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IR singularities of QCD amplitudes

✦ On-shell parton scattering amplitudes in gauge 
theories contain IR divergences from soft and 
collinear loop momenta

✦ Cancel between virtual and real corrections
✦ Nevertheless interesting:

✦ resummation of large Sudakov logarithms 
remaining after cancellation

✦ check on multi-loop calculations
✦ better handle on real-emission graphs



✦ Specifies structure of IR singularities for an   
n-parton amplitude at 2-loop order:

✦ Derivation using factorization properties and 
IR evolution equation for form factor

Catani’s fomula (1998)

Sterman, Tejeda-Yeomans 2003
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SCET approach

✦ Effective theory for n-jet processes contains    
n different types of collinear fields, interacting 
only via soft fields

✦ Hard modes (Q ~ √s) are integrated out and 
absorbed into Wilson coefficients:

✦ Scale dependence controlled by RGE:

anomalous dimension matrix

Hn =
∑

i

Cn,i(µ) Oren
n,i (µ)

d

d lnµ
|Cn({p}, µ)〉 = Γ(µ, {p}) |Cn({p}, µ)〉

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke et al. 2002

Bauer, Schwartz 2006



On-shell parton scattering amplitudes

✦ On-shell parton scattering amplitudes have no 
IR scales, and so loop matrix elements of bare 
SCET operators vanish

✦ One obtains:

✦ IR poles of scattering amplitudes mapped onto 
UV poles of n-jet SCET operators

✦ Multiplicative subtraction, controlled by RG!

where 
Γ = −d lnZ

d lnµ

|Cn({p}, µ)〉 = lim
ε→0

Z−1(ε, {p}, µ) |Mn(ε, {p})〉

renormalization factor
(minimal subtraction of IR poles)

Becher, MN 2009



Conjecture for anomalous dimension



Conjecture for anomalous dimension

✦ SCET decoupling transformation removes soft 
interactions among collinear fields and absorbs 
them into soft Wilson lines 

✦ For n-jet operator one gets:

✦ Use powerful theorems on renormalization of 
Wilson loops and non-abelian exponentation

〈0|S1 . . .Sn|0〉
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Brandt et al. 1981, 1982; Frenkel, Taylor 1984; Korchemsky, Radyushkin 1986, 1987



Conjecture for anomalous dimension

✦ Based on these results, we propose the exact 
form:

✦ simplest, most beautiful form possible (only 
two-parton correlations)

✦ consistent with two-loop soft anom. dim.
✦ predicts relation between cusp anomalous 

dimensions of quarks and gluons, which 
has been tested to three-loop order

Γ =
∑

(i,j)

T i · T j Γcusp(αs) ln
µ2

−sij
+

∑

i

γi(αs)

Becher, MN 2009 cusp anomalous dimension

quark/gluon anomalous dimensions

Mert Aybat, Dixon, Sterman 2006

Moch, Vermaseren, Vogt 2004

(pi + pj)2



Obtain Z factor by integration

✦ Result:

✦ Perturbative expansion:
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d-dimensional β-function

where

exponentiation yields Z factor at 3 loops!

all coefficients known!



Checks

✦ Comparison with Catani’s formula at two loops 
yields explicit expression for 1/ε pole term:

✦ Non-trivial color structure only arises since his 
operators are not defined in a minimal scheme

✦ Confirms conjecture for this term Bern, Dixon, Kosower 2004
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Checks

✦ Expression for IR pole terms agrees with all 
known results:
✦ 3-loop quark and gluon form factors, 

which determine the functions
✦ 2-loop 3-jet qqg amplitude
✦ 2-loop 4-jet amplitudes
✦ 4-loop 4-jet amplitudes in N=4 super Yang-

Mills theory in planar limit

Moch, Vermaseren, Vogt  2005
Garland, Gehrmann et al. 2002

Anastasiou, Glover et al. 2001 Bern, 
De Freitas, Dixon 2002, 2003

Anastasiou et al. 2003
Bern et al. 2005, 2007

γq,g(αs)



Potential applications

✦ Resummation of Sudakov logarithms for hard 
scattering functions at N³LL in closed form

✦ Generalization to include massive partons
✦ Improved understanding and treatment of 

real-emission graphs
✦ Great simplicity of our result hints at universal 

origin of IR singularities, disconnected from 
genuine dynamics of scattering amplitudes



Potential applications

✦ Evolution of hard-scattering coefficients is first 
step in complete analysis of resummation for 
hadron collider processes near partonic 
thresholds

✦ Will now consider Higgs production as the 
simplest case of such a complete analysis

gg → H + Xsoft



EFT-based resummation for 
Higgs production

V, Ahrens, T. Becher, MN, L. Yang: 
   arXiv:0808.3008 and 0809.4283



Fixed-order cross section

✦ Here                     and 
✦ Hard scattering kernels are convoluted with 

parton luminosities

✦ Cross section is dominated by leading terms 
near partonic threshold            (empirical obs.)

✦ Perform soft-gluon resummation at N³LL order 
plus matching to fixed-order result at NNLO 
(state of the art) 

energies and for the relevant values of the Higgs-boson mass the scale of the soft emission is
not much lower than mH , so that no numerically large logarithms arise from soft emissions.
The main numerical effect of RG improvement is thus due to the resummation of the (CAπαs)n

terms in the virtual corrections. In our RG framework, this resummation is accomplished by
evaluating the hard matching corrections at a scale µ2

h = −m2
H − iε instead of the conventional

choice µ2
h = +m2

H .
We begin our analysis with a brief review of the fixed-order results for the total cross section

and study to which extent the cross section is dominated by the leading singular terms near the
partonic threshold. We then discuss the factorization properties of the hard-scattering kernels
in the threshold region and derive the formulas for the RG resummation of large perturbative
corrections in momentum space. After determining the default values of the matching scales,
we present a detailed phenomenological analysis and make predictions for the Higgs-boson
production cross sections at the Tevatron and the LHC. Compared with previous studies,
we find significantly faster convergence and improved stability of the perturbative expansion.
We finally comment on applications of RG-improved perturbation theory to other time-like
processes, such as Drell-Yan production, the e−e− → hadrons cross section, and the total
hadronic Higgs-boson decay rate. In particular, we explain why the latter two processes do not
contain π2-enhanced corrections of the type present in Drell-Yan or Higgs-boson production.

2 Fixed-order results

We consider the production of a Higgs boson in hadron-hadron collisions at center-of-mass
energy
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s. The total cross section can be written as
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Large higher-order corrections

✦ Corrections are large:        
70% at NLO + 30% at NNLO 
[130% and 80% if PDFs and 
αs  are held fixed] 

✦ Only Cgg contains leading 
singular terms, which give 
90% of NLO and 94% of 
NNLO correction

✦ Contributions of Cqg and Cqq 

are small: -1% and -8% of the 
NLO  correction

3
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and similarly for the function aγS . The perturba-
tive expansions of these functions obtained at NNLO in
renormalization-group improved perturbation theory can
be found in [20]. They can be simplified using relation
(16). To leading order we find
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where CA = Nc, TF = 1/2, and nf = 5 is the number
of light quark flavors. The coefficients of the β-function
follow from (14).

The expression for the evolution function simplifies con-
siderably if we treat a(m2

H) ≈ 0.2 as a parameter of order
αs. Inserting the values of the one-loop anomalous dimen-
sions from above, we then find

lnU(m2
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αs(m2
H)

4π
+ O(α2
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(22)
This result makes explicit that the “π2-enhanced” correc-
tions are terms of the form (CAπαs)n in perturbation the-
ory and exponentiate at leading order. The simplest way
to implement our resummation in existing codes for Higgs-
boson production would be to multiply the fixed-order re-
sult with exp[CAπαs(m2

H)/2] and subtract the expanded
form of this factor from the perturbative series. This treat-
ment is sufficient for practical purposes.

