QCD resummation for Higgs production

Sven-Olaf Moch

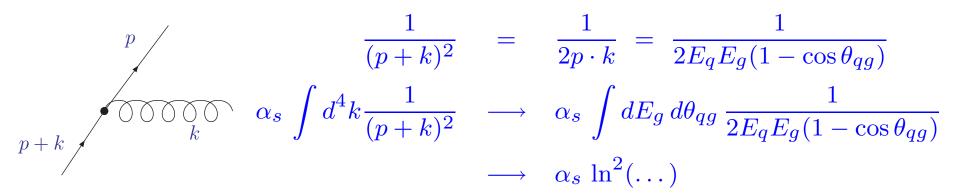
Sven-Olaf.Moch@desy.de

DESY, Zeuthen

- Workshop on Higgs Boson Phenomenology, ETH and University of Zurich, Jan 7 - 9, 2009, Zurich -

Setting the stage

Large logarithmic corrections soft/collinear regions of phase space



Setting the stage

Large logarithmic corrections soft/collinear regions of phase space

$$\frac{1}{(p+k)^2} = \frac{1}{2p \cdot k} = \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$p + k$$

$$\alpha_s \int d^4k \frac{1}{(p+k)^2} \longrightarrow \alpha_s \int dE_g d\theta_{qg} \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$\longrightarrow \alpha_s \ln^2(\dots)$$

- Resummation
 - reorganize perturbative expansion → stability
 - generating functional for higher orders of perturbation theory

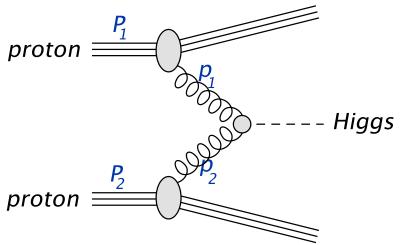
$$\mathcal{O} = 1 + \alpha (\ln^2 + \ln + 1) + \alpha^2 (\ln^4 + \ln^3 + \ln^2 + \ln + 1) + \dots$$

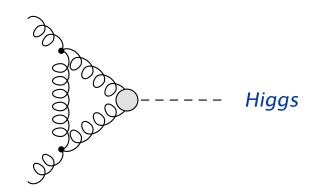
= $(1 + \alpha 1 + \alpha^2 1 + \dots) \exp(\alpha \ln^2 + \alpha \ln + \alpha^2 \ln + \dots)$

- Classical examples
 - QED form factor $x o Q^2/m_e^2$ Sudakov '54
 - Deep-inelastic scattering $x \to 1$ Sterman '87; Catani, Trentadue '89

QCD factorization

LHC: most prominent "signal"





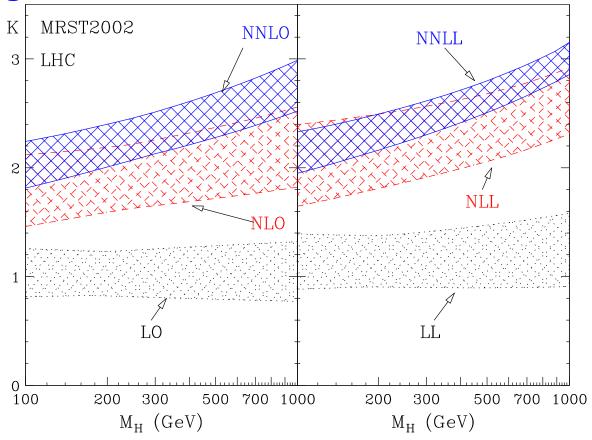
Higgs production dominant in gg-fusion

- QCD factorization
 - hard parton cross section $\hat{\sigma}_{ij\to H}$
 - parton luminosity $f_i \otimes f_j$

$$\sigma_{pp\to H} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \hat{\sigma}_{ij\to H} \left(\alpha_s(\mu^2), Q^2, \mu^2\right)$$

• hard scale Q, factorization scale μ

Total Higgs cross section and resummation



- Cross section at LHC with scale variation:
 fixed order predictions (left) and resummed perturbation series (right)
 - NNLO corrections
 Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03
 - NNLL resummation
 Catani, Grazzini, de Florian, Nason '03

Parton cross section at large N/ large x

- Cross section $\hat{\sigma}_{ij o H}$ (gg o Higgs at large m_t) depends on $x = \frac{M_H^2}{s}$
 - $x \simeq 1$ close to threshold
 - in large x-limit have large logarithms at n^{th} -order

$$\alpha_s^n \left(\frac{\ln^{2n-1}(1-x)}{1-x} \right)_+ \longleftrightarrow \alpha_s^n \ln^{2n}(N)$$

Parton cross section at large N/ large x

- Cross section $\hat{\sigma}_{ij o H}$ (gg o Higgs at large m_t) depends on $x = \frac{M_H^2}{s}$
 - $x \simeq 1$ close to threshold
 - in large x-limit have large logarithms at n^{th} -order

$$\alpha_s^n \left(\frac{\ln^{2n-1}(1-x)}{1-x} \right)_+ \longleftrightarrow \alpha_s^n \ln^{2n}(N)$$

Threshold resummation in Mellin space

$$\hat{\sigma}^N = (1 + \alpha_s g_{01} + \alpha_s^2 g_{02} + \dots) \cdot \exp(G^N) + \mathcal{O}(N^{-1} \ln^n N)$$

