Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higgs

WBF-SUSY

Measuring (stuff in) the Higgs Sector

Tilman Plehn

Universität Heidelberg

Higgs Workshop, Zürich, 1/2009

Tilman Plehn

Higgs coupling

Minijet veto

SFitter-Higg

WBF-SUSY

Outline

Higgs couplings

Minijet veto

SFitter — Higgs couplings at LHC

Weak boson fusion and supersymmetry

Tilman Plehn

Higgs couplings

Minijet veta

SFitter-Higg

WBF-SUSY

Higgs couplings

Coupling extraction at the LHC [Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al.]

- super-optimistic scenario a la Michael Dittmar: LHC working and good data
- motivation: scalar little Higgs axions or radion or Higgs?
- light Higgs around 120 GeV: 10 main channels ($\sigma \times BR$) [bb channel new]
- measurements: $GF: H \rightarrow ZZ, WW, \gamma\gamma$ $WBF: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ $VH: H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam] $t\bar{t}H: H \rightarrow \gamma\gamma, WW, (b\bar{b})...$
- parameters: couplings $W, Z, t, b, \tau, g, \gamma$ [plus masses]
- hope: cancel uncertainties

 $\begin{array}{l} (WBF: H \rightarrow WW)/(WBF: H \rightarrow \tau\tau) \\ (WBF: H \rightarrow WW)/(GF: H \rightarrow WW)... \end{array}$

- goals: Higgs vs. scalars? SM vs MSSM? doublet vs. general Higgs?

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higg

NBF-SUSY

Higgs couplings

Coupling extraction at the LHC [Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al.]

- super-optimistic scenario a la Michael Dittmar: LHC working and good data
- motivation: scalar little Higgs axions or radion or Higgs?
- light Higgs around 120 GeV: 10 main channels ($\sigma imes BR$) [bb channel new]
- measurements: $GF: H \rightarrow ZZ, WW, \gamma\gamma$ $WBF: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ $VH: H \rightarrow b\bar{b}$ [Butterworth, Davison, Rubin, Salam] $t\bar{t}H: H \rightarrow \gamma\gamma, WW, (b\bar{b})...$
- parameters: couplings $W, Z, t, b, \tau, g, \gamma$ [plus masses]

Total width

- degeneracy: σ BR $\propto (g_{
 ho}^2/\sqrt{\Gamma_H})~(g_d^2/\sqrt{\Gamma_H})$
- additional constraint: $\sum \Gamma_i(g^2) < \Gamma_H \rightarrow \Gamma_H|_{min}$
- WW \rightarrow WW unitarity: $g_{WWH} \lesssim g_{WWH}^{SM} \rightarrow \Gamma_H|_{max}$
- width extraction hard
- \Rightarrow this analysis: $\Gamma_H = \sum_{\text{obs}} \Gamma_j$

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higgs

WBF-SUSY

Before talking measurements...

...remember minijet veto [Barger, Cheung, Han, Zeppenfeld; Rainwater, Szalapski, Zeppenfeld]

- backgrounds for WBF Higgs production

 $t\bar{t}$ with b tagging jet

- V/VV radiation off QCD 2-jet production
- V/VV radiation off ew 2-jet production
- signal: color/interference structure [disconnected 2-sided DIS; Han, Valencia, Willenbrock]
- veto central jets above $\sim 20 \cdots 30 \; \text{GeV}$ [survival probabilities between 25% and 90%]
- ⇒ will work, don't know how well [or QCD is wrong]

WBF rate measurement

- backbone of Higgs coupling analysis [many channels, clean structure]
- jet veto not used by experiments, lacking error estimate?
- straight-forward comparison between Monte Carlos not useful QCD simulation problem: recent progress great news
- large survival probabilities: fixed order [Zeppenfeld and friends] small survival probabilities: non-perturbative [jet merging: CKKW, MLM (Madgraph)] $W, Z, t\bar{t}$ backgrounds: measurement [Cranmer et al]
- gluon-fusion understood? [Andersen, Del Ducca, White]
- \Rightarrow meaningful error estimate on horizon