Numerically, setting µ = mH = 120GeV we obtain
lnU = {0.563, 0.565, 0.565} at LO, NLO, and NNLO from
the exact expression for the evolution function derived from
(18), indicating that the leading-order terms give by far
the dominant effect after renormalization-group improve-
ment. The analytical expressions (20) and (22) provide
accurate approximations to the exact results. The first
equation gives lnU = 0.562, while the second one yields
lnU = 0.567. The close agreement of these two numbers
shows that the running of coupling constant between µ2
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FIG. 1: LO (light), NLO (medium), and NNLO (dark) pre-
dictions for the Higgs-production cross section at the LHC in
fixed-order perturbation theory (left) and after resummation of
the π

2-enhanced terms (right).

and −µ2 is a minor effect compared with the evolution
driven by the anomalous dimension of the effective two-
gluon operator in (2).

We are now in a position to discuss our improved results
for the hard function in the formula for the Higgs-boson
production cross section. Setting µ = mH = 120GeV, we
obtain

H(m2
H , m2

H) = {1.756 (LO), 1.907 (NLO), 1.906 (NNLO)} .
(23)

This should be compared with the poorly converging series
H = {1, 1.623, 1.844} obtained using fixed-order perturba-
tion theory. Figure 1 illustrates the impact of the resumma-
tion of the π2-enhanced terms on the cross-section predic-
tions for Higgs-boson production at the LHC. The bands in
each plot show results obtained at LO, NLO, and NNLO
using MRST2004 parton distributions [21]. Their width
reflects the scale variation obtained by varying the factor-
ization and renormalization scales between mH/2 and 2mH

(setting µr = µf ). The convergence of the expansion and
the residual scale dependence at NLO and NNLO are much
improved by the resummation. The new LO and NLO
bands almost coincide with the NLO and NNLO bands in
fixed-order perturbation theory, and the new NNLO band
is now fully contained inside the NLO band.

IV. DRELL-YAN PRODUCTION

The cross section for the Drell-Yan process receives the
same type of π2-enhanced corrections as the Higgs-boson
production cross section, however in this case no anoma-
lously large K-factors arise at NLO and NNLO. Let us
briefly discuss why this is the case.

The vector-current matching coefficient CV appearing in
the Drell-Yan case is defined in analogy with CS in (2), but
with the two-gluon operator replaced by the electromag-
netic current q̄γµq [9, 10, 11]. It obeys an evolution equa-
tion of the same structure as (6), in which the cusp anoma-
lous dimension in the adjoint representation is replaced by

MRST’04 PDFs

Harlander, Kilgore 2002; Anastasiou, Melnikov 2002 
Ravindran, Smith, van Neerven 2003

LO

NNLO

NLO



Effective theory analysis
✦ Separate contributions associated with different 

scales, turning a multi-scale problems into a series 
of single scale problems

✦ Evaluate each contribution at its natural scale, 
leading to improved perturbative behavior

✦ Use renormalization group to evolve contributions 
to an arbitrary factorization scale, thereby 
exponentiating (resumming) large corrections

When this is done consistently, large K-factors
should never arise, since no large perturbative

corrections should be left unexponentiated!



Scale hierarchy

✦ We will analyze the Higgs cross section 
assuming the scale hierarchy (                   )

✦ Treating one scale at a time leads to a sequence 
of effective theories:

✦ Effects associated with each scale absorbed 
into matching coefficients

2mt ! mH ∼
√

ŝ!
√

ŝ(1− z)! ΛQCD

z = M2
H/ŝ

Figure 2: Sequence of matching steps and associated effective theories leading to the factor-
ization theorem (13).

momentum transfer q2 = m2
H , and with infrared divergences subtracted using the MS scheme

[16, 25, 27]:

H(m2
H , µ2) =

∣∣CS(−m2
H − iε, µ2)

∣∣2 . (14)

On a technical level, the function CS appears as a Wilson coefficient in the matching of the
two-gluon operator in (11) onto an operator in SCET, in which all hard modes have been
integrated out. This matching takes the form
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a → CS(Q2, µ2) Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (15)

where Q2 = −q2 is (minus) the square of the total momentum carried by the operator. The
fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are effective, gauge-invariant gluon fields in SCET [42]. They describe

gluons propagating along the two light-like directions n, n̄ defined by the colliding hadrons.
The two-loop expression for the Wilson coefficient CS can be extracted from the results of
[43]. We write its perturbative series in the form
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(17)

The soft function S in (13) is defined in terms of the Fourier transform of a vacuum
expectation value of a Wilson loop in the adjoint representation of SU(Nc). In SCET is
arises after the decoupling of soft gluons from the hard-collinear and anti-hard-collinear fields
describing the partons originating from the colliding beam particles [27]. The soft function
in the case of Higgs-boson production is closely related to an analogous function entering

7

2



Scale hierarchy

✦ Evaluate each part at its characteristic scale 
and evolve to a common scale using RGEs:

m2
H

−m2
H

0

m2
t

µ2

ffgg(τ/z, µf )

S(ŝ(1− z), µ2
s)

H(m2
H , µ2

h)

Ct(m2
t , µ

2
t )

µ2
f



Advantages over standard approach

✦ Resummation directly in momentum space 
avoids Landau-pole ambiguity (Mellin inversion)

✦ Equivalent to Mellin-moment approach up to 
power corrections

✦ Following EFT philosophy literally automatically 
resums class of large perturbative effects related 
to time-like kinematics of Higgs production, 
strongly reducing the K-factor to about 1.3 at 

Catani, de Florian, Grazzini, Nason 2003 
Moch, Vogt 2005; Laenen, Magnea 2005; 
Idilbi et al. 2005, 2006; Ravindran 2006



First step: integrate out the top

✦ Matching coefficient exhibits good convergence 
at natural scale choice             :

g

g

H

g

g

H

(a) (b)

Figure 1: Leading order diagram to the process gg → H: (a) in the full and (b) in
the effective theory. The “⊗” denotes the effective vertex of Eq. (2).

The dominant production mechanism for a Higgs boson with a mass below 1 TeV at the
LHC will be through gluon-gluon fusion (for a review see [3]). The coupling of the gluons
to the Higgs boson is mediated through a quark loop, Fig. 1 (a). In the heavy quark limit,
the corresponding form factor becomes independent of the quark mass. Thus, this process
can be used, for example, to count the number of heavy quarks that may exist beyond the
third generation.

The current theoretical prediction for this reaction carries an uncertainty of about a factor
of 1.5 to 2. It is therefore important to improve on the theoretical accuracy. In this paper
we provide a gauge invariant ingredient to the complete next-to-next-to-leading order
prediction, namely the virtual corrections up to order α4

s. The calculation is, to our
knowledge, the first application of a recently introduced method that allows to relate the
relevant set of vertex diagrams to the more familiar class of three-loop two-point functions.

2 Effective Lagrangian

As it was mentioned before, the coupling of the gluons to the Higgs boson is mediated
through a quark loop, Fig. 1 (a). Since all quarks except for the top are much lighter than
the current lower limit on the Higgs mass, we will neglect their masses in the following. In
this case, the top quark is the only one that couples directly to the Higgs boson, because
the Higgs-fermion vertex is proportional to the fermion mass. The leading order result
has been known for quite a while [4]. At the parton level it reads:
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128
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H , z = M2
H/s ,

(1)

where s is the partonic cms energy and GF is the Fermi coupling constant. αs is the strong
coupling constant which depends on the renormalization scale µ. Mt is the pole mass of
the top quark, and MH is the Higgs mass. In order to arrive at the cross section for hadron
collisions, σLO has to be folded with the gluon distribution functions.
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Figure 1: Leading order diagram to the process gg → H: (a) in the full and (b) in
the effective theory. The “⊗” denotes the effective vertex of Eq. (2).

The dominant production mechanism for a Higgs boson with a mass below 1 TeV at the
LHC will be through gluon-gluon fusion (for a review see [3]). The coupling of the gluons
to the Higgs boson is mediated through a quark loop, Fig. 1 (a). In the heavy quark limit,
the corresponding form factor becomes independent of the quark mass. Thus, this process
can be used, for example, to count the number of heavy quarks that may exist beyond the
third generation.

