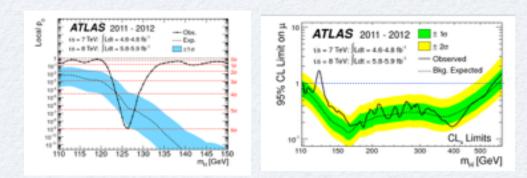
RooStats Lecture and Tutorials



Outline

- Introduction to Fitting in ROOT
- Introduction to RooFit
 - Basic functionality and model building using the workspace
 - Composite models
- Exercises on RooFit: building and fitting models
- RooStats:
 - Introduction
 - Interval estimation tools (Likelihood/Bayesian)
 - Exercises on interval/limit estimation
- Hypothesis Test
- Frequentist interval/limit calculator (CLs)
 - Exercises on frequentist interval/limit estimation and discovery significance (hypothesis test)
- Building models with the HistFactory tool

RooStats Goal

- Common framework for statistical calculations
 - work on arbitrary models and datasets
 - factorize modeling from statistical calculations
 - implement most accepted techniques
 - frequentists, Bayesian and likelihood based tools
 - possible to easy compare different statistical methods
 - provide utility for combinations of results
 - using same tools across experiments facilitates the combinations of results

Statistical Applications

Statistical problems:

- point estimation (covered by RooFit)
- estimation of confidence (credible) intervals
- hypothesis tests
- goodness of fit (not addressed)

RooStats Technology

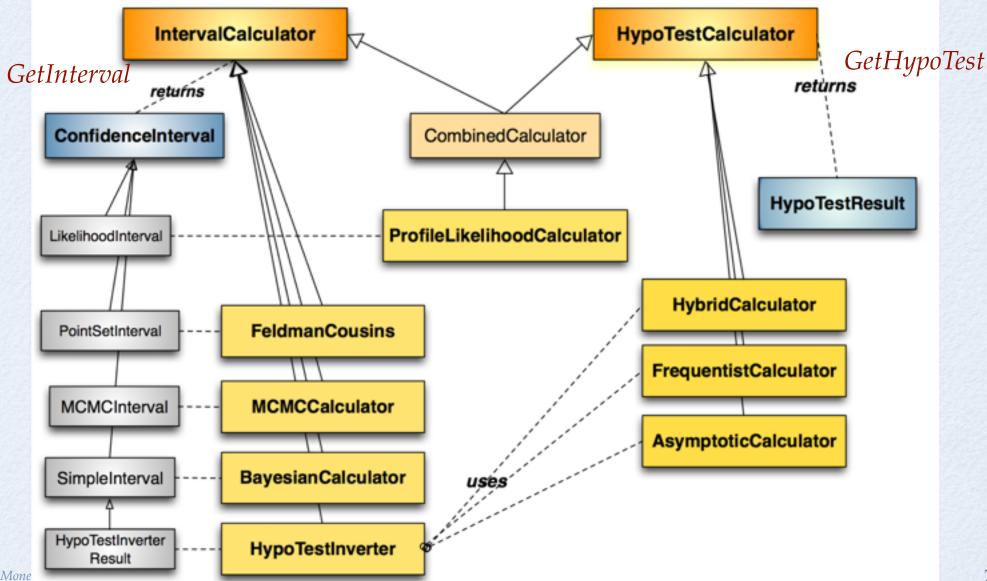
Built on top of RooFit

- generic and convenient description of models (probability density function or likelihood functions)
- provides *workspace* (RooWorkspace)
 - container for model and data and can be written to disk
 - inputs to all RooStats statistical tools
 - convenient for sharing models (e.g digital publishing of results)
- easily generation of models (workspace factory and HistFactory tool)
- tools for combinations of model (e.g. simultaneous pdf)
- Use of ROOT core libraries:
 - minimization (e.g. Minuit), numerical integration, etc...
 - additional tools provided when needed (e.g. Markov-Chain MC)

75

RooStats Design

C++ interfaces and classes mapping to real statistical concepts .



RooStats Interfaces

IntervalCalculator

- built from a model (workspace + ModelConfig) and data set
- has the function:
 - ConfInterval * GetInterval();
- ConfInterval
 - built from a given confidence level
 - bool IsInInterval (const RooArgSet * point) can tell if a point is inside or outside the interval

77

RooStats Interfaces (2)

HypoTestCalculator

- built from a data set and null and alternate models (e.g. background and signal plus background)
 - model can be common and defined only by different parameter values (S = 0 and S = Standard Model)
- has the function:
 - HypoTestResult * GetHypoTest();
- HypoTestResult
 - double NullPValue(); double Significance();
 - odouble AlternatePValue();
 - SamplingDistribution * GetAlt/ NullDistribution();
 SamplingDistribution is the sampled test statistic distribution

RooStats Calculator classes

Interval Calculators

HypoTest Calculators

ProfileLikelihoodCalculator

interval estimation using asymptotic properties of the likelihood function
also an hypothesis test calculator (same as AsymptoticCalculator)

BayesianCalculator

 interval estimation based on Bayes theorem using adaptive numerical integration

MCMCCalculator

• Bayesian calculator using Markov-Chain Monte Carlo

HypoTestInverter

- invert hypothesis test results to estimate an interval
 - CLs limits, FC interval
- NeymanConstruction and FeldmanCousins
 - frequentist interval calculators

- HybridCalculator, FrequentistCalculator
 - frequentist hypothesis test calculators using toy data (difference in treatment of nuisance parameters)

AsymptoticCalculator

 hypothesis tests using asymptotic properties of likelihood function

ModelConfig Class

- ModelConfig class input to all Roostats calculators
 - contains a reference to the RooFit workspace class
 - provides the workspace meta information needed to run RooStats calculators
 - pdf of the model stored in the workspace
 - what are observables (needed for toy generations)
 - what are the parameters of interest and the nuisance parameters
 - global observables (from auxiliary measurements) for frequentist calculators
 - prior pdf for the Bayesian tools
 - ModelConfig can be imported in workspace for storage and later retrieval

Building ModelConfig Class

- ModelConfig must be built after having the workspace
- Identify all the components which are present in the workspace

//specify components of model for statistical tools
ModelConfig modelConfig("G(xlmu,1)");
modelConfig.SetWorkspace(workspace);
//set components using the name of ws objects
modelConfig.SetPdf("normal");
modelConfig.SetParameterOfInterest("poi");
modelConfig.SetObservables("obs");

• Some tools (Bayesian) require to specify prior pdf

//Bayesian tools would also need a prior modelConfig.SetPriorPdf("prior");

• ModelConfig can be imported in a workspace to be then stored in a file

//can import modelConfig into workspace too
workspace.import(*modelConfig);

Profile Likelihood Calculator

- Method based on properties of the likelihood function
- Profile likelihood function:

$$\lambda(\mu) = \frac{L(x|\mu, \hat{\nu})}{L(x|\hat{\mu}, \hat{\nu})} \rightarrow$$

maximize w.r.t nuisance parameters ν and fix POI μ maximize w.r.t. all parameters λ is a function of only the parameter of interest μ

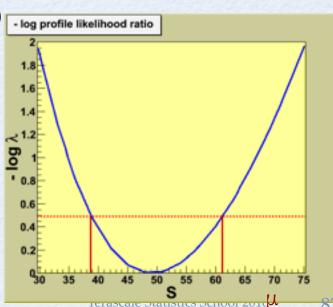
- Uses asymptotic properties of λ based on Wilks' theorem:
- from a Taylor expansion of $log\lambda$ around the minimum:

→ $-2\log\lambda$ is a parabola (λ is a gaussian function) - log profile likelihood ratio

