0)} \; \Big[\boldsymbol{G}_{ij} + \alpha_{\text{S}}^2(\boldsymbol{\mu}_{\text{R}}^2) \delta_{\text{EW}}(\boldsymbol{M}_{\text{H}}^2) \; \boldsymbol{G}_{ij}^{(0)} \Big],$$

Can we do it better? Babis, Radja and Frank say yes

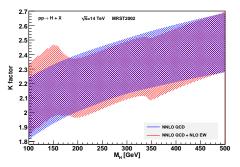
EW on K-factors - LHC



Result:

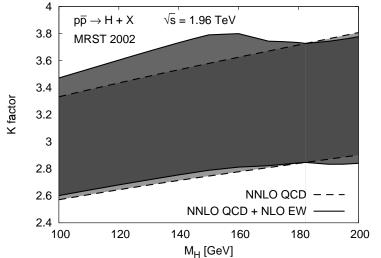
The hadronic process $pp \rightarrow H + X$

- Use Fortran program HiggsNNLO by M. Grazzini
- K-factor: Ratio cross section with higher orders over LO result

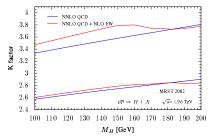


- Uncertainty band: Variation of μ_R , μ_F , PF, CF
- Central value for cross section is shifted by 2-5% ($M_{H} = 120 \text{ GeV}$)

EW on K-factors - Tevatron



Impact of NLO EW effects at Tevatron II, $\sqrt{s} = 1.96$ TeV, 100 GeV $< M_H <$ 200 GeV (using HiggsNNLO, by M.Grazzini)



Corrections to $qq \rightarrow H$

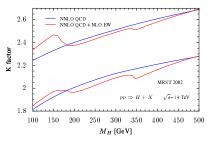
M_H	[GeV]	$\delta_{\mathrm{CF}} [\%]$	$\delta_{ extsf{PF}} \left[\% ight]$
	120	+4.9	+1.6
	140	+5.7	+1.8
	160	+4.8	+1.5
	180	+0.5	+0 .1
	200	-2.1	-0.6

- Uncertainty band shows stronger sensitivity on the Higgs mass, once NLO EW effects are included
- Impact of NLO EW corrections smaller respect to NNLL resummation Catani, de Florian, Grazzini, Nason'03 (+12% for M_H = 120 GeV)
- 95 % CL exclusion of a SM Higgs for M_H = 170 GeV, % effects relevant;
 CM result employed by Anastasiou, Boughezal, Petriello'08,
 prediction σ is 7 10% larger than σ used by TEVNPH WG

NLO EW corrections at the LHC

Corrections to $qq \rightarrow H$

Impact of NLO EW effects at LHC, $\sqrt{s} = 14$ TeV, 100 GeV $< M_H < 500$ GeV (using HIGGSNNLO, by M.Grazzini)



M_H	[GeV]	$\delta_{\mathrm{CF}} [\%]$	$\delta_{\mathrm{PF}}[\%]$
	120	+4.9	+2.4
	150	+5.9	+2.8
	200	-2.1	-1.0
	3 10	-1.7	-0.9
	4 10	-0.8	-0.8

- Uncertainty band shows stronger sensitivity on the Higgs mass, once NLO EW effects are included
- WW and tt thresholds visible, but smooth having introduced everywhere CMs
- Impact of NLO EW corrections comparable to that of NNLL resummation Catani, de Florian, Grazzini, Nason'03 (+6% for M_H = 120 GeV); for large M_H NLO EW corrections turn negative, screening effect with NNLL resummation

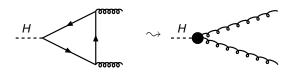
Part VII

Crescendo

Factorization I

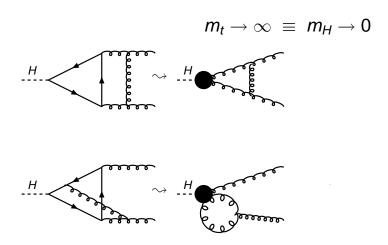
yes is thre loops at $M_{\rm H}=0$: effective theory