Parton cross section at large N/ large x

- Cross section $\hat{\sigma}_{ij o H}$ (gg o Higgs at large m_t) depends on $x = \frac{M_H^2}{s}$
 - $x \simeq 1$ close to threshold
 - in large x-limit have large logarithms at n^{th} -order

$$\alpha_s^n \left(\frac{\ln^{2n-1}(1-x)}{1-x} \right)_+ \longleftrightarrow \alpha_s^n \ln^{2n}(N)$$

Threshold resummation in Mellin space

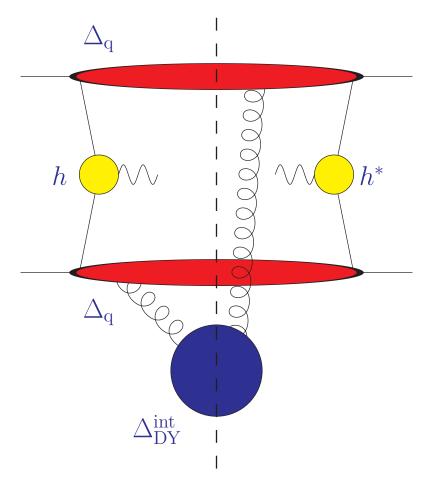
$$\hat{\sigma}^N = (1 + \alpha_s g_{01} + \alpha_s^2 g_{02} + \ldots) \cdot \exp(G^N) + \mathcal{O}(N^{-1} \ln^n N)$$

Exponent for Higgs, Drell-Yan and DIS

$$G_{\mathrm{H}}^{N} = 2 \ln \Delta_{\mathrm{g}} + \ln \Delta_{\mathrm{H}}^{\mathrm{int}}$$
 $G_{\mathrm{DY}}^{N} = 2 \ln \Delta_{\mathrm{q}} + \ln \Delta_{\mathrm{DY}}^{\mathrm{int}}$
 $G_{\mathrm{DIS}}^{N} = \ln \Delta_{\mathrm{q}} + \ln J_{\mathrm{q}} + \ln \Delta_{\mathrm{DIS}}^{\mathrm{int}}$

Soft and collinear factorization

- Separation of parton dynamics in different regions
 Sterman '87; Catani, Trentadue '89; Contopanagos, Laenen, Sterman '97
 - operator definitions for different functions
 - renormalization group equations from factorization



The radiative factors

- Renormalization group equations for functions $\Delta_{\rm p}$, $\Delta_{\rm H}^{\rm int}$, $\Delta_{\rm DY}^{\rm int}$ and $J_{\rm p}$
 - well-known exponentiation from factorization in soft/collinear limit
 - well-known anomalous dimensions
 Vogt '00; Catani, Grazzini, de Florian, Nason '03; S.M., Vermaseren, Vogt '05
- Δ_p : soft collinear radiation off initial state parton p
 - cusp anomalous dimension A_p

$$\ln \Delta_{\rm p} = \int_{0}^{1} dz \frac{z^{N-1} - 1}{1 - z} \int_{\mu_f^2}^{(1-z)^2 Q^2} \frac{dq^2}{q^2} A_{\rm p} \left(\alpha_s(q^2)\right)$$

The radiative factors

- Renormalization group equations for functions $\Delta_{\rm p}$, $\Delta_{\rm H}^{\rm int}$, $\Delta_{\rm DY}^{\rm int}$ and $J_{\rm p}$
 - well-known exponentiation from factorization in soft/collinear limit
 - well-known anomalous dimensions
 Vogt '00; Catani, Grazzini, de Florian, Nason '03; S.M., Vermaseren, Vogt '05
- Δ_p : soft collinear radiation off initial state parton p
 - cusp anomalous dimension Ap

$$\ln \Delta_{\rm p} = \int_{0}^{1} dz \frac{z^{N-1} - 1}{1 - z} \int_{\mu_f^2}^{(1-z)^2 Q^2} \frac{dq^2}{q^2} A_{\rm p} \left(\alpha_s(q^2)\right)$$

- Arr Arr Arr process dependent gluon emission at large angles
 - $D_{
 m p}$ for $\Delta_{
 m DY/H}^{
 m int}$
- $m extstyle J_{
 m p}$: collinear emission from "unobserved" final state parton m extstyle p
 - $B_{\rm p}$ for $J_{\rm p}$

Accuracy under control

• Control over logarithms $\ln(N)$ with $\lambda = \beta_0 \alpha_s \ln(N)$ to N^kLL accuracy

$$G^{N} = \ln(N)g_1(\lambda) + g_2(\lambda) + \alpha_s g_3(\lambda) + \alpha_s^2 g_4(\lambda) + \dots$$

- $g_1(\lambda)$: LL Sterman '87; Appell, Mackenzie, Sterman '88
- $g_2(\lambda)$: NLL Catani Trenatdue '89
- $g_3(\lambda)$: NNLL or N²LL Vogt '00; Catani, Grazzini, de Florian, Nason '03
- $g_4(\lambda)$: N³LL S.M., Vermaseren, Vogt '05