 \rightarrow interval on μ from log λ values

Method of MINUIT/MINOS

- lower/upper limits for 1D
- contours for 2 parameters



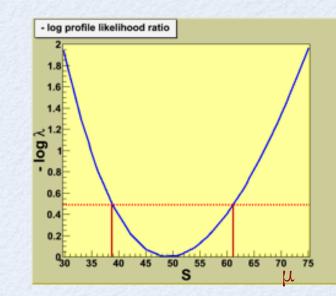
Using the Profile Likelihood Calculator

// create the class using data and model
ProfileLikelihoodCalculator plc(*data, *model);

```
// set the confidence level
plc.SetConfidenceLevel(0.683);
```

```
// compute the interval
LikelihoodInterval* interval = plc.GetInterval();
double lowerLimit = interval->LowerLimit(*mu);
double upperLimit = interval->UpperLimit(*mu);
```

```
// plot the interval
LikelihoodIntervalPlot plot(interval);
plot.Draw();
```



- For one-dimensional intervals:
 - 68% CL (1 σ) interval :
 - 95% CL interval :

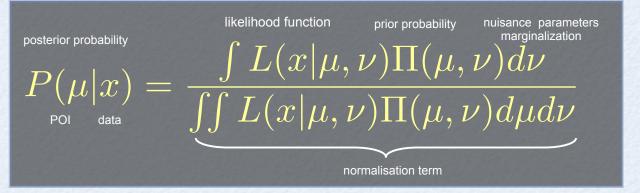
 $\Delta \log \mathbf{\lambda} = 0.5$ $\Delta \log \mathbf{\lambda} = 1.96$

LikelihoodIntervalPlot can plot the 2D contours

Bayesian Analysis in RooStats

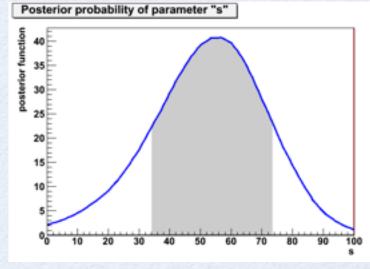
RooStats provides classes for

marginalize posterior and estimate credible interval



Bayesian Theorem

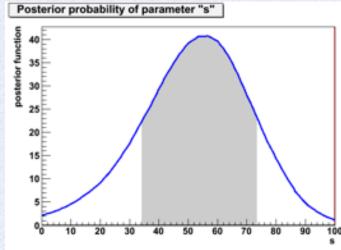
- support for different integration algorithms:
 - adaptive (numerical)
 - MC integration
 - Markov-Chain
- can work with models with many parameters (e.g few hundreds)



Bayesian Classes

BayesianCalculator class

- posterior and interval estimation using numerical integration
- working only for one parameter of interest but can integrate (marginalize) many nuisance parameters
- support for different integration algorithms, using BayesianCalculator::SetIntegrationType
 - adaptive numerical (default type), working only for few nuisances (< 10)
 - Monte Carlo integration (PLAIN, MISER, VEGAS)
 - **TOYMC** : average from toys where the nuisance parameters are sampled from a given p.d.f. (nuisance pdf), but can work in model with many parameters
- can compute:
 - central interval
 - one-sided interval (upper limit)
 - a shortest interval
- provide plot of posterior and interval



Example: 68% CL central interval

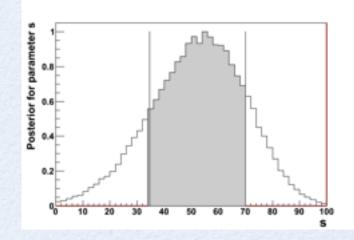
BayesianCalculator bc(data, model); bc.SetConfidenceLevel(0.683); bc.SetLeftSideTailFraction(0.5); bc.SetIntegrationType("ADAPTIVE"); SimpleInterval* interval = bc.GetInterval(); double lowerLimit = interval->LowerLimit(); double upperLimit = interval->UpperLimit(); RooPlot * plot = bc.GetPosteriorPlot(); plot->Draw();

85

MCMC Calculator

• MCMCCalculator class

- integration using Markov-Chain Monte Carlo (Metropolis Hastings algorithm)
- can deal with more than one parameter of interest
- can work with many nuisance parameters
 - e.g. used in Higgs combination with more than 300 nuisances
- possible to specify ProposalFunction
 - multivariate Gaussian from fit result
 - Sequential proposal
- can visualize posterior and also the chain result



MCMCCalculator

MCMCCalculator mc(data, model); mc.SetConfidenceLevel(0.683); mc.SetLeftSideTailFraction(0.5); SequentialProposal sp(0.1); mc.SetProposalFunction(sp); mc.SetNumIters(1000000); mc.SetNumBurnInSteps(50); MCInterval* interval = bc.GetInterval(); RooRealVar * s = (RooRealVar*) model.GetParametersOfInterest()->find("s"); double lowerLimit = interval->LowerLimit(*s); double upperLimit = interval->UpperLimit(*s); MCMCIntervalPlot plot(*interval);

86

Markov-Chain Monte Carlo

MCMC basics: Metropolis-Hastings algorithm Goal: given an *n*-dimensional pdf $p(\vec{\theta})$, generate a sequence of points $\vec{\theta}_1, \vec{\theta}_2, \vec{\theta}_3, \dots$

1) Start at some point $\vec{\theta}_0$ 2) Generate $\vec{\theta} \sim q(\vec{\theta}; \vec{\theta}_0)$ 3) Form Hastings test ratio $\alpha = \min \left[1, \frac{p(\vec{\theta})q(\vec{\theta}_0; \vec{\theta})}{p(\vec{\theta}_0)q(\vec{\theta}; \vec{\theta}_0)}\right]$ 4) Generate $u \sim \text{Uniform}[0, 1]$ 5) If $u \leq \alpha, \ \vec{\theta}_1 = \vec{\theta}, \leftarrow \text{move to proposed point}$

else $\vec{\theta}_1 = \vec{\theta}_0 \leftarrow \text{old point repeated}$

6) Iterate

L. Moneta G. Cowan

CERN Academic Training 2010 / Statistics for the LHC / Lecture 4

RooStats Standard Macros

- RooStats provides standard tutorials taking all as input workspace, ModelConfig and data set names
- StandardProfileLikelihoodDemo.C

run ProfileLikelihoodCalculator - get interval and produce plot

root[]StandardProfileLikelihoodDemo("ws.root","w","ModelConfig","data")

StandardBayesianNumericalDemo.C

run Bayesiancalculator: get a credible interval and produce plot of posterior function

root[]StandardBayesianNumericalDemo("ws.root","w","ModelConfig","data")

StandardBayesianMCMCDemo.C

run bayesian MCMCCalculator: get a credible interval and produce plot of posterior function root[]StandardBayesianMCMCDemo("ws.root","w","ModelConfig","data")

Time For Exercises !

RooStats Exercises

- Model building example
 - CountingModel notebook for a Poisson model (signal plus background)
 - following examples at this link: https://twiki.cern.ch/twiki/bin/view/RooStats/RooStatsTutorialsAugust2012#Create_Poisson_Counting_model
 - 1. use different parameterisation for the systematics in the
 - background events (e.g. log-normal or gamma)
 - 2. add an extra systematic contribution (e.g. in the signal efficiency)
- ProfileLikelihood example
 - ProfileLikelihood notebook
- Bayesian examples
 - BayesianNumerical
 - BayesianMCMC
- Can also use the Standard tutorial macros to run the RooStats calculators
 - example is **StandardDemos** notebook

Useful Terminology

- Observable (or random variable): quantities that are directly measured by an experiment (eg. candidates mass, helicity angle, NNet output) – they form a dataset
- **Model:** based on probability density function (PDF) that describes one or multiples observables parametric or non-parametric. PDF are normalized such that their integral over any observable is 1
- **Parameters of interest:** parameters of the model that one wishes to estimate or constrain (eg. particle mass, cross-section)
- **Nuisance parameters:** parameters of the model that are uncertain but not "of interest" (systematics-associated normalization or shape parameters)
 - treatment of systematic uncertainties depends on the statistical method used

RooStats Part2

- Hypothesis tests in RooStats using toys and asymptotic formulae
- Hypothesis test inversion
 - Limit and interval calculators
 - CLs, Feldman-Cousins