The current theoretical prediction for this reaction carries an uncertainty of about a factor
of 1.5 to 2. It is therefore important to improve on the theoretical accuracy. In this paper
we provide a gauge invariant ingredient to the complete next-to-next-to-leading order
prediction, namely the virtual corrections up to order α4

s. The calculation is, to our
knowledge, the first application of a recently introduced method that allows to relate the
relevant set of vertex diagrams to the more familiar class of three-loop two-point functions.

2 Effective Lagrangian

As it was mentioned before, the coupling of the gluons to the Higgs boson is mediated
through a quark loop, Fig. 1 (a). Since all quarks except for the top are much lighter than
the current lower limit on the Higgs mass, we will neglect their masses in the following. In
this case, the top quark is the only one that couples directly to the Higgs boson, because
the Higgs-fermion vertex is proportional to the fermion mass. The leading order result
has been known for quite a while [4]. At the parton level it reads:

σLO(gg → H) =
GFα2

s(µ
2)

128
√

2π
τ2 δ(1 − z) |1 + (1 − τ)f(τ)|2 ,

f(τ) =







arcsin2 1√
τ

, τ ≥ 1 ,

−1
4

[

log 1+
√

1−τ
1−

√
1−τ

− iπ
]2

, τ < 1 ,

τ = 4M2
t /M2

H , z = M2
H/s ,

(1)

where s is the partonic cms energy and GF is the Fermi coupling constant. αs is the strong
coupling constant which depends on the renormalization scale µ. Mt is the pole mass of
the top quark, and MH is the Higgs mass. In order to arrive at the cross section for hadron
collisions, σLO has to be folded with the gluon distribution functions.
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Figure 1: Comparison of the complete fixed-order results (solid lines) and the contributions
from the leading singular terms (dashed lines) to the total cross sections for Higgs-boson
production at the Tevatron (left) and the LHC (right). We set µf = mH . Darker lines
represent higher orders in αs.

of the NLO (NNLO) correction to the cross section are due to parton production channels
different from gg → H .

In [27] we have investigated for the case of Drell-Yan production the question to what
extent the dominance of the leading singular terms can be justified based on the strong fall-off
of the parton luminosities. In the present case, setting µf = 120 GeV for example, we find
that ffgg(y, µf) ∝ y−a with a ≈ 2.5 for y < 0.05, and ffgg(y, µf) ∝ (1 − y)b with b ≈ 14.5 for
y > 0.3. Due to this strong fall-off, the integral in (1) is dominated by z values near τ . For τ
values exceeding 0.3, the partonic threshold contributions would be enhanced by logarithms of
b ≈ 14.5. However, even at the Tevatron the center-of-mass energy is so high that τ ! 0.02 for
Higgs-boson masses below 300 GeV. In this region the cross section (1) is well approximated
by the simple formula [27]

σ ≈ σBorn

∫ 1

0

dz za−1 C(z, mt, mH , µf) ; σBorn = σ0 ffgg(τ, µf) , (10)

with a − 1 ≈ 1.5. Since the weight function za−1 is not strongly peaked near z = 1, the
threshold dominance cannot be explained parametrically in this case. Indeed, we will see later
that threshold resummation alone has a very minor effect on the predictions for the cross
section. As a side remark, we note that (10) implies the scaling σ ∝ m−2(a−1)

H ≈ m−3
H .

Let us now discuss in more detail the different momentum regions that contribute to the
Higgs-boson production cross section. For a not too heavy Higgs boson, the gluon-gluon fusion
process gg → H is well approximated by the effective local interaction [30–34]

Leff = Ct(m
2
t , µ

2)
H

v

αs(µ2)

12π
Gµν,a Gµν

a , (11)

where v ≈ 246GeV is the Higgs vacuum expectation value, and µ denotes the scale at which
the local two-gluon operator is renormalized. The short-distance coefficient Ct is known up to

5

Ct(m2
t , µ) = 1 +

11
4

αs

π
+

(αs

4π

)2
[
2777
18

− 19 ln
m2

t

µ2
+ nf

(
−67

6
− 16

3
ln

m2
t

µ2

)]
+ . . .

≈ 1 + 0.09 + 0.007 + . . . for µ = mt

µ ≈ mt

Kramer, Laenen, Spira 1996; Chetyrkin, Kniehl, Steinhauser 1997



✦ Separate the contributions of the hard scale      
from the soft scale                :

✦ H is the on-shell gluon form factor squared
✦ Simplest example of an on-shell QCD 

scattering amplitude!

Second step: hard contributions H
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t , µ

2)
H
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The very large K-factor for Higgs-boson production at hadron colliders is shown to result from
enhanced perturbative corrections of the form (CAπαs)

n, which arise in the analytic continuation
of the gluon form factor to time-like momentum transfer. These terms are resummed to all orders
in perturbation theory using the renormalization group. After the resummation, the K-factor for
the production of a light Higgs boson at the LHC is reduced to a value close to 1.3.

I. INTRODUCTION

The discovery of the Higgs boson is the most important
goal of modern particle physics. The inclusive production
cross sections for pp → H +X and pp̄ → H +X have been
calculated a long time ago at next-to-leading order (NLO)
in perturbation theory [1, 2], and since a few years results
at next-to-next-to-leading order (NNLO) are available [3,
4, 5]. Inclusive Higgs-boson production is thus one of the
best studied processes from a theoretical perspective.

In view of this fact, it is uncomfortable that the behav-
ior of QCD perturbation theory appears to be rather poor
in this case. The K-factor for Higgs-boson production,
defined as the prediction for the cross section normalized
to the Born approximation, takes surprisingly large values.
For the production of a light Higgs boson (mH < 150GeV)
at the LHC, one typically finds K ≈ 1.7–1.9 at NLO and
K ≈ 2.0–2.2 at NNLO. Also, the residual dependence on
the renormalization and factorization scales remains signif-
icant even at NNLO. The standard argument that the large
K-factor results from the accessibility of new production
channels beyond the leading order, such as qg → Hq and
qq̄ → H , does not apply in this case, as these contributions
to the cross section are known to be below 10%. Also, the
K-factor is not much reduced by soft-gluon resummation
near the partonic threshold [6].

In this Letter we show that the bulk of the large per-
turbative corrections to Higgs-boson production via gluon-
gluon fusion originate from terms of the form (CAπαs)n

arising from the analytic continuation of the gluon form
factor to time-like momentum transfer, and that these
terms exponentiate to leading order.

II. TIME-LIKE GLUON FORM FACTOR

The Higgs-boson production cross section at hadron col-
liders such as the Tevatron or LHC is dominated by the
gluon-gluon fusion process gg → H via a top-quark loop.
For a not too heavy Higgs boson, this process is well ap-
proximated by the effective local interaction [7]

Leff = Ct(m
2
t , µ

2)
H

v
Gµν,a Gµν

a , (1)

where v ≈ 246GeV is the Higgs vacuum expectation value,
and the short-distance coefficient Ct = αs/(12π) + O(α2

s)
is known to NNLO [8] and has a well behaved perturba-
tive expansion for µ ∼ mH . The production cross section
is related to the discontinuity of the product of two such
effective vertices. It can be written as the convolution of a
hard-scattering kernel with parton distribution functions.

The large corrections we identify are due to virtual cor-
rections to the effective ggH interaction (1) and arise from
quantum corrections characterized by the scale µ ∼ mH .
These effects are described by a universal factor and af-
fect differential distributions in same way as the total
cross section. They can be factorized into a hard function
H(m2

H , µ2), which is the square of the on-shell gluon form
factor evaluated at time-like momentum transfer q2 = m2

H ,
and with infrared divergences subtracted using the MS
scheme [9, 10, 11]. On a technical level, the hard func-
tion appears as a Wilson coefficient in the matching of the
two-gluon operator in (1) onto an operator in soft-collinear
effective theory (SCET) [12, 13], in which all hard modes
have been integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2)Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (2)

where Q2 = −q2 is (minus) the square of the total momen-
tum carried by the operator. The fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are

effective, gauge-invariant gluon fields in SCET [14]. They
describe gluons propagating along the two light-like direc-
tions n, n̄ defined by the colliding hadrons.