Operator expansion plus matching or brute force tadpoles



Factorization II

Building with Effective theory



Missing the real McCoy I

Define

- σ^{M} the mixed three-loop σ ;
- σ^{EW} the two-loop EW σ .
- How good is $\sigma^{M}(0)$? wrt $\sigma^{M}(M_{H})$? Assume it is

$$\sigma^{M}(M_{H}) = \sigma^{M}(0) + \mathbf{E}$$
 with \mathbf{E} small

What is usually done:

$$\sigma^{\scriptscriptstyle M}(M_{\scriptscriptstyle H})
ightarrow rac{\sigma^{\scriptscriptstyle M}(0)}{\sigma^{\scriptscriptstyle {
m EW}}(0)} \, \sigma^{\scriptscriptstyle {
m EW}}(M_{\scriptscriptstyle H})$$

the difference is

$$\frac{\sigma^{\scriptscriptstyle{M}}(0)\,\sigma^{\scriptscriptstyle{\rm EW}}(M_{\scriptscriptstyle{H}})-\sigma^{\scriptscriptstyle{M}}(M_{\scriptscriptstyle{H}})\,\sigma^{\scriptscriptstyle{\rm EW}}(0)}{\sigma^{\scriptscriptstyle{\rm EW}}(0)}$$

Missing the real McCoy II

If E is almost zero this difference is

$$rac{\sigma^{\scriptscriptstyle M}(0)}{\sigma^{\scriptscriptstyle \mathrm{EW}}(0)} \left[\sigma^{\scriptscriptstyle \mathrm{EW}}(M_{\scriptscriptstyle H}) - \sigma^{\scriptscriptstyle \mathrm{EW}}(0)
ight]$$

so, the effective error is in

$$\sigma^{M}(M_{H}) = \sigma^{M}(0) (1 + \mathbf{e})$$

with

$$\mathbf{e} = \frac{\sigma^{\text{EW}}(M_H)}{\sigma^{\text{EW}}(0)} - 1.$$

• at $M_H = 170 \,\text{GeV}$ this difference is not tiny at all which, contradicts the assumption that E is small.

Factorize or not Factorize?

$M_{\perp} = 0$ versus finite M_{\perp}

However

the altrenative is

$$\sigma^{M}(\mathbf{X}) = \sigma^{EW}(\mathbf{X}) (\mathbf{1} + \mathbf{\delta})$$

where δ doesn't depend on x.

How zero is $\sigma^{\text{\tiny EW}}(M_{\!\scriptscriptstyle H}) \left| \delta(0) - \delta(M_{\!\scriptscriptstyle H}) \right|$?

- impossible to prove it with just one point, x = 0;
- plausible, soft gluon dominance;
- more difficult than before, if the top triangle is almost point-like, here there is a structure with openings of thresholds etc.

Facts or Misfits?

Example

How good is heavy-top NLO QCD wrt complete NLO QCD?

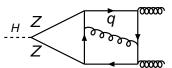
- from literature: excellent, · · ·
- From the Lion's Mouth (Spira):
 - the deviations of the heavy top mass limit from the fully massive result is in the range of 6% for 170 GeV Higgs mass at the Tevatron.
 - less than 15% for Higgs masses below $\approx 700\,\text{GeV}$
- from Harlander & Kant $\delta(170 \, \text{GeV})/\delta(0) 1 = 5.25\%$

Difficult to say at NNLO

Example

Approximation is fair enough if it remains $\approx 10\%$ of our 6%

• The main source of difference could come from diagrams without top: is $M_H \ll m_t \& M_W$ a good approximation?



Conclusions

Recapitulation

No matter what, NLO EW corrections to $gg \rightarrow H$ are under control without incongruent large effects around EW thresholds

Refrain

Next update of Tevatron analysis with higher luminosity should appear in February/March, ..., it looks like the old times with the two communities busy to fill a gap ...

Or, if I create a negative Higgs field and bombard the rest of the community with a stream of Higgs anti-bosons, it might disintegrate (free adaptation from Stephen Soderbergh's Solaris, 2002)

Conclusions

Recapitulation

No matter what, NLO EW corrections to $gg \rightarrow H$ are under control without incongruent large effects around EW thresholds

Refrain

Next update of Tevatron analysis with higher luminosity should appear in February/March, ..., it looks like the old times with the two communities busy to fill a gap ...

Or, if I create a negative Higgs field and bombard the rest of the community with a stream of Higgs anti-bosons, it might disintegrate (free adaptation from Stephen Soderbergh's Solaris, 2002).