Frequentist Hypothesis Tests

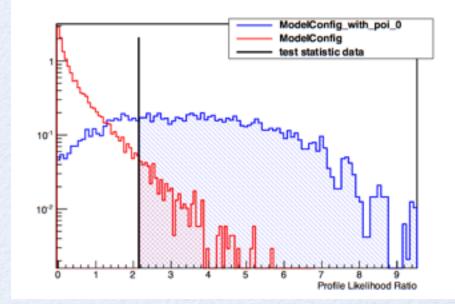
Ingredients:

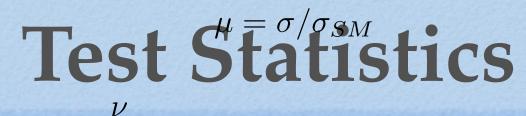
- Null Hypothesis: the hypothesis being tested (e.g. $\theta = \theta_0$), assumed to be true and one tries to reject it
 - e.g. the data consists only of background events
- Alternate Hypothesis: the competitive hypothesis (e.g. $\theta \neq \theta_0$)
 - e.g. the data consists of signal and background
- w is the critical region, a subspace of all possible data used to define if hypothesis is rejected
 - size of test : $\alpha = P(X \in w | H_0)$ H_0 is rejected while is true
 - power of test : $1 \beta = P(X \in w | H_1)$
- Test statistics: a function of the data, t(X) ,used for defining the critical region in multidimensional data: X ∈ w → t(X) ∈ w_t

RooStats Hypothesis Test

• Define null and alternate model using ModelConfig

- can use ModelConfig::SetSnapshot(const RooArgSet &) to define parameter values for the null in case of a common model (e.g. μ = 0 for the B model)
- Select test statistics to use
- Select calculator
 - Use toys or asymptotic formula to get sampling distribution of test statistics
 - FrequentistCalculator or HybridCalculator have different treatment of nuisance parameters





$$\hat{\mu},\hat{
u}$$

Test statistics maps multidimensional space in one, in a way relevant to the hypothesis being tested

RooStats has the three common test statistics used in the field (and more)

• simple likelihood ratio (used at LEP, nuisance parameters fixed)

$$Q_{LEP} = L_{s+b}(\mu = 1)/L_b(\mu = 0)$$

ratio of profiled likelihoods (used commonly at Tevatron)

$$Q_{TEV} = L_{s+b}(\mu = 1, \hat{\hat{\nu}}) / L_b(\mu = 0, \hat{\hat{\nu}}')$$

profile likelihood ratio (related to Wilks's theorem)

$$\lambda(\mu) = L_{s+b}(\mu, \hat{\hat{\nu}}) / L_{s+b}(\hat{\mu}, \hat{\nu})$$

 preferred choice is profile likelihood ratio which has known asymptotic distribution

FrequentistCalculator

- Generate toys using nuisance parameter at their conditional ML estimate ($\theta = \theta_{\mu}$) by fitting them to the observed data
- Treat constraint terms in the likelihood (e.g. systematic errors) as auxiliary measurements
 - introduce global observables which will be varied (tossed) for each pseudo-experiment
 - $L = Poisson(n_{obs} | \mu + b) Gaussian(b_0 | b, \sigma_b)$
 - b₀ is a global observables, varied for each toys but it needs to be considered constant when fitting
 - n_{obs} is the observable which is part of the data set
 - μ is the parameter of interest (poi)
 - b is the nuisance parameter

HybridCalculator

- Nuisance parameters are integrated using their pdf (the constraint term) which is interpreted as a Bayesian prior
 - integration is done by generating for each toys different nuisance parameters values
 - need to have a pdf for the nuisance parameters (often it can be derived automatically from the model)

 $L = Poisson(n_{obs} | \mu + b) Gaussian(b | b_0, \sigma_b)$ $L = \int Poisson(n_{obs} | \mu + b) Gaussian(b | b_0, \sigma_b) db$

Example: FrequentistCalculator

- Define the models
 - N.B for discovery significance null is B model and alt is S+B

```
// create first HypoTest calculator (data, alt model , null model)
FrequentistCalculator fcalc(*data, *sbModel, *bModel);
```

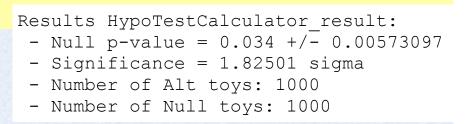
// create the test statistics
ProfileLikelihoodTestStat profil(*sbModel->GetPdf());
// use one-sided profile likelihood for discovery tests
profll.SetOneSidedDiscovery(true);

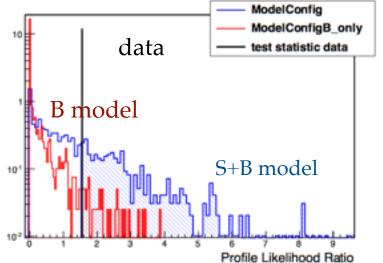
// configure ToyMCSampler and set the test statistics
ToyMCSampler *toymcs = (ToyMCSampler*)fcalc.GetTestStatSampler();
toymcs->SetTestStatistic(&profll);

fcalc.SetToys(1000,1000); // set number of toys for (null, alt)

```
// run the test
HypoTestResult * r = fcalc.GetHypoTest();
r->Print();
```

```
// plot test statistic distributions
HypoTestPlot * plot = new HypoTestPlot(*r);
plot->Draw();
```

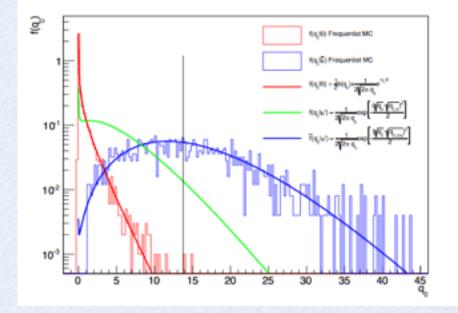




AsymptoticCalculator

- Use the asymptotic formula for the test statistic distributions
- one-sided profile likelihood test statistic:
 - null model ($\mu = \mu_{\text{TEST}}$)
 - half X² distribution
 - alt model ($\mu \neq \mu_{\text{TEST}}$)
 - non-central X²
 - use Asimov data to get the non centrality parameter $\Lambda = (\mu - \mu_{\text{TEST}})/\sigma$
- p-values for null and alternate can be obtained without generating toys

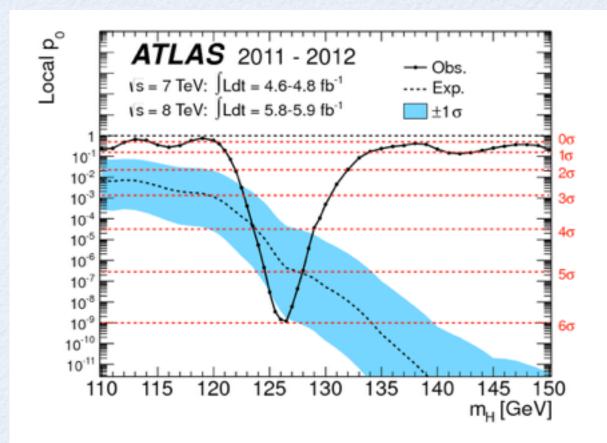
$$\lambda(\mu) = \frac{L(x|\mu, \hat{\nu})}{L(x|\hat{\mu}, \hat{\nu})} \quad \begin{array}{l} \lambda(\mu) = 0 \text{ for} \\ \hat{\mu} < 0 \text{ (discovery)} \\ \hat{\mu} < \mu_{\text{TEST}} \text{ (limits)} \end{array}$$



• see Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1-1

Example: Discovery Significance

• Performing the tests for different mass hypotheses (*i.e* different signal models):

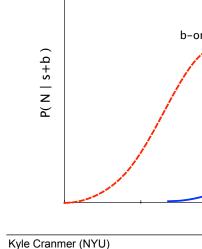


The Dictionary

one-to-one mapping between hypothesis tests confidence intervals

Table 20.1 Relationships between hypothesis testing and interval estimation

	Property of corresponding
Property of test	confidence interval
$Size = \alpha$	Confidence coefficient = $1 - \alpha$
Power = probability of rejecting a	Probability of not covering a false
false value of $\theta = 1 - \beta$	value of $\theta = 1 - \beta$
Most powerful	Uniformly most accurate
$\longleftarrow \qquad \left\{ \begin{array}{c} Unb \\ 1-\mu \end{array} \right.$	$ \begin{array}{c} iased \\ \beta \geq \alpha \end{array} \right\} \longrightarrow $
Equal-tails test $\alpha_1 = \alpha_2 = \frac{1}{2}\alpha$	Central interval