Accuracy under control

• Control over logarithms $\ln(N)$ with $\lambda = \beta_0 \alpha_s \ln(N)$ to N^kLL accuracy

$$G^{N} = \ln(N)g_1(\lambda) + g_2(\lambda) + \alpha_s g_3(\lambda) + \alpha_s^2 g_4(\lambda) + \dots$$

- $g_1(\lambda)$: LL Sterman '87; Appell, Mackenzie, Sterman '88
- $g_2(\lambda)$: NLL Catani Trenatdue '89
- $g_3(\lambda)$: NNLL or N²LL Vogt '00; Catani, Grazzini, de Florian, Nason '03
- $g_4(\lambda)$: N³LL S.M., Vermaseren, Vogt '05

Strategies

Evaluate resummed cross section (requires matching to fixed order)

$$\hat{\sigma}^{\text{res}} = \int_{c-i\infty}^{c+i\infty} \frac{dN}{2\pi i} x^{-N} \left(\hat{\sigma}^N - \hat{\sigma}^N \Big|_{N^{k}LO} \right) + \hat{\sigma}^{N^{k}LO}$$

- ullet Use resummed G^N as generating functional of perturbation theory
 - predict towers of large logarithms at fixed orders

Drell-Yan process in soft limit

- N³LO results for Drell-Yan process in $q\bar{q}$ -annihilation with $x=M^2/s$ S.M., Vogt '05
 - check at NNLO Hamberg, van Neerven, Matsuura '91; Harlander, Kilgore '02
 - cross check on $\frac{1}{(1-x)_+}$ -term at N³LO Laenen, Magnea '05

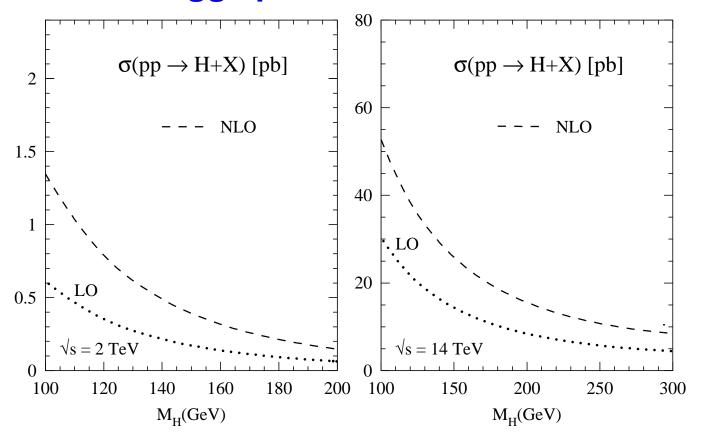
$$c_{3}^{\text{DY}} = \left(\frac{\ln^{5}(1-x)}{1-x}\right)_{+} \left\{512C_{F}^{3}\right\} + \dots + \frac{1}{(1-x)_{+}} \left\{C_{A}^{2}C_{F}\left[-\frac{594058}{729} + \frac{98224}{81}\zeta_{2} + \frac{40144}{27}\zeta_{3} - \frac{2992}{15}\zeta_{2}^{2}\right] - \frac{352}{3}\zeta_{2}\zeta_{3} - 384\zeta_{5}\right] + C_{A}C_{F}^{2}\left[\frac{25856}{27} - \frac{12416}{27}\zeta_{2} + \frac{26240}{9}\zeta_{3} + \frac{1408}{3}\zeta_{2}^{2}\right] - 1472\zeta_{2}\zeta_{3} - C_{F}^{3}\left[4096\zeta_{3} + 6144\zeta_{2}\zeta_{3} - 12288\zeta_{5}\right] - C_{F}n_{f}^{2}\left[\frac{3712}{729} - \frac{640}{27}\zeta_{2} - \frac{320}{27}\zeta_{3}\right] + C_{A}C_{F}n_{f}\left[\frac{125252}{729} - \frac{29392}{81}\zeta_{2} - \frac{2480}{9}\zeta_{3} + \frac{736}{15}\zeta_{2}^{2}\right] - C_{F}n_{f}\left[6 - \frac{1952}{27}\zeta_{2} + \frac{5728}{9}\zeta_{3} + \frac{1472}{15}\zeta_{2}^{2}\right]$$

Higgs production in soft limit

- N³LO results for Higgs production in gluon-gluon fusion with $x = M^2/s$ S.M., Vogt '05
 - check at NNLO
 Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03