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higg

WBF-SUSY

Minijet veto

Preliminary (!!!) first study [TP, Schumann, Sherpas]

- first test with (measurable) Z+jets channels
- compute jet multiplicities as function of $p_{T,veto}$
- parton level: exponentiation approach [checked with truncated shower approximation]

$$P_n = \frac{\bar{n}^n}{n!} e^{-\bar{n}} \qquad \bar{n} = \frac{1}{\sigma_2} \int_{\rho_{T,veto}}^{\infty} dp_{T/3} \frac{d\sigma_3}{d\rho_{T/3}} \qquad \Rightarrow \qquad P_{veto} = 1 - e^{-\bar{n}}$$

- probably consistent for electroweak Z, devil is in the QCD details
- shown here because comments welcome

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higg

WBF-SUSY

Minijet veto

ŀ

Preliminary (!!!) first study [TP, Schumann, Sherpas]

- first test with (measurable) Z+jets channels
- compute jet multiplicities as function of $p_{T,veto}$
- parton level: exponentiation approach [checked with truncated shower approximation]

$$P_n = \frac{\bar{n}^n}{n!} e^{-\bar{n}} \qquad \bar{n} = \frac{1}{\sigma_2} \int_{\rho_{T,\text{veto}}}^{\infty} dp_{\overline{\tau}\overline{j}3} \frac{d\sigma_3}{dp_{\overline{\tau}\overline{j}3}} \qquad \Rightarrow \qquad P_{\text{veto}} = 1 - e^{-\bar{n}}$$

- CKKW merging of hard jets and parton shower
- only jet cuts, same renormalization scales,...

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higg

NBF-SUSY

Minijet veto

Preliminary (!!!) first study [TP, Schumann, Sherpas]

- first test with (measurable) Z+jets channels
- compute jet multiplicities as function of $p_{T, \text{veto}}$
- parton level: exponentiation approach [checked with truncated shower approximation]

$$P_{n} = \frac{\bar{n}^{n}}{n!} e^{-\bar{n}} \qquad \bar{n} = \frac{1}{\sigma_{2}} \int_{\rho_{T, \text{veto}}}^{\infty} dp_{T/3} \frac{d\sigma_{3}}{d\rho_{T/3}} \qquad \Rightarrow \qquad P_{\text{veto}} = 1 - e^{-\bar{n}}$$

- CKKW merging of hard jets and parton shower
- only jet cuts, same renormalization scales,...

- probably consistent for electroweak Z, devil is in the QCD details
- shown here because comments welcome
- \Rightarrow give us some time, we'll beat the startup, promised

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higgs

NBF-SUSY

SFitter — Higgs couplings at LHC

Parameter extraction [Lafaye, TP, Rauch, Zerwas]

- know-how from TeV-scale MSSM analysis [parameters from edges etc]
- parameters: weak-scale Higgs Lagrangian
- measurements: signal+background rates
- errors: statistics & systematics & theory
- questions: global structure of parameter space, secondary minima local structure of best points, error bars distributions for fewer parameters, correlations

Probability maps [Baltz,...; Roszkowski,...; Allanach,...; Fittino; SFitter]

- fully exclusive likelihood map p(d|m) over model space m
- local and global structure for different hypotheses
- Bayesian: $p(m|d) \sim p(d|m) p(m)$ with theorists' bias p(m) [cosmo, BSM] frequentist: best-fitting point $\max_m p(d|m)$ [flavor, here: cooling Markov chains]
- LHC aim: compute high-dimensional map p(d|m)find and rank local maxima in p(d|m)Bayesian-frequentist dance to reduce dimensions

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higgs

WBF-SUSY

SFitter — Higgs couplings at LHC

Alternative best-fit points and error bars

- all couplings varied around SM values $g_{HXX} = g_{HXX}^{SM} (1 + \delta_{HXX})$

 $-~\delta_{HXX} \sim -2$ means sign flip $_{[g_{HWW}>0}$ fixed, only broken by loops]