Discovery in pictu

Discovery: test b-only (n

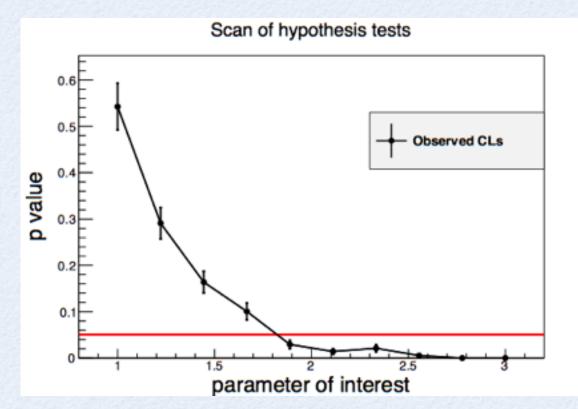
note, one-sided

from G. Feldman visiting Harvard statistics department

They explained that in statistical theory there is a one-toone correspondence between a hypothesis test and a confidence interval. (The confidence interval is a hypothesis test for each value in the interval.) The Neyman-Pearson Theorem states that the likelihood ratio gives the most powerful hypothesis test. Therefore, it must be the standard method of constructing a confidence interval.

Hypothesis Test Inversion

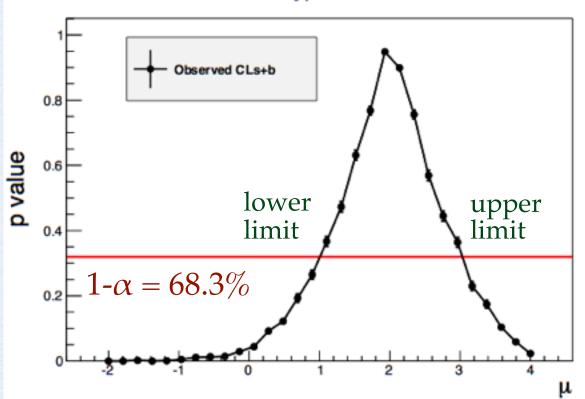
- Performing an hypothesis test at each value of the parameter
- Interval can be derived by inverting the p-value curve, function of the parameter of interest (μ)
 - value of μ which has p-value α (e.g. 0.05), is the upper limit of 1- α confidence interval (e.g. 95%)



102

Hypothesis Test Inversion

- use one-sided test for upper limits (e.g. one-side profile likelihood test statistics)
- use two-sided test for a 2-sided interval



Scan of hypothesis tests

L. Moneta

Example: 1- σ interval for a Gaussian measurementale Statistics School 2016

HypoTestInverter class

• Input is an Hypothesis Test calculator:

- Frequentist/Hybrid/AsymptoticCalculator
- possible to customize test statistic, number of toys, etc..
 - N.B: null model is S+B, alternate is B only model
- Compute an Interval (result is a **ConfInterval** object):
 - scan given interval of μ and perform hypothesis tests
 - compute upper/lower limit from scan result
 - can use $CL_s = CL_{s+b} / CL_b$ for the p-value
 - result (HypoTestInverterResult) contains all the hypothesis test results for each scanned μ value
 - can compute expected limits and bands

HypoTestInverter

• **HypoTestInverter** class in RooStats

```
// create first HypoTest calculator (N.B null is s+b model)
FrequentistCalculator fc(*data, *bModel, *sbModel);
```

```
HypoTestInverter calc(*fc);
calc.UseCLs(true);
```

```
// configure ToyMCSampler and set the test statistics
ToyMCSampler *toymcs = (ToyMCSampler*)fc.GetTestStatSampler();
```

```
ProfileLikelihoodTestStat profll(*sbModel->GetPdf());
// for CLs (bounded intervals) use one-sided profile likelihood
profll.SetOneSided(true);
toymcs->SetTestStatistic(&profll);
```

```
// configure and run the scan
calc.SetFixedScan(npoints,poimin,poimax);
HypoTestInverterResult * r = calc.GetInterval();
```

```
// get result and plot it
double upperLimit = r->UpperLimit();
double expectedLimit = r->GetExpectedUpperLimit(0);
```

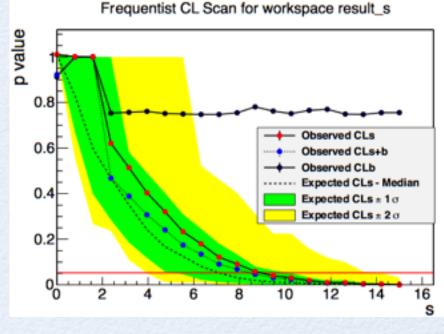
```
HypoTestInverterPlot *plot = new HypoTestInverterPlot("hi","",r);
plot->Draw();
```

Running the HypoTestInverter

Hypothesis test results for each scanned point fodelConfig with poi 0 IodelConfig with poi 0 odelConfig ModelConfig statistic dat test statistic data Data Profile Likelhood Rat Profile Likelihood Bate 0 log http://www.ukeuropie.com lodelConfig with poil ModelConfig **AudelConfig** test statistic data est statistic data 15 Profile Likelihood

p-value, CL_{s+b} (or CL_b) is integral of S+B (or B) test statistic distribution from data value L. Moneta

Scan result



How expected limit and bands are obtained?

- compute p-value for quantiles (median, +/1,2 sigma) of the B model test statistic distribution (*i.e.* use quantile as the observed value)

106

Asymptotic Limits

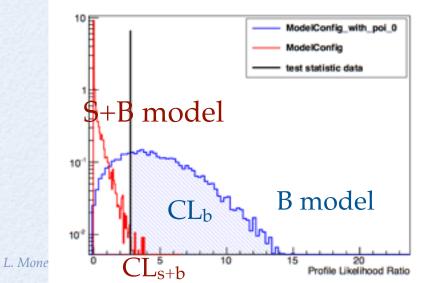
• AsymptoticCalculator class for HypoTestInverter

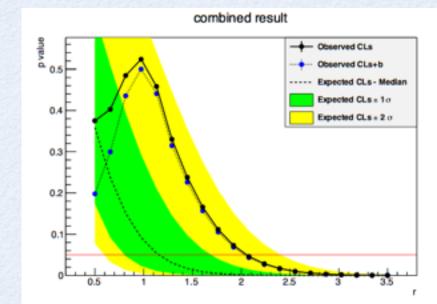
- use the asymptotic formula for the test statistic distributions
 - χ^2 approximation for the profile likelihood ratio
 - see G. Cowan *et al.*, arXiv:1007.1727,EPJC 71 (2011) 1-1
- p-values CL_{s+b} (null) and CL_b (alt) obtained without generating toys
- also expected limits from the alt distribution

// create first HypoTest calculator (N.B null is s+b model)
AsymptoticCalculator ac(*data, *bModel, *sbModel);

```
HypoTestInverter calc(*ac);
// run inverter same as using other calculators
```