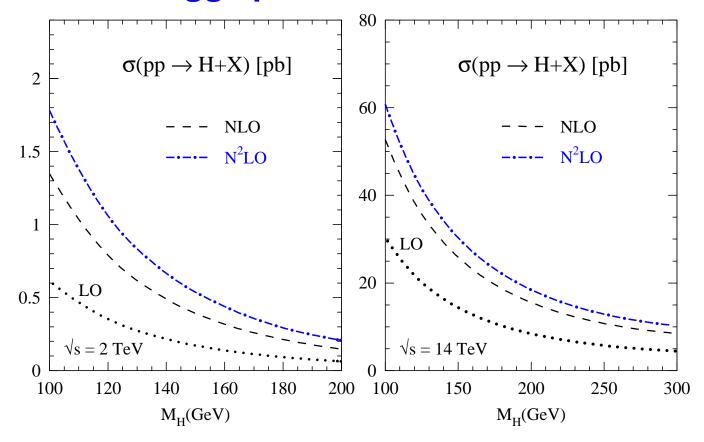
$$c_{3}^{\text{Higgs}} = \left(\frac{\ln^{5}(1-x)}{1-x}\right)_{+} \left\{512C_{A}^{3}\right\} + \dots + \frac{1}{(1-x)_{+}} \left\{C_{A}^{3}\left[-\frac{594058}{729} + \frac{137008}{81}\zeta_{2} + \frac{143056}{27}\zeta_{3} + \frac{4048}{15}\zeta_{2}^{2}\right] - \frac{23200}{3}\zeta_{2}\zeta_{3} + 11904\zeta_{5} + C_{A}^{2}n_{f}\left[\frac{125252}{729} - \frac{34768}{81}\zeta_{2} - \frac{7600}{9}\zeta_{3}\right] - \frac{544}{15}\zeta_{2}^{2} + C_{A}C_{F}n_{f}\left[\frac{3422}{27} - 32\zeta_{2} - \frac{608}{9}\zeta_{3} - \frac{64}{5}\zeta_{2}^{2}\right] - C_{A}n_{f}^{2}\left[\frac{3712}{729} - \frac{640}{27}\zeta_{2} - \frac{320}{27}\zeta_{3}\right] \right\}$$

Cross section Higgs production



QCD corrections to total cross section at Tevatron (left) and LHC (right)

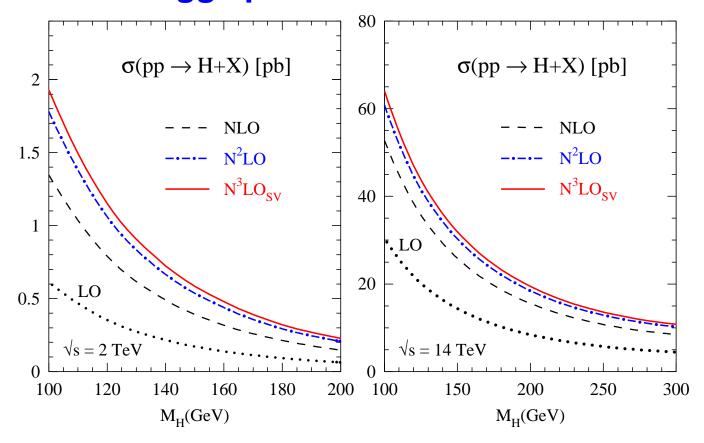
Cross section Higgs production



- QCD corrections to total cross section at Tevatron (left) and LHC (right)
 - NNLO corrections

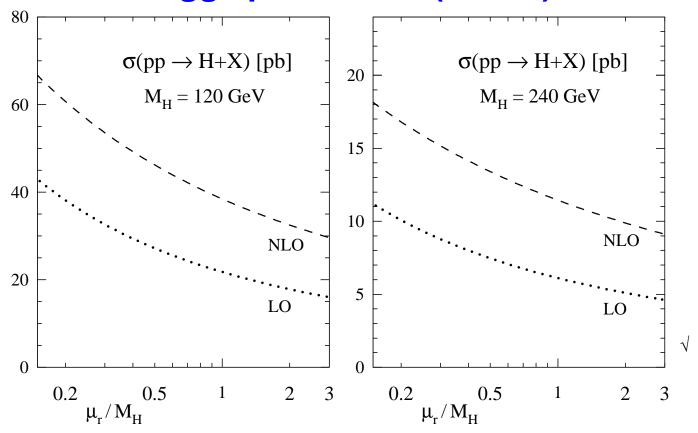
Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03

Cross section Higgs production



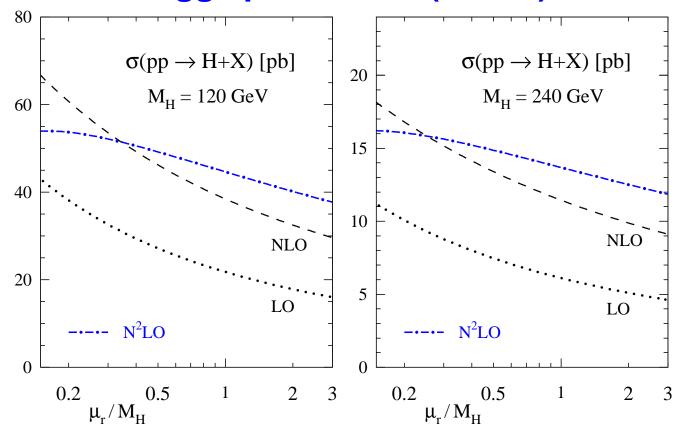
- QCD corrections to total cross section at Tevatron (left) and LHC (right)
 - NNLO corrections
 Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03
 - complete soft N³LO corrections S.M., Vogt '05

Cross section Higgs production (cont'd)



• Variation of cross section at LHC with renormalization scale for different Higgs masses: $M_H=120 {\rm GeV}$ (left) and $M_H=240 {\rm GeV}$ (right)