The two-loop expression for the Wilson coefficient CS

can be extracted from the results of [15]. We write

CS(Q2, µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(µ2)

4π

)n

, (3)

where L = ln(Q2/µ2). The one-loop coefficient reads

c1(L) = CA

(

−L2 +
π2

6

)

, (4)

and the result for the two-loop coefficient can be found in
[10, 16]. The hard function is given by the absolute square
of the Wilson coefficient at time-like momentum transfer,

H(m2
H , µ2) =

∣

∣CS(−m2
H − iε, µ2)

∣

∣

2
. (5)
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in perturbation theory using the renormalization group. After the resummation, the K-factor for
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I. INTRODUCTION

The discovery of the Higgs boson is the most important
goal of modern particle physics. The inclusive production
cross sections for pp → H +X and pp̄ → H +X have been
calculated a long time ago at next-to-leading order (NLO)
in perturbation theory [1, 2], and since a few years results
at next-to-next-to-leading order (NNLO) are available [3,
4, 5]. Inclusive Higgs-boson production is thus one of the
best studied processes from a theoretical perspective.

In view of this fact, it is uncomfortable that the behav-
ior of QCD perturbation theory appears to be rather poor
in this case. The K-factor for Higgs-boson production,
defined as the prediction for the cross section normalized
to the Born approximation, takes surprisingly large values.
For the production of a light Higgs boson (mH < 150GeV)
at the LHC, one typically finds K ≈ 1.7–1.9 at NLO and
K ≈ 2.0–2.2 at NNLO. Also, the residual dependence on
the renormalization and factorization scales remains signif-
icant even at NNLO. The standard argument that the large
K-factor results from the accessibility of new production
channels beyond the leading order, such as qg → Hq and
qq̄ → H , does not apply in this case, as these contributions
to the cross section are known to be below 10%. Also, the
K-factor is not much reduced by soft-gluon resummation
near the partonic threshold [6].

In this Letter we show that the bulk of the large per-
turbative corrections to Higgs-boson production via gluon-
gluon fusion originate from terms of the form (CAπαs)n

arising from the analytic continuation of the gluon form
factor to time-like momentum transfer, and that these
terms exponentiate to leading order.

II. TIME-LIKE GLUON FORM FACTOR

The Higgs-boson production cross section at hadron col-
liders such as the Tevatron or LHC is dominated by the
gluon-gluon fusion process gg → H via a top-quark loop.
For a not too heavy Higgs boson, this process is well ap-
proximated by the effective local interaction [7]

Leff = Ct(m
2
t , µ

2)
H

v
Gµν,a Gµν

a , (1)

where v ≈ 246GeV is the Higgs vacuum expectation value,
and the short-distance coefficient Ct = αs/(12π) + O(α2

s)
is known to NNLO [8] and has a well behaved perturba-
tive expansion for µ ∼ mH . The production cross section
is related to the discontinuity of the product of two such
effective vertices. It can be written as the convolution of a
hard-scattering kernel with parton distribution functions.

The large corrections we identify are due to virtual cor-
rections to the effective ggH interaction (1) and arise from
quantum corrections characterized by the scale µ ∼ mH .
These effects are described by a universal factor and af-
fect differential distributions in same way as the total
cross section. They can be factorized into a hard function
H(m2

H , µ2), which is the square of the on-shell gluon form
factor evaluated at time-like momentum transfer q2 = m2

H ,
and with infrared divergences subtracted using the MS
scheme [9, 10, 11]. On a technical level, the hard func-
tion appears as a Wilson coefficient in the matching of the
two-gluon operator in (1) onto an operator in soft-collinear
effective theory (SCET) [12, 13], in which all hard modes
have been integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2)Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (2)

where Q2 = −q2 is (minus) the square of the total momen-
tum carried by the operator. The fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are

effective, gauge-invariant gluon fields in SCET [14]. They
describe gluons propagating along the two light-like direc-
tions n, n̄ defined by the colliding hadrons.

The two-loop expression for the Wilson coefficient CS

can be extracted from the results of [15]. We write

CS(Q2, µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(µ2)

4π

)n

, (3)

where L = ln(Q2/µ2). The one-loop coefficient reads

c1(L) = CA

(

−L2 +
π2

6

)

, (4)

and the result for the two-loop coefficient can be found in
[10, 16]. The hard function is given by the absolute square
of the Wilson coefficient at time-like momentum transfer,

H(m2
H , µ2) =

∣

∣CS(−m2
H − iε, µ2)

∣

∣

2
. (5)
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I. INTRODUCTION

The discovery of the Higgs boson is the most important
goal of modern particle physics. The inclusive production
cross sections for pp → H +X and pp̄ → H +X have been
calculated a long time ago at next-to-leading order (NLO)
in perturbation theory [1, 2], and since a few years results
at next-to-next-to-leading order (NNLO) are available [3,
4, 5]. Inclusive Higgs-boson production is thus one of the
best studied processes from a theoretical perspective.

In view of this fact, it is uncomfortable that the behav-
ior of QCD perturbation theory appears to be rather poor
in this case. The K-factor for Higgs-boson production,
defined as the prediction for the cross section normalized
to the Born approximation, takes surprisingly large values.
For the production of a light Higgs boson (mH < 150GeV)
at the LHC, one typically finds K ≈ 1.7–1.9 at NLO and
K ≈ 2.0–2.2 at NNLO. Also, the residual dependence on
the renormalization and factorization scales remains signif-
icant even at NNLO. The standard argument that the large
K-factor results from the accessibility of new production
channels beyond the leading order, such as qg → Hq and
qq̄ → H , does not apply in this case, as these contributions
to the cross section are known to be below 10%. Also, the
K-factor is not much reduced by soft-gluon resummation
near the partonic threshold [6].

In this Letter we show that the bulk of the large per-
turbative corrections to Higgs-boson production via gluon-
gluon fusion originate from terms of the form (CAπαs)n

arising from the analytic continuation of the gluon form
factor to time-like momentum transfer, and that these
terms exponentiate to leading order.

II. TIME-LIKE GLUON FORM FACTOR

The Higgs-boson production cross section at hadron col-
liders such as the Tevatron or LHC is dominated by the
gluon-gluon fusion process gg → H via a top-quark loop.
For a not too heavy Higgs boson, this process is well ap-
proximated by the effective local interaction [7]

Leff = Ct(m
2
t , µ

2)
H

v
Gµν,a Gµν

a , (1)

where v ≈ 246GeV is the Higgs vacuum expectation value,
and the short-distance coefficient Ct = αs/(12π) + O(α2

s)
is known to NNLO [8] and has a well behaved perturba-
tive expansion for µ ∼ mH . The production cross section
is related to the discontinuity of the product of two such
effective vertices. It can be written as the convolution of a
hard-scattering kernel with parton distribution functions.

The large corrections we identify are due to virtual cor-
rections to the effective ggH interaction (1) and arise from
quantum corrections characterized by the scale µ ∼ mH .
These effects are described by a universal factor and af-
fect differential distributions in same way as the total
cross section. They can be factorized into a hard function
H(m2

H , µ2), which is the square of the on-shell gluon form
factor evaluated at time-like momentum transfer q2 = m2

H ,
and with infrared divergences subtracted using the MS
scheme [9, 10, 11]. On a technical level, the hard func-
tion appears as a Wilson coefficient in the matching of the
two-gluon operator in (1) onto an operator in soft-collinear
effective theory (SCET) [12, 13], in which all hard modes
have been integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2)Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (2)

where Q2 = −q2 is (minus) the square of the total momen-
tum carried by the operator. The fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are

effective, gauge-invariant gluon fields in SCET [14]. They
describe gluons propagating along the two light-like direc-
tions n, n̄ defined by the colliding hadrons.