•••••

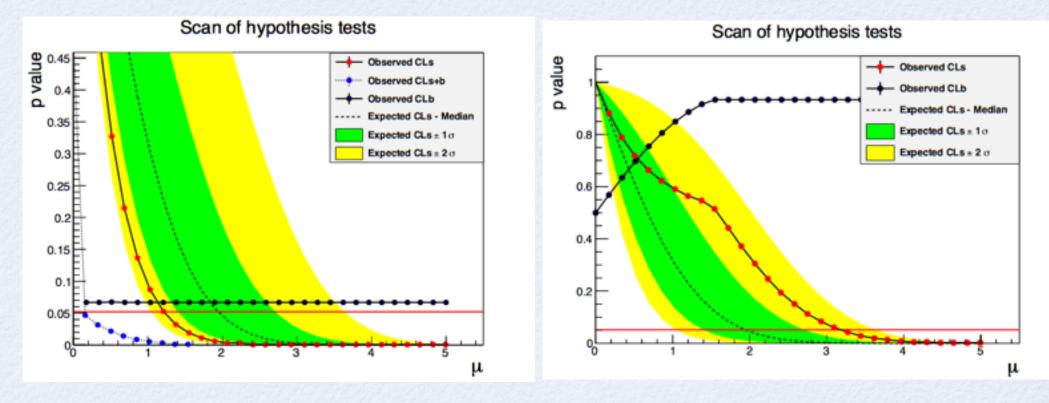




.016 107

Example of Scan

95% CL limit on a Gaussian measurement:
Gauss(x,μ,1), with μ≥0



deficit, observation x = -1.5

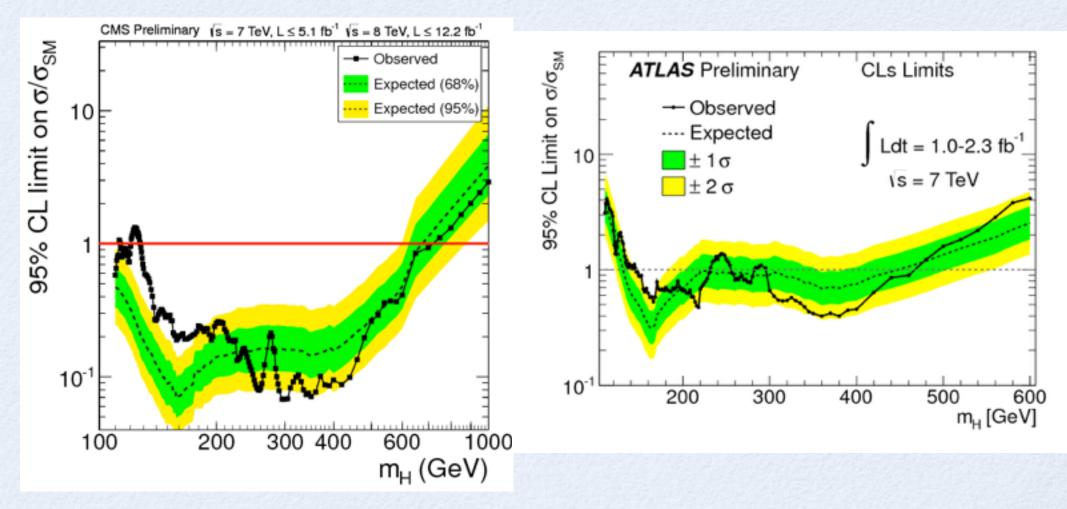
excess, observation x = 1.5

108

use CL_s as p-value to avoid setting limits which are too good

Example: Computing Limits

• By computing limits for different mass hypothesis:



Limits on bounded measurements

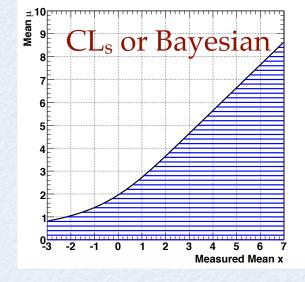
from Bob Cousins:

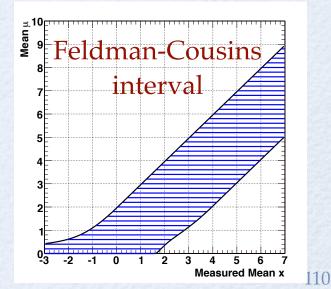
Downward fluctuations in searches for excesses

Classic example: Upper limit on mean μ of Gaussian based on measurement *x* (in units of σ).

If $\mu \ge 0$ in model, as measured x becomes increasingly negative, standard classical upper limit becomes small and then null.

Issue acute 15-25 years ago in expts to measure v_e mass in (tritium β decay): several measured m_v² < 0.





 $\mu=0 \longrightarrow 0^{\underline{1}}_{3} \xrightarrow{1}_{-2} \xrightarrow{1}_{-1} \xrightarrow{0}_{0} \xrightarrow{1}_{2} \xrightarrow{2}_{3} \xrightarrow{1}_{4} \xrightarrow{1}_{5} \xrightarrow{6}_{7}}_{\underline{Measured Mean x}}$ Frequentist 1-sided 95% C.L. Upper Limits, based on $\alpha = 1 - C.L. = 5\%$ (called CL_{sb} at LEP). For $x < -1.64 \sigma$ the confidence

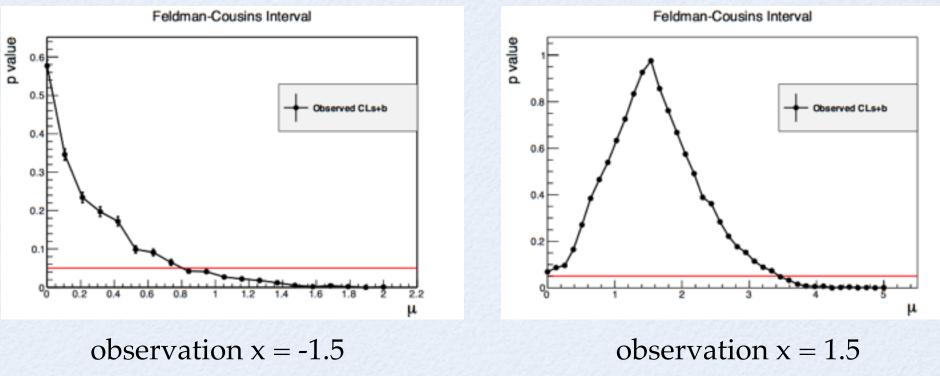
interval is the *null* set!

Bob Cousins, CMSDAS, 1/2012

Feldman-Cousins intervals

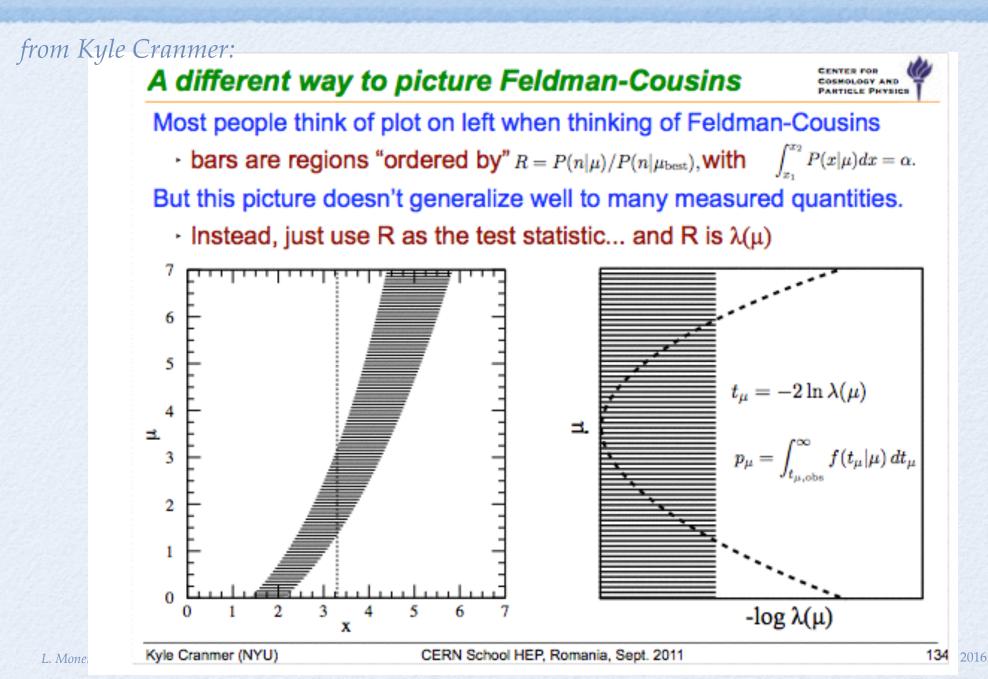
- HypoTestInverter class can compute also a Feldman-Cousins interval
 - need to use FrequentistCalculator and CL_{s+b} as p-value
 - use the 2-sided profile likelihood test statistic