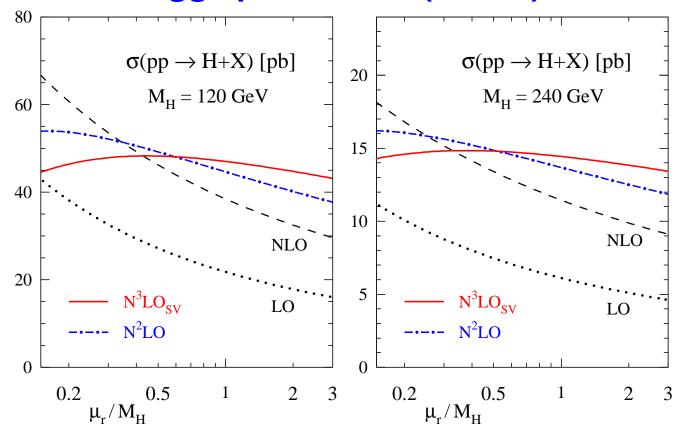
Cross section Higgs production (cont'd)



- Variation of cross section at LHC with renormalization scale for different Higgs masses: $M_H = 120 \text{GeV}$ (left) and $M_H = 240 \text{GeV}$ (right)
 - NNLO corrections

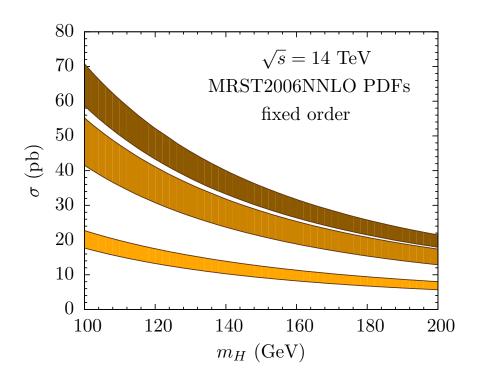
Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03

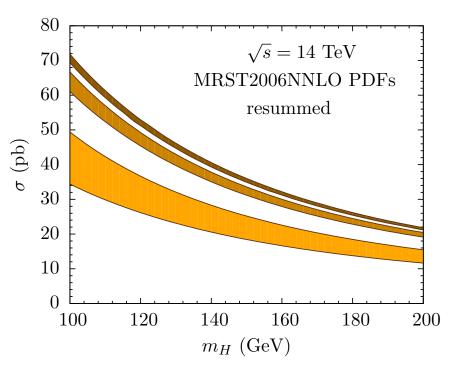
Cross section Higgs production (cont'd)



- Variation of cross section at LHC with renormalization scale for different Higgs masses: $M_H = 120 \text{GeV}$ (left) and $M_H = 240 \text{GeV}$ (right)
 - NNLO corrections
 Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03
 - complete soft N³LO corrections S.M., Vogt '05

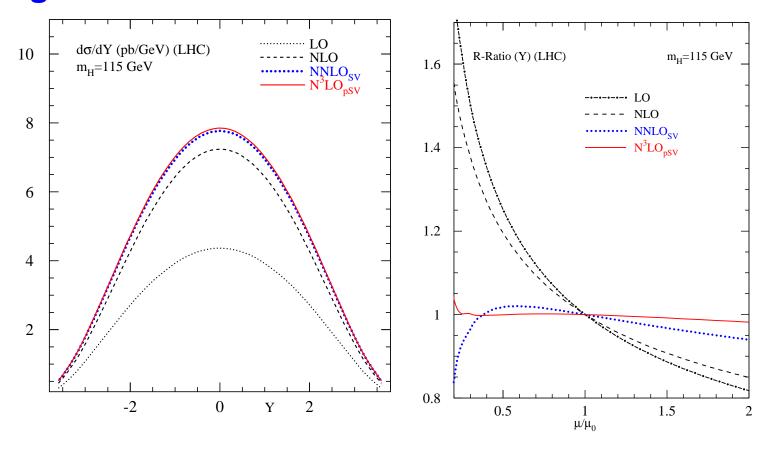
Recent phenomenological application





- Updated Higgs-production cross section Ahrens, Becher, Neubert, Yang '08
 - fixed-order perturbation theory (left)
 - resummation of soft gluons and π^2 -enhanced terms (right)
- Improved convergence for resummed result

Going differential in the soft limit

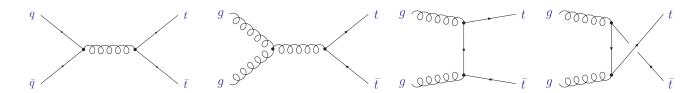


- Rapidity distribution in gluon fusion with complete soft+virtual NNLO_{SV} and soft N³LO_{pSV} corrections Ravindran, Smith, van Neerven '06
 - $M_H=115 {
 m GeV}$ and $\mu=M_H$ (left)
 - renormalization scale dependence for $M_H = 115 \text{GeV}$ (right)