- alternative solutions for unsmeared data point

observable	1	2	3	4	5
δ_{HWW}	-0.01	0.25	-0.02	0.23	0.39
δ_{HZZ}	0.00	0.25	0.07	0.38	0.49
$\delta_{H\tau\tau}$	-0.00	0.27	0.08	0.21	0.40
δ_{Hbb}	-2.05	0.61	0.06	-2.67	-3.10
δ_{Htt}	-0.03	0.11	-2.07	-2.10	0.19
$\delta_{H\gamma\gamma}$	-2.07	-2.55	-0.48	-0.58	-2.83
δ_{Hgg}	-0.13	-2.27	0.22	2.28	-0.13
$\Delta \chi^2$ /dof	0	0.1175	0.342	0.4454	0.7331

- error bars for Standard Model hypothesis [smeared data point, no effective couplings]

observable	central	error	
δ_{HWW}	-0.18	- 0.22	+ 0.44
δ_{HZZ}	-0.31	- 0.74	+ 0.81
δ_{Htt}	-0.09	- 0.32	+ 0.48
δ_{Hbb}	-0.13	- 0.56	+ 0.76
$\delta_{H\tau\tau}$	-0.11	- 0.24	+ 0.53
m _H	120.00	- 0.27	+ 0.25
χ^2 /dof	19.09/10		

 \Rightarrow brand new results, only to show it can be done

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higgs

WBF-SUSY

SFitter — Higgs couplings at LHC

One-dimensional distributions

- limitations of the analysis with all errors included [true data set, no effective couplings]
- 30 vs 300 ${\rm fb^{-1}}$: similar cooled profile likelihoods

⇒ Rfit for sizeable theory error? Bayesian or likelihood?

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higgs

WBF-SUSY

SFitter — Higgs couplings at LHC

One-dimensional distributions

- limitations of the analysis with all errors included [true data set, no effective couplings]
- 30 vs 300 fb⁻¹: similar cooled profile likelihoods

similar Bayesian probabilities

⇒ Rfit for sizeable theory error? Bayesian or likelihood?

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higgs

WBF-SUSY

SFitter — Higgs couplings at LHC

One-dimensional distributions

- limitations of the analysis with all errors included [true data set, no effective couplings]
- 30 vs 300 fb⁻¹: similar cooled profile likelihoods similar Bayesian probabilities
- ⇒ Rfit for sizeable theory error? Bayesian or likelihood?

More on error estimates

- technical complication: fit to true of smeared data point
- ideally numerical propagation using toy data sets
- comparison between true and smeared data point

 \Rightarrow just another trap in error estimate...

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higgs

WBF-SUSY

SFitter — Higgs couplings at LHC

Two-dimensional correlations and effective coupings

- (1) profile likelihoods, including effective g_{Hgg}
 - sign of g_{Htt} fixed, correlated to g_{HWW} on other branch
 - correlation of g_{Hbb} and g_{HWW} [loops and width]
 - effective coupling g_{Hgg} accessible

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higgs

NBF-SUSY

SFitter — Higgs couplings at LHC

Two-dimensional correlations and effective coupings

- (1) profile likelihoods, including effective g_{Hgg}
 - sign of g_{Htt} fixed, correlated to g_{HWW} on other branch
 - correlation of g_{Hbb} and g_{HWW} [loops and width]
 - effective coupling g_{Hgg} accessible
- (2) profile likelihoods, including effective $g_{H\gamma\gamma}$
 - correlation of g_{Htt} and g_{HWW} on both branches
 - still correlation of g_{Hbb} and g_{HWW} [width]
 - effective coupling $g_{H\gamma\gamma}$ more noisy

 \Rightarrow two-dimensional correlations useful

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higgs

WBF-SUSY

Weak boson fusion and supersymmetry

Higgs analysis beyond the Standard Model

- (1) extension of Higgs analysis to BSM scenarios example: comparison SM-MSSM
- (2) help with MSSM parameters [SFitter+Higgs]
 - hypothesis determining theory error
 - known particles: corrections included new particles: theory error
 - general: heavy additional states at one loop example: MSSM sectors Higgs-weak-strong
- \Rightarrow study required for BSM-Higgs analysis

Technical questions [Hollik, TP, Rauch, Rzehak]