 $\lambda(\mu) = \frac{L(x|\mu, \hat{\nu})}{L(x|\hat{\mu}, \hat{\nu})}$



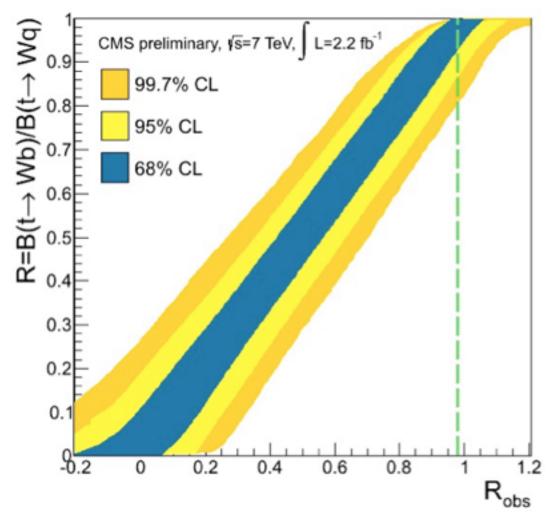
111

Feldman-Cousins Interval



112

 Same RooStats code but with different configuration can compute also a Feldman-Cousins interval



StandardHypoTestInvDemo.C

- Standard ROOT macro to run the Hypothesis Test inversion.
- Inputs to the macro:
 - workspace file, workspace name
 - name of S+B model (null) and for B model (alt)
 - if no B model is given, use S+B model with poi = 0
 - data set name
 - calculator type: frequentist (= 0), hybrid (=1), or asymptotic (=2)
 - test statistics
- options:
 - use CL_s or CL_{s+b} for computing limit
 - number of points to scan and min, max of interval

load the macro after having created the workspace and saved in file SPlusBExpoModel.root root[] .L StandardHypoTestInvDemo.C

run for CLs (with frequentist calculator (type = 0) and one-side PL test statistics (type = 3) scan 10 points in [0,100]

root[] StandardHypoTestInvDemo("SPlusBExpoModel.root","w","ModelConfig","","data",0,3, true, 10, 0, 100)

run for Asymptotic CLs (scan 20 points in [0,100])

root[] StandardHypoTestInvDemo(SPlusBExpoModel.root","w","ModelConfig","","data",2,3, true, 20, 0, 100)

run for Feldman-Cousins (scan 10 points in [0,100])

root[] StandardHypoTestInvDemo(SPIusBExpoModel.root","w","ModelConfig","","data",0,2, false, 10, 0, 100)

Time For Exercises !

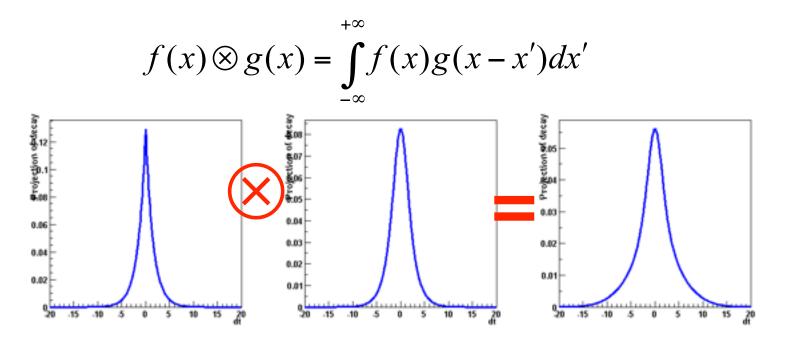
Advanced RooStats Examples

• Hypothesis test example (HypothesisTest notebook)

- run on the Higgs un-binned or binned model (HiggsModel.root or HiggsBinModel.root)
- p0Plot for computing the significance for different mass values
- Frequentist interval example (HypoTestInversion notebook)
 - e.g. run on Counting workspace or any others
 - be careful when using toys (not using the asymptotic calculator). It might need a long time
- Can also use the Standard tutorial macros to run on any workspace
 - examples are in **StandardDemos** notebook

Convolution

Model representing a convolution of a theory model and a resolution model often useful



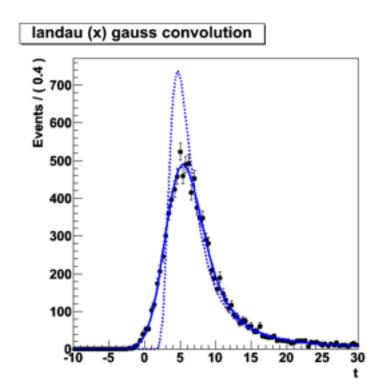
- But numeric calculation of convolution integral can be challenging. No one-size-fits-all solution, but 3 options available
 - Analytical convolution (BW⊗Gauss, various B physics decays)
 - Brute-force numeric calculation (slow)
 - FFT numeric convolution (fast, but some side effects)

Convolution

• Example

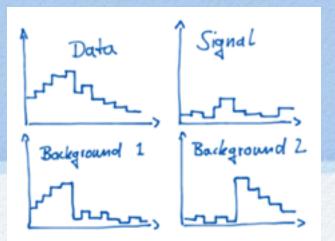
```
w.factory("Landau::L(x[-10,30],5,1)") :
w.factory("Gaussian::G(x,0,2)") ;
w.var("x")->setBins("cache",10000) ; // FFT sampling density
w.factory("FCONV::LGf(x,L,G)") ; // FFT convolution
w.factory("NCONV::LGb(x,L,G)") ; // Numeric convolution
```

- FFT usually best
 - Fast: unbinned ML fit to 10K events take ~5 seconds
 - NB: Requires installation of FFTW package (free, but not default)
 - Beware of cyclical effects (some tools available to mitigate)



Open Issues

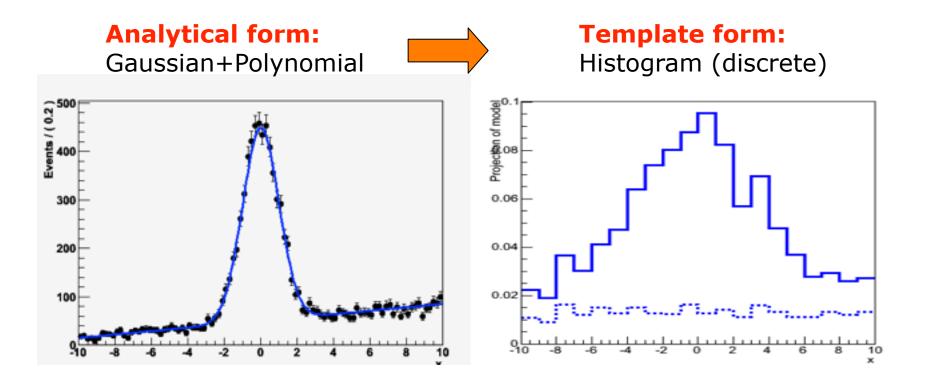
HistFactory



see also HistFactory doc (https://cdsweb.cern.ch/record/1456844/files/CERN-OPEN-2012-016.pdf)

HistFactory – a new class of pdfs

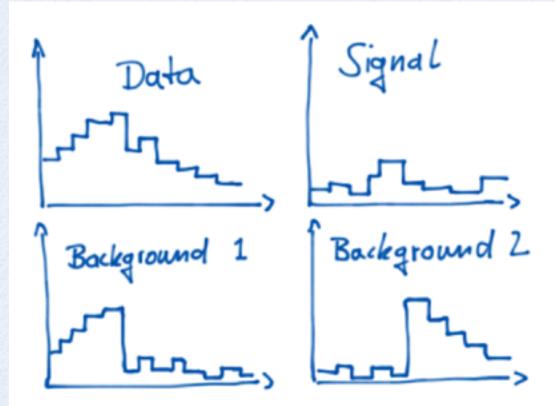
- Focus of RooFit traditionally on analytical models
 - Assumes you can formulate signal/background in an analytical form
 - Often possible in e+e- experiments, shapes for hadron colliders cumbersome



K. Cranmer, G. Lewis, L. Moneta, A. Shibata, and W. Verkerke, *HistFactory: A tool for creating statistical models for use with RooFit and RooStats*, CERN-OPEN-2012-016 (2012). http://cdsweb.cern.ch/record/1456844.