Top quark production

Leading order Feynman diagrams

$$q + \bar{q} \longrightarrow Q + \bar{Q}$$
 $g + g \longrightarrow Q + \bar{Q}$



- NLO in QCD Nason, Dawson, Ellis '88; Beenakker, Smith, van Neerven '89; Mangano, Nason, Ridolfi '92; Bernreuther, Brandenburg, Si, Uwer '04; ...
 - accurate to $\mathcal{O}(15\%)$ at LHC
- Much activity towards higher orders in QCD
 - m s small-mass limit $m^2\ll s,t,u$ for two-loop virtual corrections to ${
 m q}ar{
 m q}
 ightarrow tar{
 m t}$ and ${
 m gg}
 ightarrow tar{
 m t}$ S.M., Czakon, Mitov '07
 - ullet full mass dependence for two-loop virtual q ar q o t ar t Czakon '08
 - analytic two-loop fermionic corrections for $q\overline{q}\to t\overline{t}$ Bonciani, Ferroglia, Gehrmann, Maitre, Studerus '08
 - one-loop squared terms (NLO × NLO) Anastasiou, Mert Aybat '08;
 Kniehl, Merebashvili, Körner, Rogal '08

Threshold resummation

- Threshold at $s \simeq 4m^2$
 - parton cross section exhibit Sudakov-type logarithms $\ln(\beta)$ with velocity of heavy quark $\beta = \sqrt{1 4m^2/s}$ at nth-order
- **●** All order resummation of large logarithms $\alpha_s^n \ln^{2n}(\beta) \longleftrightarrow \alpha_s^n \ln^{2n}(N)$
 - resummation in Mellin space (renormalization group equation)
- Resummed cross section in Mellin space

$$\frac{\hat{\sigma}_{ij,I}^{N}(m^{2})}{\hat{\sigma}_{ij,I}^{(0),N}(m^{2})} = g_{ij,I}^{0}(m^{2}) \cdot \exp\left(G_{ij,I}^{N+1}(m^{2})\right) + \mathcal{O}(N^{-1}\ln^{n}N)$$

• exponent in singlet-octet color basis decomposition I = 1, 8

$$G_{q\bar{q}/gg, I}^{N} = G_{\mathrm{DY/Higgs}}^{N} + \delta_{I,8} G_{Q\bar{Q}}^{N}$$

- ullet Renormalization group equations for functions $G^N_{
 m DY/Higgs}$ and $G^N_{Qar Q}$
 - $G_{Q\bar{Q}}^{N}$ accounts for gluon emission from octet final state

New results

- NNLO cross section for heavy-quark hadro-production near threshold (all powers of $\ln \beta$ and Coulomb corrections) S.M., Uwer '08
 - e.g. gg-fusion for $n_f=5$ light flavors at $\mu=m$

$$\hat{\sigma}_{gg \to t\bar{t}}^{(1)} = \hat{\sigma}_{gg \to t\bar{t}}^{(0)} \left\{ 96 \ln^2 \beta - 9.5165 \ln \beta + 35.322 + 5.1698 \frac{1}{\beta} \right\}
\hat{\sigma}_{gg \to t\bar{t}}^{(2)} = \hat{\sigma}_{gg \to t\bar{t}}^{(0)} \left\{ 4608 \ln^4 \beta - 1894.9 \ln^3 \beta + \left(-3.4811 + 496.30 \frac{1}{\beta} \right) \ln^2 \beta \right.
+ \left(3144.4 + 321.17 \frac{1}{\beta} \right) \ln \beta + 68.547 \frac{1}{\beta^2} - 196.93 \frac{1}{\beta} + C_{gg}^{(2)} \right\}$$

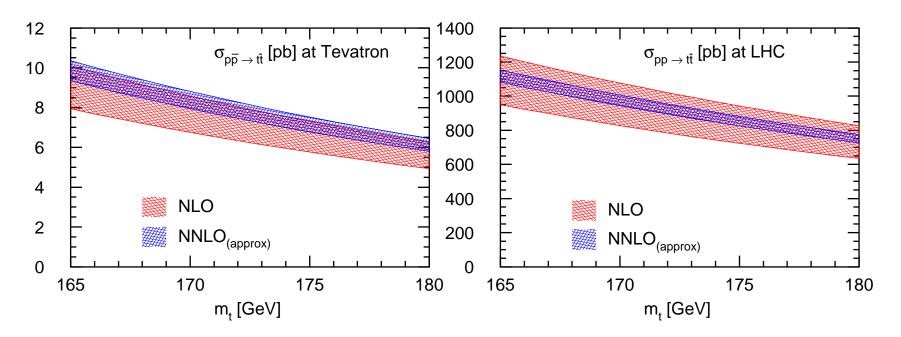
- Add all scale dependent terms
 - $\ln(\mu/m)$ -terms exactly known from renormalization group methods

Upshot

- Best approximation to complete NNLO
- Similar results for new massive colored particles (4th generation quarks, squarks, gluinos, ...) S.M., Uwer '08; S.M., Langenfeld '09

Top-quark pair-production at NNLO

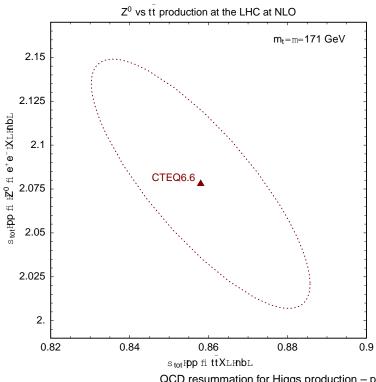
- NLO (with CTEQ6.5 PDF set)
 - scale uncertainty $\mathcal{O}(10\%) \oplus \mathsf{PDF}$ uncertainty $\mathcal{O}(5\%)$
- NNLO_{approx} (with MRST2006 PDF set)
 - scale uncertainty $\mathcal{O}(3\%) \oplus \mathsf{PDF}$ uncertainty $\mathcal{O}(2\%)$