The two-loop expression for the Wilson coefficient CS

can be extracted from the results of [15]. We write

CS(Q2, µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(µ2)

4π

)n

, (3)

where L = ln(Q2/µ2). The one-loop coefficient reads

c1(L) = CA

(

−L2 +
π2

6

)

, (4)

and the result for the two-loop coefficient can be found in
[10, 16]. The hard function is given by the absolute square
of the Wilson coefficient at time-like momentum transfer,

H(m2
H , µ2) =

∣

∣CS(−m2
H − iε, µ2)

∣

∣

2
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I. INTRODUCTION

The discovery of the Higgs boson is the most important
goal of modern particle physics. The inclusive production
cross sections for pp → H +X and pp̄ → H +X have been
calculated a long time ago at next-to-leading order (NLO)
in perturbation theory [1, 2], and since a few years results
at next-to-next-to-leading order (NNLO) are available [3,
4, 5]. Inclusive Higgs-boson production is thus one of the
best studied processes from a theoretical perspective.

In view of this fact, it is uncomfortable that the behav-
ior of QCD perturbation theory appears to be rather poor
in this case. The K-factor for Higgs-boson production,
defined as the prediction for the cross section normalized
to the Born approximation, takes surprisingly large values.
For the production of a light Higgs boson (mH < 150GeV)
at the LHC, one typically finds K ≈ 1.7–1.9 at NLO and
K ≈ 2.0–2.2 at NNLO. Also, the residual dependence on
the renormalization and factorization scales remains signif-
icant even at NNLO. The standard argument that the large
K-factor results from the accessibility of new production
channels beyond the leading order, such as qg → Hq and
qq̄ → H , does not apply in this case, as these contributions
to the cross section are known to be below 10%. Also, the
K-factor is not much reduced by soft-gluon resummation
near the partonic threshold [6].

In this Letter we show that the bulk of the large per-
turbative corrections to Higgs-boson production via gluon-
gluon fusion originate from terms of the form (CAπαs)n

arising from the analytic continuation of the gluon form
factor to time-like momentum transfer, and that these
terms exponentiate to leading order.

II. TIME-LIKE GLUON FORM FACTOR

The Higgs-boson production cross section at hadron col-
liders such as the Tevatron or LHC is dominated by the
gluon-gluon fusion process gg → H via a top-quark loop.
For a not too heavy Higgs boson, this process is well ap-
proximated by the effective local interaction [7]

Leff = Ct(m
2
t , µ

2)
H

v
Gµν,a Gµν

a , (1)

where v ≈ 246GeV is the Higgs vacuum expectation value,
and the short-distance coefficient Ct = αs/(12π) + O(α2

s)
is known to NNLO [8] and has a well behaved perturba-
tive expansion for µ ∼ mH . The production cross section
is related to the discontinuity of the product of two such
effective vertices. It can be written as the convolution of a
hard-scattering kernel with parton distribution functions.

The large corrections we identify are due to virtual cor-
rections to the effective ggH interaction (1) and arise from
quantum corrections characterized by the scale µ ∼ mH .
These effects are described by a universal factor and af-
fect differential distributions in same way as the total
cross section. They can be factorized into a hard function
H(m2

H , µ2), which is the square of the on-shell gluon form
factor evaluated at time-like momentum transfer q2 = m2

H ,
and with infrared divergences subtracted using the MS
scheme [9, 10, 11]. On a technical level, the hard func-
tion appears as a Wilson coefficient in the matching of the
two-gluon operator in (1) onto an operator in soft-collinear
effective theory (SCET) [12, 13], in which all hard modes
have been integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2)Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (2)

where Q2 = −q2 is (minus) the square of the total momen-
tum carried by the operator. The fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are

effective, gauge-invariant gluon fields in SCET [14]. They
describe gluons propagating along the two light-like direc-
tions n, n̄ defined by the colliding hadrons.

The two-loop expression for the Wilson coefficient CS

can be extracted from the results of [15]. We write

CS(Q2, µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(µ2)

4π

)n

, (3)

where L = ln(Q2/µ2). The one-loop coefficient reads

c1(L) = CA

(

−L2 +
π2

6

)

, (4)

and the result for the two-loop coefficient can be found in
[10, 16]. The hard function is given by the absolute square
of the Wilson coefficient at time-like momentum transfer,

H(m2
H , µ2) =

∣

∣CS(−m2
H − iε, µ2)

∣

∣

2
. (5)

2

The Wilson coefficient obeys an evolution equation, which
reflects the renormalization properties of the effective two-
gluon operator in SCET. It reads [9]

dCS(Q2, µ2)

d lnµ
=

[

ΓA
cusp(αs) ln

Q2

µ2
+ γS(αs)

]

CS(Q2, µ2) ,

(6)
where ΓA

cusp is the cusp anomalous dimension of Wilson
lines with light-like segments in the adjoint representation
of SU(Nc). It controls the leading Sudakov double loga-
rithms contained in CS and is known to three-loop order
[17]. The single-logarithmic evolution is controlled by the
anomalous dimension γS , which can be extracted from the
infrared divergences of the on-shell form factor [9]. Us-
ing results from [18] it can be derived to three-loop order
[16]. The evolution equation (6) links the coefficients of
the logarithmic terms in (3) to coefficients in the perturba-
tive expansions of the anomalous dimensions and the QCD
β-function. At one-loop order we have

c1(L) = −
ΓA

0

4
L2 −

γS
0

2
L + CA

π2

6
, (7)

where ΓA
0 = 4CA and γS

0 = 0.
The Wilson coefficient at space-like momentum transfer

has a well behaved expansion in powers of the coupling
constant, if the renormalization scale is taken to be of order
the natural scale, µ2 ∼ Q2. For instance, with Nc = 3
colors and nf = 5 light quark flavors, we find

CS(Q2, Q2) = 1 + 0.393 αs(Q
2)− 0.152 α2

s(Q
2) + . . . . (8)

The nature of the expansion changes drastically when the
same coefficient is evaluated at time-like momentum trans-
fer Q2 = −q2 − iε. We then obtain

CS(−q2, q2) = 1 + 2.75 αs(q
2) + (4.84 + 2.07i)α2

s(q
2)

+ . . . . (9)

The expansion coefficients are more than an order of mag-
nitude larger than in the space-like region. The origin of
this effect is that the Sudakov (double) logarithms con-
tained in the coefficients cn(L) in (3) give rise to π2 terms
when we analytically continue L → ln(q2/µ2)− iπ. For the
hard function entering the Higgs-boson production cross
section, this implies

H(m2
H , m2

H) = 1 + 5.50αs(m
2
H) + 17.24α2

s(m
2
H) + . . .

= 1 + 0.623 + 0.221 + . . . , (10)

where the numerical estimates in the last line refer to the
NLO and NNLO corrections for a Higgs-boson mass of
120GeV, and we use αs(m2

Z) = 0.118 as our normalization
of the running coupling constant. These hard matching
corrections account for the bulk of the K-factors found at
NLO and NNLO.

The large expansion coefficients in the perturbative se-
ries for the Wilson coefficient in the time-like region can be
avoided if we evaluate this coefficient at a time-like renor-
malization point, in which case (here and below, negative

arguments of the running coupling are always understood
with a −iε prescription)

CS(−q2,−µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(−µ2)

4π

)n

(11)

with L = ln(q2/µ2) and the same expansion coefficients as
in (3). We then obtain

CS(−q2,−q2) = 1 + 0.393 αs(−q2) − 0.152 α2
s(−q2) + . . .