Model Building with HistFactory

Tool to build models from input histograms



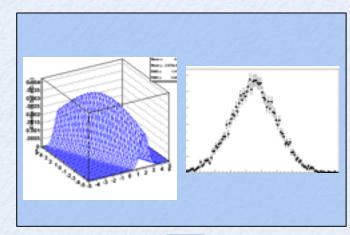
RooFit Workspace

Terascale Statistics School 2016122

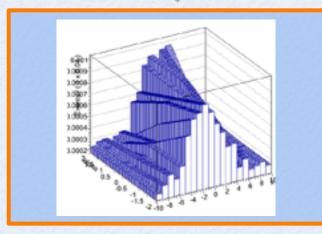
RooFit/RooStats at LHC (Higgs analysis)

Class RooWorkspace

Simplify packaging and sharing of models

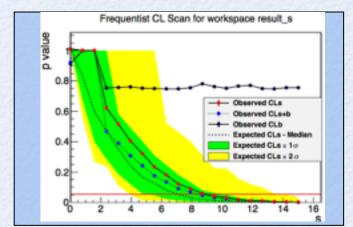


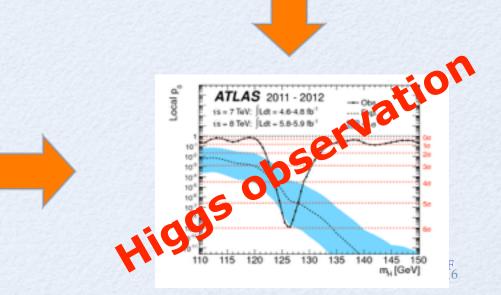
HistFactory package Constructing models from Monte Carlo templates



RooStats toolkit

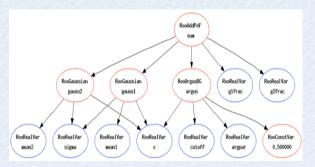
Statistical tests based on likelihoods from RooFit models



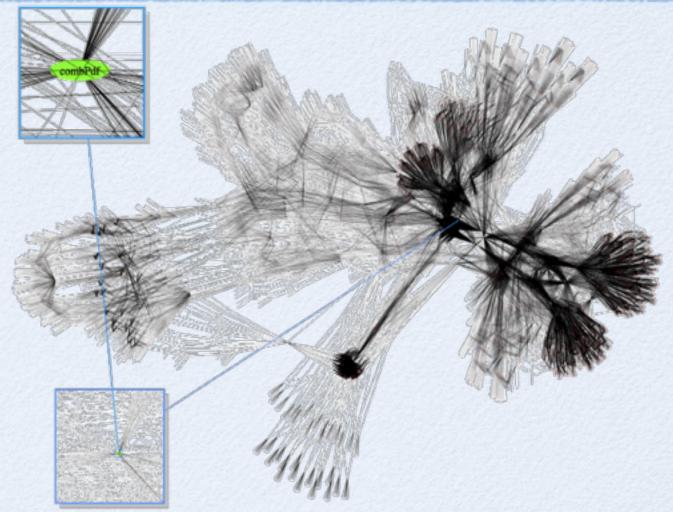


123

How well does it scale?



Graph of the full ATLAS Higgs combination model



Model has ~23.000 function objects, ~1600 parameters Reading/writing of full model takes ~4 seconds ROOT file with workspace is ~6 Mb

HistFactory concept

Measurement

- used to give global description of the model
- can contain one or several channels
- Channel
 - disjoints selected regions of events
- Sample
 - set of process contributions to a channel

HistFactory

Generalization of number counting models

$$\mathcal{P}(n_b|\mu) = \operatorname{Pois}(n_{\text{tot}}|\mu S + B) \left[\prod_{b \in \text{bins}} \frac{\mu \nu_b^{\text{sig}} + \nu_b^{\text{bkg}}}{\mu S + B}\right]$$

where n_b is the data histogram

in general HistFactory produces model of this form

HistFactory Model

$$\mathcal{P}(n_{cb}, a_p \mid \phi_p, \alpha_p, \gamma_b) = \prod_{c \in \text{channels}} \prod_{b \in \text{bins}} \text{Pois}(n_{cb} \mid \nu_{cb}) \cdot G(L_0 \mid \lambda, \Delta_L) \cdot \prod_{p \in \mathbb{S} + \Gamma} P_p(a_p \mid \alpha_p)$$

expected number of events in a bin

luminosity constraint parameter constraint

 $\nu_{cb}(\phi_p, \alpha_p, \gamma_b) = \lambda_{cs} \, \gamma_{cb} \, \phi_{cs}(\boldsymbol{\alpha}) \, \eta_{cs}(\boldsymbol{\alpha}) \, \sigma_{csb}(\boldsymbol{\alpha})$

 $egin{aligned} \lambda_{cs} \ \gamma_{cb_e} \ \phi_{cs} &= \prod_{p \in \mathbb{N}_c} \sigma_{csb_e} \end{aligned}$

luminosity parameter for each sample of a channel

bin by bin scale factor (statistical + systematics) product of unconstrained normalisation. Depend on P.O.I. (e.g. signal rate)

normalisation uncertainty for each sample of a channel nominal bin content and its uncertainty (from input histograms)

HistFactory Capabilities

- HistFactory can include:
 - multiple channels and samples
 - unconstrained normalisation for any sample
 - parametrize variation in normalization due to systematic effects
 - bin by bin statistical uncertainty (overall for all samples)
 - parametrize systematic variation of a single bin

	Constrained	Unconstrained
Normalization Variation	OverallSys (η_{cs})	NormFactor (ϕ_p)
Coherent Shape Variation	HistoSys σ_{csb}	—
Bin-by-bin variation	ShapeSys & StatError γ_{cb}	ShapeFactor γ_{csb}

HistFactory Capabilities (2)

- In addition the HistFactory can
 - can combine multiple channels
 - produce a RooFit workspace which can be used in RooStats
 - can be used to combine several measurements
- Configuration can be done in XML or directly in C++ or Python

How To Create a Model

• Simple counting model

Poisson($n_{obs} \mid \mu + b$) Gaussian($b \mid b_0, \sigma_b$)

```
// create first input histograms
int nobs = 3; double b = 1; double errb = 0.2;
```

```
// observed histogram
TH1D * hobs = new TH1D("hobs","hobs",1,0,1);
hobs->SetBinContent(1,nobs);
```

```
//signal histogram (assume expected one is 1)
TH1D * hs = new TH1D("hs","signal histo",1,0,1);
hs->SetBinContent(1,1);
```

```
TH1D * hb = new TH1D("hb","bkg histo",1,0,1);
hb->SetBinContent(1,b);
```

How To Create a Model (2)

Create HistFactory Measurement class

```
HistFactory::Measurement meas("CountingModel","CountingModel");
meas.SetPOI("mu");
```

meas.SetLumi(1.0); meas.SetLumiRelErr(0.1); // not relevant // this does not make lumi varying meas.AddConstantParam("Lumi");

Create Channels and Sample

```
HistFactory::Channel channel("SignalRegion");
channel.SetData(hobs);
```

```
HistFactory::Sample signal("signal");
signal.AddNormFactor("mu",1,0,30);
//signal.AddOverallSys("sig_unc",0.9, 1.1);
signal.SetHisto(hs);
channel.AddSample(signal);
```

```
HistFactory::Sample backg("background");
backg.SetHisto(h1_b);
backg.AddOverallSys("b_unc",1.-errb, 1+errb); // b uncertainty
channel.AddSample(backg);
```

131

How To Create a Model (3)

Creating a RooWorkspace given the Measurement

RooWorkspace * w = HistFactory::MakeModelAndMeasurementFast(meas);