• Theory at NNLO matches anticipated experimental precision $\mathcal{O}(10\%)$

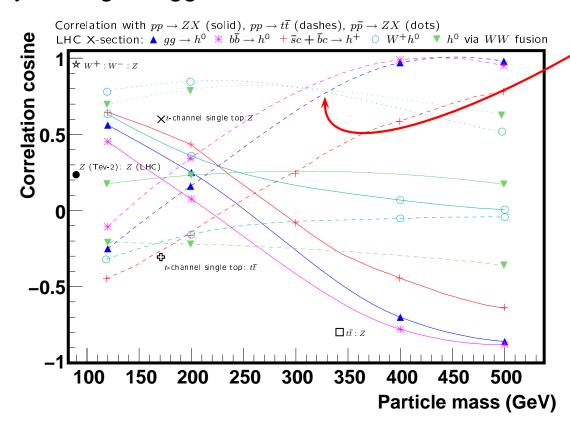
Parton luminosity

- Uncertainties in parton luminosity reduced in ratios of cross sections
 - well-known idea Dittmar, Paus, Zürcher '97
 - W^{\pm} , Z boson production "standard candle" for $L_{q\bar{q}}$ at LHC
- Drell-Yan process through qq-annihilation
 - sensitive to quark PDFs at LHC ($L_{q\bar{q}}$)
- Cross section tt-production at LHC
 - anti-correlated with **Z** boson production
 - sensitive to gluon PDFs (L_{gg}) **CTEQ '08**



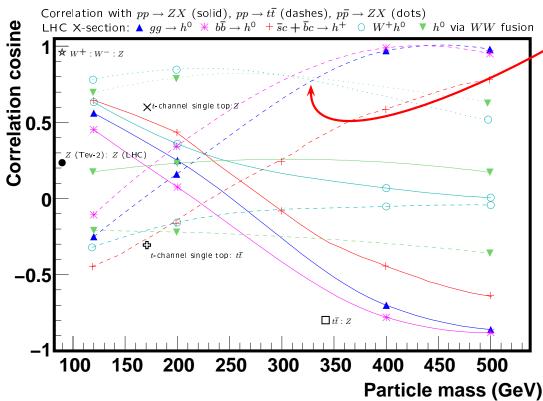
Standard candles

• $\sigma_{\rm pp o t\bar{t}}$ at LHC correlated with Higgs boson production (line - - - -) espacially for larger Higgs masses



Standard candles

• $\sigma_{
m pp o tar t}$ at LHC correlated with Higgs boson production (line - - - -) - espacially for larger Higgs masses



- Proposal of PDF-induced correlation method CTEQ '08
 - $\sigma_{
 m pp o tar t}$ as benchmark for all processes which are anti-correlated with Z boson production

Summary

- Soft and collinear gluons often source of large higher order corrections
- Resummation stabilizes perturbative prediction
 - apparent convergence and scale dependence
- Resummed cross section generates (yet uncalculated) higher orders
 - approximate N^kLO results
- Higgs production $\sigma_{\rm pp o H}$
 - N³LO approximations to total rate and rapidity distribution
- Top-quark pair production $\sigma_{
 m pp
 ightarrow tar{t}}$
 - N²LO approximate total cross section
 - sensitivity to gluon luminosity

Extra slides

Factorization in *D***-dimensions**

Engineering the soft and collinear limit

• Forward Compton amplitude T_n in $D = 4 - 2\epsilon$ -dimensions

Factorization in D**-dimensions**

Engineering the soft and collinear limit

- Forward Compton amplitude \mathcal{T}_n in $D=4-2\epsilon$ -dimensions
- (Bare partonic) T_n combines
 - virtual corrections \mathcal{F}_n (dependent on $\delta(1-x)$)
 - pure real-emission contributions S_n (dependent on D-dimensional +-distributions $f_{k,\epsilon}$)

$$f_{k,\epsilon}(x) = \epsilon [(1-x)^{-1-k\epsilon}]_{+} = -\frac{1}{k} \delta(1-x) + \sum_{i=0}^{\infty} \frac{(-k\epsilon)^{i}}{i!} \epsilon \left(\frac{\ln^{i}(1-x)}{1-x}\right)_{+}$$

Factorization in D**-dimensions**

Engineering the soft and collinear limit

- Forward Compton amplitude \mathcal{T}_n in $D=4-2\epsilon$ -dimensions
- (Bare partonic) T_n combines
 - virtual corrections \mathcal{F}_n (dependent on $\delta(1-x)$)
 - pure real-emission contributions S_n (dependent on D-dimensional +-distributions $f_{k,\epsilon}$)

$$f_{k,\epsilon}(x) = \epsilon [(1-x)^{-1-k\epsilon}]_+ = -\frac{1}{k} \delta(1-x) + \sum_{i=0}^{\infty} \frac{(-k\epsilon)^i}{i!} \epsilon \left(\frac{\ln^i (1-x)}{1-x}\right)_+$$