(12)
instead of (9). The perturbative series analogous to that
in (10) reads

|CS(−m2
H ,−m2

H)|2 = 1 + 0.0845− 0.0015 + . . . , (13)

which indeed exhibits a vastly better behavior.
In the expressions above, the running coupling is evalu-

ated at time-like momentum transfer −µ2 − iε. The func-
tion αs(µ2) in perturbation theory is analytic in the com-
plex µ2 plane with a (physical) cut on the negative real
axis and a (unphysical) Landau pole at µ2 = Λ2

MS
. Since

we are interested in very large |µ2| values, the Landau pole
is not of concern to our discussion. The definition

β(αs) = 2
dαs(µ2)

d lnµ2
= −2αs

∞
∑

n=0

βn

(αs

4π

)n

(14)

of the QCD β-function implies that
∫ αs(−µ2)

αs(µ2)

dα

β(α)
= −

iπ

2
, (15)

and this relation allows us to define the running coupling
at time-like argument in terms of that at space-like mo-
mentum transfer. At NLO we obtain
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= 1−ia(µ2)+

β1

β0

αs(µ2)

4π
ln

[

1 − ia(µ2)
]

+O(α2
s) ,

(16)
where a(µ2) = β0αs(µ2)/4. In standard applications of
the renormalization group one would count this quantity
as an O(1) parameter. Since numerically a(m2

H) ≈ 0.2, it
is however also reasonable to count a = O(αs).

III. RESUMMATION

What is needed for the calculation of the Higgs-boson
production cross section is the Wilson coefficient at posi-
tive, not negative µ2, see (5). We will use the solution to
the renormalization-group equation (6) to relate this coef-
ficient to the one in (11). In that way the large corrections
arising in the time-like region are resummed to all orders
in perturbation theory. We write the solution in the form
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where [19]
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constant, if the renormalization scale is taken to be of order
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The expansion coefficients are more than an order of mag-
nitude larger than in the space-like region. The origin of
this effect is that the Sudakov (double) logarithms con-
tained in the coefficients cn(L) in (3) give rise to π2 terms
when we analytically continue L → ln(q2/µ2)− iπ. For the
hard function entering the Higgs-boson production cross
section, this implies
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where the numerical estimates in the last line refer to the
NLO and NNLO corrections for a Higgs-boson mass of
120GeV, and we use αs(m2

Z) = 0.118 as our normalization
of the running coupling constant. These hard matching
corrections account for the bulk of the K-factors found at
NLO and NNLO.

The large expansion coefficients in the perturbative se-
ries for the Wilson coefficient in the time-like region can be
avoided if we evaluate this coefficient at a time-like renor-
malization point, in which case (here and below, negative

arguments of the running coupling are always understood
with a −iε prescription)
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in (3). We then obtain
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instead of (9). The perturbative series analogous to that
in (10) reads
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which indeed exhibits a vastly better behavior.
In the expressions above, the running coupling is evalu-

ated at time-like momentum transfer −µ2 − iε. The func-
tion αs(µ2) in perturbation theory is analytic in the com-
plex µ2 plane with a (physical) cut on the negative real
axis and a (unphysical) Landau pole at µ2 = Λ2

MS
. Since

we are interested in very large |µ2| values, the Landau pole
is not of concern to our discussion. The definition
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and this relation allows us to define the running coupling
at time-like argument in terms of that at space-like mo-
mentum transfer. At NLO we obtain
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where a(µ2) = β0αs(µ2)/4. In standard applications of
the renormalization group one would count this quantity
as an O(1) parameter. Since numerically a(m2

H) ≈ 0.2, it
is however also reasonable to count a = O(αs).

III. RESUMMATION

What is needed for the calculation of the Higgs-boson
production cross section is the Wilson coefficient at posi-
tive, not negative µ2, see (5). We will use the solution to
the renormalization-group equation (6) to relate this coef-
ficient to the one in (11). In that way the large corrections
arising in the time-like region are resummed to all orders
in perturbation theory. We write the solution in the form
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Sudakov double logarithm

time-like:
space-like:



Solution
✦ Reason:                                  and double logarithms 

give rise to      terms
✦ Can avoid the large values of L by choosing a time-

like matching scale                  :                

✦ Note: RG-evolution defines              for any    

π2
L→ ln q2/µ2 − iπ

µ2 = −q2
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The Wilson coefficient obeys an evolution equation, which
reflects the renormalization properties of the effective two-
gluon operator in SCET. It reads [9]
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where ΓA

cusp is the cusp anomalous dimension of Wilson
lines with light-like segments in the adjoint representation
of SU(Nc). It controls the leading Sudakov double loga-
rithms contained in CS and is known to three-loop order
[17]. The single-logarithmic evolution is controlled by the
anomalous dimension γS , which can be extracted from the
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where ΓA
0 = 4CA and γS

0 = 0.
The Wilson coefficient at space-like momentum transfer

has a well behaved expansion in powers of the coupling
constant, if the renormalization scale is taken to be of order
the natural scale, µ2 ∼ Q2. For instance, with Nc = 3
colors and nf = 5 light quark flavors, we find

CS(Q2, Q2) = 1 + 0.393 αs(Q
2)− 0.152 α2
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CS(−q2, q2) = 1 + 2.75 αs(q
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The expansion coefficients are more than an order of mag-
nitude larger than in the space-like region. The origin of
this effect is that the Sudakov (double) logarithms con-
tained in the coefficients cn(L) in (3) give rise to π2 terms
when we analytically continue L → ln(q2/µ2)− iπ. For the
hard function entering the Higgs-boson production cross
section, this implies
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H) + 17.24α2

s(m
2
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where the numerical estimates in the last line refer to the
NLO and NNLO corrections for a Higgs-boson mass of
120GeV, and we use αs(m2

Z) = 0.118 as our normalization
of the running coupling constant. These hard matching
corrections account for the bulk of the K-factors found at
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The large expansion coefficients in the perturbative se-
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avoided if we evaluate this coefficient at a time-like renor-
malization point, in which case (here and below, negative

arguments of the running coupling are always understood
with a −iε prescription)
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with L = ln(q2/µ2) and the same expansion coefficients as
in (3). We then obtain
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instead of (9). The perturbative series analogous to that
in (10) reads
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H)|2 = 1 + 0.0845− 0.0015 + . . . , (13)

which indeed exhibits a vastly better behavior.
In the expressions above, the running coupling is evalu-

ated at time-like momentum transfer −µ2 − iε. The func-
tion αs(µ2) in perturbation theory is analytic in the com-
plex µ2 plane with a (physical) cut on the negative real
axis and a (unphysical) Landau pole at µ2 = Λ2
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. Since

we are interested in very large |µ2| values, the Landau pole
is not of concern to our discussion. The definition
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of the QCD β-function implies that
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and this relation allows us to define the running coupling
at time-like argument in terms of that at space-like mo-
mentum transfer. At NLO we obtain
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(16)
where a(µ2) = β0αs(µ2)/4. In standard applications of
the renormalization group one would count this quantity
as an O(1) parameter. Since numerically a(m2

H) ≈ 0.2, it
is however also reasonable to count a = O(αs).

III. RESUMMATION

What is needed for the calculation of the Higgs-boson
production cross section is the Wilson coefficient at posi-
tive, not negative µ2, see (5). We will use the solution to
the renormalization-group equation (6) to relate this coef-
ficient to the one in (11). In that way the large corrections
arising in the time-like region are resummed to all orders
in perturbation theory. We write the solution in the form

H(m2
H , µ2) = U(m2

H , µ2) |CS(−m2
H ,−µ2)|2 , (17)

where [19]

lnU(m2
H , µ2) = 2 Re

[
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Re µ2

Im µ2

αs

[
−(120 GeV)2 + iε

]
≈ 0.108− 0.025i αs

[
(120 GeV)2

]
≈ 0.114

Landau poleαs(µ2) ∼ 1
ln(µ2/Λ2)

Λ

αs(! 2) µ!