- vertex corrections dominant? [Djouadi & Spira]
- which one larger: QCD vs EW? [similar for Standard Model: Ciccolini, Denner, Dittmaier]
- corrections from Higgs sector? [renormalization scheme/higher orders]
- general phase space generator?
- Germans: show we can do 52504 diagrams $\mbox{[Hadcalc: automized IR-finite one-loop 2 <math display="inline">\rightarrow \mbox{ 3]}$
- \Rightarrow required input for BSM-Higgs analysis

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higgs

WBF-SUSY

Weak boson fusion and supersymmetry

Higgs sector corrections

- close to decoupling: $\lambda^2_{WWh}\lambda_{hhh}$
- finite momentum, different masses \rightarrow Feynman diagrams [FeynHiggs] consistent self couplings \rightarrow effective potential [subH]
- check identical limit: effective angle α_{eff}

	$\Delta \sigma / \sigma$ (ud \rightarrow udh)	$(\sigma_{\alpha_{eff}} - \sigma_{full})/\sigma$		
effective theory				
$lpha_{ m eff}$ full	-0.389 % -0.266 %	-0.122 %		
Feynman diagrams				
$lpha_{ m eff}$ full	-0.393 % -0.317 %	-0.076 %		
Feynman diagrams, loop-improved Z _{FH}				
$lpha_{ m eff}$ full	-0.343 % -0.228 %	-0.115 %		

 \Rightarrow small corrections, even smaller uncertainty

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higgs

WBF-SUSY

Weak boson fusion and supersymmetry

Higgs sector corrections

- close to decoupling: $\lambda^2_{WWh}\lambda_{hhh}$
- finite momentum, different masses \rightarrow Feynman diagrams $_{[FeynHiggs]}$ consistent self couplings \rightarrow effective potential $_{[SubH]}$
- check identical limit: effective angle $\alpha_{\rm eff}$
- \Rightarrow small corrections, even smaller uncertainty

SUSY corrections

- QCD corrections suppressed: color flow and forward jets [no interference, like SM] mass suppression of one-loop $q_L q_L W$ vertex $[m_g/m_{\bar{g}}]$ up-down concellation in one-loop duWh vertex $[\tau_3 - \alpha s_w^2 = -1/3, +5/16]$
- electroweak corrections as expected

diagram	$\Delta \sigma / \sigma$ [%]	diagram	$\Delta\sigma/\sigma$ [%]	
$\Delta \sigma \sim$	$\mathcal{O}(\alpha)$	$\Delta \sigma \sim \mathcal{O}(lpha_{s})$		
self energies	0.199			
qqW + qqZ	-0.392	qqW + qqZ	-0.0148	
qqh	-0.0260	qqh	0.00545	
WWh + ZZh	-0.329			
box	0.0785	box	-0.00518	
pentagon	0.000522	pentagon	-0.000308	

⇒ electroweak corrections dominant

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higgs

WBF-SUSY

Weak boson fusion and supersymmetry

Higgs sector corrections

- close to decoupling: $\lambda^2_{WWh}\lambda_{hhh}$
- finite momentum, different masses \rightarrow Feynman diagrams $_{[FeynHiggs]}$ consistent self couplings \rightarrow effective potential $_{[SubH]}$
- check identical limit: effective angle $\alpha_{\rm eff}$
- \Rightarrow small corrections, even smaller uncertainty

SUSY corrections

- SPS1b with variable mass scale m_{1/2}
- squark/gluino masses from LHC not helpful
- perfect decoupling at one loop
- typical corrections around 1%
- ⇒ maximum corrections below 4%

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higgs

WBF-SUSY

Outlook

Higgs measurements at the LHC

- relevance undisputed [talks by C. Grojean, K. Jakobs, D. Zeppenfeld,...]
- QCD analysis of minijet veto
- Bayesian/likelihood parameter extraction
- extension to BSM scenarios
- some analyses still missing [more SLHC?]
- ⇒ many new studies, all work in progress...

Thank you to the Grid for shutting down over the holidays, so all preliminary...

Tilman Plehn

Higgs couplings

Minijet veto

SFitter-Higgs

WBF-SUSY