- Laurent-series for T_n at n^{th} -order
 - mass-factorization predicts $\frac{1}{\epsilon^n}$
 - soft and collinear singularities in \mathcal{F}_n and \mathcal{S}_n behave as $\frac{1}{\epsilon^{2n}}$

Form factors in time-like kinematics

- Ratio of renormalized time-like and space-like form factors $|\mathcal{F}(q^2)/\mathcal{F}(-q^2)|$ (infrared finite)
 - analytic continuation $q^2 \rightarrow -q^2$
 - ratio known to four-loops (expansion in $a_s = \alpha_s/(4\pi)$)

$$\left| \frac{\mathcal{F}(q^2)}{\mathcal{F}(-q^2)} \right|^2 = 1 + a_s \{3\zeta_2 A_1\} + a_s^2 \left\{ \frac{9}{2} \zeta_2^2 A_1^2 + 3\zeta_2 (\beta_0 G_1 + A_2) \right\}$$

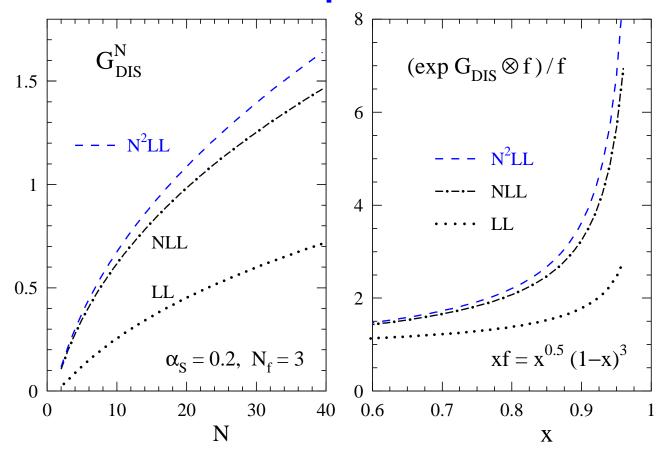
$$+ a_s^3 \left\{ \frac{9}{2} \zeta_2^3 A_1^3 + 3\zeta_2^2 A_1 (3\beta_0 G_1 - \beta_0^2 + 3A_2) + 3\zeta_2 (A_3 + \beta_1 G_1 + 2\beta_0 G_2) \right\}$$

$$+ a_s^4 \left\{ \dots \right\} + \mathcal{O}(a_s^5)$$

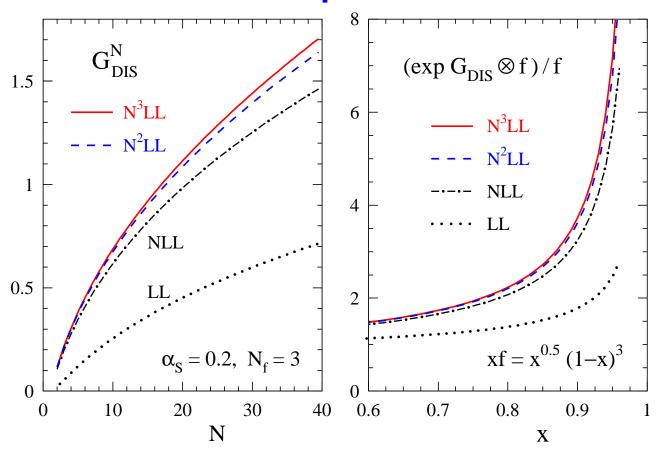
- Numerical values for $\alpha_s(q^2)$ -expansion with $n_f=4$
 - use Padé estimate for A₄ with conservative 50% uncertainty

$$\left| \frac{\mathcal{F}(q^2)}{\mathcal{F}(-q^2)} \right|^2 = 1 + 2.094 \,\alpha_s + 5.613 \,\alpha_s^2 + 15.70 \,\alpha_s^3 + (48.63 \pm 0.43) \,\alpha_s^4$$

DIS resummation exponent

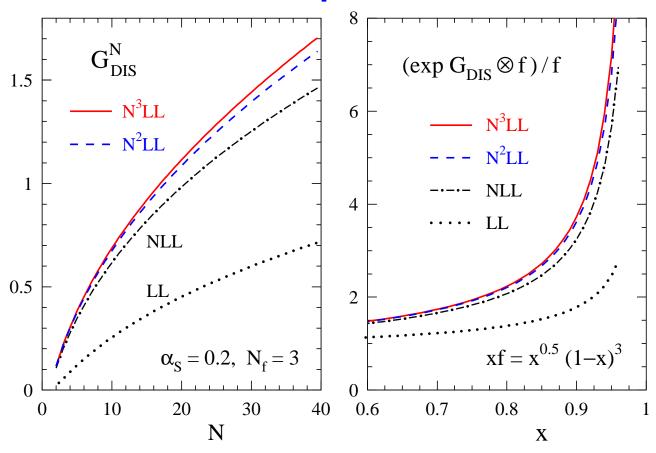


DIS resummation exponent



Perturbative expansion very stable

DIS resummation exponent



- Perturbative expansion very stable
- Resummation exponent generates perturbative expansion:
 - four-loop coeff. fct. $c_{2,\mathrm{q}}^{(4)}$ known $\left(\frac{\ln^7(1-x)}{1-x}\right)_+,\ldots,\left(\frac{\ln(1-x)}{1-x}\right)_+$