Time-like vs. space-like µ2

✦ Convergence is very much better for 
✦ Evaluate H for             , where convergence is 

good, and use RG to evolve to other scales
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✦ Hard function fulfills RG equation

✦ Neglecting single logs and running of      
(approximation for illustration only):

RG evolution of hard function
The Wilson coefficient CS arising when hard, virtual quantum corrections to the effective

two-gluon vertex (11) are integrated out obeys an evolution equation reflecting the renor-
malization properties of the effective two-gluon SCET operator on the right-hand side of the
matching relation (15). It reads [25]

d

d lnµ
CS(−m2

H − iε, µ2) =

[
ΓA

cusp(αs) ln
−m2

H − iε

µ2
+ γS(αs)

]
CS(−m2

H − iε, µ2) , (21)

where ΓA
cusp is the cusp anomalous dimension of Wilson lines with light-like segments in the

adjoint representation of SU(Nc). It controls the leading Sudakov double logarithms contained
in CS and is known to three-loop order [45]. The single-logarithmic evolution is controlled
by the anomalous dimension γS, which can be extracted from the infrared divergences of the
on-shell gluon form factor [25]. Using results from [46] it can be derived to three-loop order.
We collect the relevant expressions for the expansion coefficients of the anomalous dimensions
in Appendix A. The general solution to (21) is [47]

CS(−m2
H−iε, µ2

f)=exp

[
2S(µ2

h, µ
2
f) − aΓ(µ2

h, µ
2
f) ln

−m2
H − iε

µ2
h

− aγS(µ2
h, µ

2
f)

]
CS(−m2

H−iε, µ2
h),

(22)
where µh is the hard matching scale. We have introduced the definitions

S(ν2, µ2) = −
αs(µ2)∫

αs(ν2)

dα
ΓA

cusp(α)

β(α)

α∫

αs(ν2)

dα′

β(α′)
,

aΓ(ν2, µ2) = −
αs(µ2)∫

αs(ν2)

dα
ΓA

cusp(α)

β(α)
,

(23)

and similarly for the function aγS . The perturbative expansions of these functions obtained
at NNLO in RG-improved perturbation theory can be found in the Appendix of [26].

The naive choice µ2
h ∼ m2

H of the hard matching scale gives rise to large π2 terms in the
matching condition (16), which arise since L2 = ln2[(−m2

H − iε)/µ2
h] ∼ −π2 and render the

perturbative expansion of the hard function H in (14) unstable. We have shown in [17] that
these π2-enhanced terms are to a large extent responsible for the poor perturbative behavior of
fixed-order predictions for the Higgs-boson production cross sections at hadron colliders. We
can exploit the fact that the solution (22) is formally independent of the hard matching scale
to avoid the large π2 terms in the matching condition by a proper choice of the matching scale.
To this end we set µ2

h ∼ −m2
H − iε, so that ln[(−m2

H − iε)/µ2
h] remains a small parameter.

The π2-enhanced terms are then resummed to all orders in perturbation theory and appear
in the functions S and aΓ in the exponent in (22). With this choice, relation (22) involves the
running coupling αs(µ2) evaluated at negative argument. The definition β(αs) = dαs/d lnµ
of the QCD β-function implies that

∫ αs(−µ2)

αs(µ2)

dα

β(α)
= −

iπ

2
, (24)

9

produces Sudakov double log’s 

αs

CS(−m2
H , µ2) = exp

(
CA

αs

4π
ln2 −m2

H

µ2

)
× CS(−m2

H ,−m2
H)

H(m2
H , µ2 = +m2

H) = exp
(
CA

αs

2π
π2

)
× |CS(−m2

H ,−m2
H)|2

≈ 1.7 explains large K-factor!



Third step: soft contribution S

✦ Soft radiation involves eikonal propagators 
and is described by Wilson lines along    and 

k
p1 = x1E n = x1E (1, 0, 0, 1)

p2 = x2E n̄ = x2E (1, 0, 0,−1)

n̄n

1
(p1 − k)2

= − 1
2p1 · k

Sn(x) = exp
{

ig

∫ 0

−∞
ds n · A(x + sn)

}

= 1 + ig

∫
ddk

(2π)d

i

n · k
n · Ã(k)−ikx + . . .



Soft function                       . 

✦ Could avoid large logarithms by choosing the 
scale                         , but z is integrated up to 1 
✦ ill-defined convolution due to Landau-pole 

✦ Instead choose scale such that the convolution 
integral

S(
√

ŝ(1− z), µ)

µ =
√

ŝ(1− z)

∫ 1

τ

dz

z
S(
√

ŝ(1− z), µ) ffgg(τ/z)

does not receive large corections



Choice of the soft scale

✦ Good perturbative behavior with   
✦ Indicates that soft-gluon resummation is not a 

parametrically large effect!
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Figure 3: Left: Relative contributions to the total cross section arising from the one-loop
corrections to the soft function s̃Higgs as a function of the soft matching scale µs, obtained
with µf = mH = 120 GeV. The numbers on the curves show the corresponding values of
τ . Right: Results for the soft matching scale µs for different values of τ and four different
Higgs-mass values (see text). The upper set of curves corresponds to convergence criterion I,
the lower one to criterion II.

we analytically continue L → ln(m2
H/µ2

h) − iπ. The same happens for the coefficient CV in
Drell-Yan production [18, 19] and for other time-like processes [20]. A vastly better behavior
is obtained when the matching scale is chosen in the time-like region [17]. This gives (all
arguments are defined with a −iε prescription)

CS(−m2
H ,−m2

H) = 1 + 0.393 αs(−m2
H) − 0.152 α2

s(−m2
H) + . . . . (37)

Note that the values of the strong coupling in the space-like and time-like regions are not very
different from each other. For instance, setting mH = 120 GeV we find αs(−m2

H)/αs(m2
H) =

0.951 + 0.213i. It follows that the stark difference between (36) and (37) is not due to the
evolution of the running coupling between space-like and time-like values of its argument, but
rather due to the evolution of the effective two-gluon operator (15) driven by its anomalous
dimension. In our phenomenological analysis we will thus use µ2

h = −m2
H as our default

choice. Then the π2-enhanced corrections are resummed into the evolution function U in (30).
In order to illustrate the significance of this resummation, we will sometimes use the naive
choice µ2

h = m2
H for comparison.

Let us now discuss the choice of the soft matching scale µs, which is non-trivial since the
soft function S in (18) depends on the convolution variable z. For the determination of the
soft scale we follow the method proposed in [27], i.e., we choose the value of µs so that the
perturbative expansion of the soft function exhibits a good convergence after the integration
over z has been performed. The result thus depends on the process (in particular, on the
value of the Higgs-boson mass) and on the shape of the gluon distribution function. The
left panel in Figure 3 shows the relative contributions to the cross section (normalized to 1)
arising from the one-loop terms in the soft function s̃Higgs as a function of µs. We choose
µf = mH = 120 GeV and consider different values of τ = m2

H/s between 0.00005 and 0.03,

13

mH = 120GeV

µs ≈ mH/2

τ two criteria:
   I: cor. < 15%
 II: cor. minimal
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Resummed kernel (in z space)

✦ Contribution of all scales separated, evolution 
factor U evolves from one scale to another

✦ Have performed matching to 2-loops, evolution 
to 3-loop accuracy



Phenomenological results



Cross sections at the LHC

✦ Here use different MRST PDFs at each order:              
2001LO, 2004NLO, 2004NNLO

✦ Faster convergence, smaller scale dependence after 
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Cross sections at the LHC

✦ Here use same PDFs in all orders
✦ With MRST2006NNLO result is ~10% higher than 

for MRST2004NNLO (higher value αs=0.191, more 
low-x glue)
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Figure 5: The fixed-order (left) and RG-improved (right) cross-section predictions including
perturbative uncertainty bands due to scale variations for the Tevatron (upper) and LHC
(lower plots). Darker bands correspond to higher orders in perturbation theory.

the value of αs(m2
Z) is not shown explicitly. We emphasize that the effect of RG improvement

is significant even at NNLO, where the resummed cross sections at the Tevatron and the LHC
exceed the fixed-order predictions by about 13% and 8%, respectively (for mH = 120GeV).
These differences are as important numerically as the differences between the NLO and NNLO
resummed results.

It is interesting to note that the new MRST2006NNLO PDFs lead to an increase of
the production cross section at the LHC by 10% compared to the result obtained using
MRST2004NNLO [48], the previous PDF fit by the same group. Some of this shift is due
to the higher value of αs(m2

Z) used in MRST2006NNLO, but most of it results from a change
in the gluon distribution at low x. For comparison, we provide in Table 2 results obtained
using CTEQ6.6 PDFs [49]. They are in good agreement with the results given in Table 1.
Note, however, that the CTEQ6.6 PDFs are obtained from a fit to data using NLO cross
sections only. Note also that the MRST2006NNLO gluon PDF differs significantly from the
one obtained by Alekhin et al. [50, 51].
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Scale dependence for mH =120 GeV

✦ Excellent stability at NNLO (negligible dependence 
on µt  is not shown)
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Figure 4: Dependence of the resummed cross section for Higgs-boson production at the LHC on
the scales µh (upper left) and µs (upper right), and on the factorization scale µf (lower left), for
mH = 120GeV. The darker curves correspond to higher orders in RG-improved perturbation
theory. For comparison, we also show the dependence on µf in fixed-order perturbation theory
(lower right). The corresponding curves for the Tevatron would look very similar except for
the overall scale.

sections with those obtained in fixed-order perturbation theory. In the latter case we vary the
factorization and renormalization scales together in the range mH/2 < µf < 2mH .

In Figure 5 we show the scale dependence of our predictions for the cross sections at
different orders in perturbation theory. Note that we use the same PDFs (MRST2006NNLO) in
all cases, i.e., we do not switch to LO or NLO distribution functions in the lower-order results.
The results obtained after RG improvement show significantly faster convergence and reduced
scale dependence in higher orders. The NNLO resummed predictions have a perturbative
uncertainty of less than 3% for both the Tevatron and the LHC, while the scale dependence
of the NNLO fixed-order results is approximately ±15% for the Tevatron and ±10% for the
LHC. Note that the bands obtained after RG improvement would overlap if we changed the
sets of PDFs used at LO, NLO, and NNLO, as was done in [17]. Numerical values for the cross
section at NNLO are shown in Table 1. The first error accounts for scale variations, while the
second one reflects the uncertainty in the PDFs. The additional uncertainty of ±6% due to
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Comparison of different effects

✦ additional uncertainty from αs (approx. 6%)
✦ threshold resummation only has a small effect
✦ both resummations increase the cross section
✦ 8.4% increase over fixed-order NNLO result!

µ2
h > 0 µ2

h < 0

pdf uncertainty
scale uncertainty

Table 3: Cross sections (in pb) for mH = 120 GeV. We compare fixed-order results (first
column) with RG-improved results (remaining three columns) corresponding to standard soft-
gluon resummation with µ2

h = +m2
H , resummation of π2-enhanced terms (µ2

h = −m2
H) only,

and the combination of both. The uncertainties are due to scale and PDF variation.

fixed order threshold π2-enhanced threshold + π2

LO 15.2+2.3+0.3
−2.0−0.3 17.5+3.3+0.3

−2.7−0.3 26.9+3.8+0.4
−3.7−0.5 31.0+5.7+0.5

−4.8−0.6

LHC NLO 35.3+5.8+0.5
−4.5−0.6 37.5+3.7+0.6

−1.1−0.7 44.9+2.9+0.7
−3.2−0.8 46.5+2.7+0.8

−1.2−0.8

NNLO 47.5+4.6+0.8
−4.2−0.8 48.5+2.5+0.8

−0.5−0.8 51.5+1.7+0.9
−1.5−0.9 51.5+1.4+0.9

−0.3−0.9

LO 0.302+0.110+0.009
−0.075−0.008 0.411+0.065+0.010

−0.046−0.009 0.533+0.190+0.015
−0.136−0.014 0.726+0.111+0.018

−0.082−0.016

Tevatron NLO 0.703+0.185+0.019
−0.141−0.018 0.822+0.085+0.020

−0.027−0.018 0.929+0.133+0.024
−0.138−0.022 1.031+0.051+0.024

−0.023−0.023

NNLO 0.977+0.137+0.026
−0.134−0.023 1.039+0.054+0.026

−0.013−0.023 1.089+0.054+0.028
−0.078−0.025 1.108+0.028+0.027

−0.006−0.025

In our predictions we resum logarithmic terms near the partonic threshold as well as
the π2-enhanced terms contained in the hard matching coefficient H in (13). It is simple
to disentangle the two effects: choosing µ2

h = m2
H instead of µ2

h = −m2
H switches off the

resummation of the π2 terms. With this choice our results are equivalent to what is obtained
in standard soft-gluon resummation, albeit performed in momentum space instead of Mellin
moment space. As seen in Table 3, the main effect of RG improvement is the resummation of
the π2-enhanced terms contained in the hard matching coefficient H in (13). The predictions
for the resummed cross section obtained without resummation of the π2-enhanced terms are
quite close to the fixed-order results. This shows once again that soft-gluon resummation is
not an important effect in the case of Higgs-boson production at Tevatron or LHC energies.
It confirms our theoretical argument given in conjunction with relation (10) and is also in
line with our finding that the optimal value of the soft scale µs is not much lower than hard
scale set by the Higgs mass. The same qualitative feature has been found in [11] using the
traditional moment-space formalism.

6 RG-improvement for other time-like processes

Having discussed Higgs-boson production in detail, we now briefly explore the effect of choos-
ing a time-like renormalization point µ2 < 0 for other processes. Our treatment applies
immediately to Drell-Yan production, but the numerical effects are less dramatic than for
Higgs-boson production, as we pointed out in [17]. In addition, it is interesting to compare
these production processes to inclusive decays such as e+e− → hadrons, τ → ντ + hadrons, or
hadronic Higgs-boson decay. For inclusive decay rates Sudakov double logarithms and the as-
sociated π2-enhanced terms are absent, since they cancel between real and virtual corrections
by virtue of the KLN theorem [52, 53]. As a consequence, the effects of choosing µ2 < 0 are
small unless the characteristic momentum scale is quite low.

18

cross section at LHC in pb for mH =120 GeV

(13% for Tevatron)



Summary

✦ Effective field theory (SCET) methods offer 
interesting new perspective on collider physics

✦ All-order understanding of IR singularities of 
on-shell n-parton scattering amplitudes!

✦ Intuitive understanding of factorization and 
resummation in momentum space

✦ Well-behaved perturbative results for 
important processes (Higgs production, Drell-
Yan process, W and Z production, ...)
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Jet veto

σ(fb) LO NLO NNLO

µ = Mh
2 152.63 ± 0.06 270.61 ± 0.25 301.23 ± 1.19

µ = 2Mh 103.89 ± 0.04 199.76 ± 0.17 255.06 ± 0.81

Table 1: The cross-section through NNLO with no experimental cuts applied.

K(N)NLO(µ) =
σ(N)NLO(µ)

σLO(µ)
, (4.1)

range from 1.77 to 1.92 at NLO and from 1.97 to 2.45 at NNLO, depending on the scale

choice 4.

It is important to compare the perturbative expansions for the inclusive cross-section

and differential Higgs boson observables. We find many kinematic distributions which

exhibit a different perturbative pattern than the inclusive cross-section. We present here

integrated differential distributions

σ(X) =

∫ X ∂σ

∂x
dx;

the result for a bin x ∈ [X1,X2] can be obtained from the difference

σ(x ∈ [X1,X2]) = σ(X2) − σ(X1).

Figure 1: On the left plot, the cross-section to produce a Higgs boson vetoing events with jets
in the central region |η| < 2.5 and pjet

T > pveto
T (no other cut is applied). On the right plot, the

K-factor as a function of pveto
T . The dashed horizontal lines correspond to the NLO and NNLO

K-factors for the inclusive cross-section. The vertical solid line denotes the value of pveto
T in the

signal cuts of Section 3.

4Note that the K-factor is often defined in the literature as the ratio of the NLO or the NNLO cross-

section at a scale µ over the LO cross-section at a fixed scale µ0 (e.g. µ0 = Mh). Since we allow with our

definition in Eq. 4.1 both numerator and denominator to vary, a large scale variation of the K-factor does

not necessarily indicate a big scale variation of the NLO or the NNLO cross-section in the numerator.
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