RooWorkspace(SignalRegion) SignalRegion workspace contents

variables

(Lumi,alpha_b_unc,binWidth_obs_x_SignalRegion_0,binWidth_obs_x_SignalRegion_1,mu,nom_alpha_b_unc,nominalLumi,obs_x_S nalRegion,weightVar)

p.d.f.s

RooRealSumPdf::SignalRegion model[binWidth_obs_x_SignalRegion_0 * L_x_signal_SignalRegion_overallSyst_x_Exp + binWidth obs x SignalRegion 1 * L x background SignalRegion overallSyst x Exp] = 2/2 RooGaussian::alpha_b_uncConstraint[x=alpha_b_unc mean=nom_alpha_b_unc sigma=1] = 1 RooGaussian::lumiConstraint[x=Lumi mean=nominalLumi sigma=0.001] = 1 RooProdPdf::model_SignalRegion[lumiConstraint * alpha_b_uncConstraint * SignalRegion_model(obs_x_SignalRegion)] =

functions

RooProduct::L_x_background_SignalRegion_overallSyst_x_Exp[Lumi * background_SignalRegion_overallSyst_x_Exp] = 1 RooProduct::L x signal SignalRegion overallSyst x Exp[Lumi * signal SignalRegion overallSyst x Exp] = 1RooStats::HistFactory::FlexibleInterpVar::background_SignalRegion_epsilon[paramList=(alpha_b_unc)] = 1 RooHistFunc::background_SignalRegion_nominal[depList=(obs_x_SignalRegion)] = 1 RooProduct::background_SignalRegion_overallSyst_x_Exp[background_SignalRegion_nominal * background_SignalRegion_epsilon] = 1 RooHistFunc::signal_SignalRegion_nominal[depList=(obs_x_SignalRegion)] = 1 RooProduct::signal SignalRegion overallNorm x sigma epsilon [mu * signal SignalRegion epsilon] = 1RooProduct::signal_SignalRegion_overallSyst_x_Exp[signal_SignalRegion_nominal * signal SignalRegion overallNorm x_sigma epsilon] = 1

HistFactory Output

makes a combined workspace with data

RooWorkspace(combined) combined contents

variables

(channelCat,nom_alpha_b_unc,obs_x_SignalRegion,weightVar)

datasets

```
RooDataSet::asimovData(obs_x_SignalRegion,weightVar,channelCat)
RooDataSet::obsData(channelCat,obs_x_SignalRegion)
```

named sets

ModelConfig_GlobalObservables:(nom_alpha_b_unc)
ModelConfig_Observables:(obs_x_SignalRegion,weightVar,channelCat)
globalObservables:(nom_alpha_b_unc)
observables:(obs_x_SignalRegion,weightVar,channelCat)

create also a ModelConfig

=== Using the following	<pre>for ModelConfig ===</pre>
Observables:	RooArgSet:: = (obs_x_SignalRegion,weightVar,channelCat)
Parameters of Interest:	RooArgSet:: = (mu)
Nuisance Parameters:	RooArgSet:: = (alpha_b_unc)
Global Observables:	RooArgSet:: = (nom_alpha_b_unc)
PDF:	<pre>RooSimultaneous::simPdf[indexCat=channelCat SignalRegion=model_SignalRegion] = 2</pre>

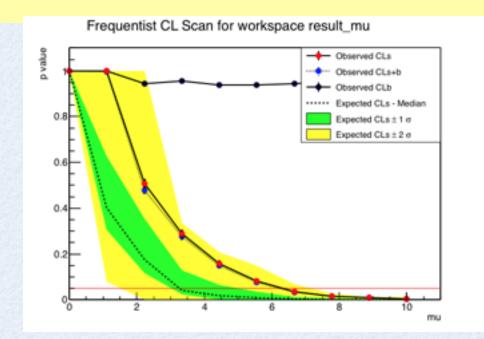
Using HistFactory Models

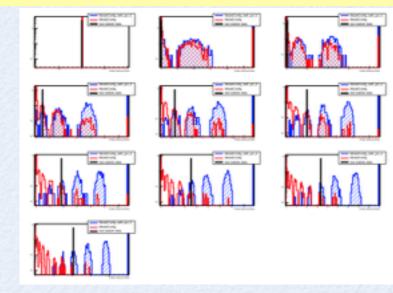
- Combined model saved in a ROOT file
- Model can be used directly in RooStats tools

root[] .L StandardHypoTestInvDemo.C

run for CLs (with frequentist calculator (type = 0) and one-side PL test statistics (type = 3) scan 10 points in [0,10]

root[] StandardHypoTestInvDemo("model.root", "combined", "ModelConfig", "", "obsData", 0, 3, true, 10, 0, 10)





134

Interpolation Options

HistFactory has different option for interpolating the systematic variations : $\eta(\alpha)$

- 0) Linear
- 1) Exponential
- 2) Quadratic interp. linear extrapolation
- 4) Polynomial interpolation Exponential extrapolation (default)

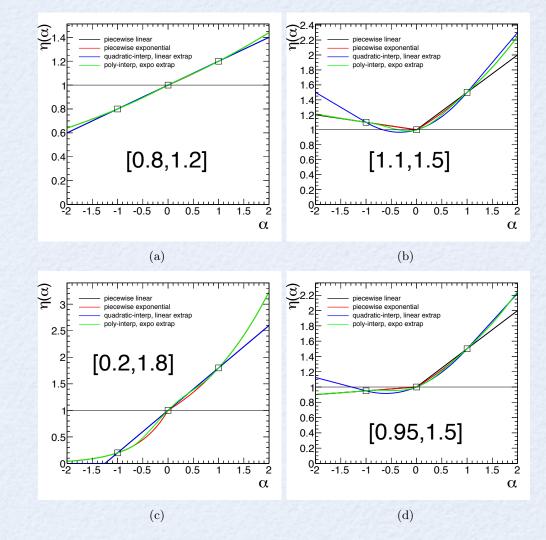


Figure 3: Comparison of the three interpolation options for different η^{\pm} . (a) $\eta^{-} = 0.8$, $\eta^{+} = 1.2$, (b) $\eta^{-} = 1.1$, $\eta^{+} = 1.5$, (c) $\eta^{-} = 0.2$, $\eta^{+} = 1.8$, and (d) $\eta_{-} = 0.95 \pm \eta_{-} = 0.2$

Time For Last Exercise !

Simple Model building example (HistFactoryModel notebook)
 build of a counting model using the HistFactory

Summary

- RooFit/RooStats allow you to perform advanced statistical data/analysis
 - LHC results (*e.g.* Higgs observation)
- Capable of using different tools and interpretations (Frequentist/Bayesian) on the same model
- Generic tools capable to deal with large variety of models
 - based on histograms or un-binned data
 - multi-dimensional observations
- Provide tools to facilitate complex model building
 - HistFactory for histogram based analysis

Documentation

- RooStats TWiki: https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome
- RooStats users guide (not really completed)
 - <u>http://root.cern.ch/viewcvs/branches/dev/roostats/roofit/roostats/doc/usersguide/RooStats_UsersGuide.pdf</u>
- For reference and citation: ACAT 2010 proceedings papers: <u>http://arxiv.org/abs/1009.1003</u>
- RooStats tutorial macros: <u>http://root.cern.ch/root/html534/tutorials/roostats/index.html</u>
- HistFactory document: <u>https://cdsweb.cern.ch/record/1456844/files/CERN-OPEN-2012-016.pdf</u>
- RooStats user support:
 - Request support via ROOT talk forum: http://root.cern.ch/phpBB2/viewforum.php?f=15 (questions on statistical concepts accepted)
 - contact me directly (email: Lorenzo.Moneta at cern.ch)
- Contacts for statistical questions:
 - ATLAS statistics forum:
 - TWiki: <u>https://twiki.cern.ch/twiki/bin/view/AtlasProtected/StatisticsTools</u>
 - CMS statistics committee:
 - TWiki: <u>https://twiki.cern.ch/twiki/bin/view/CMS/StatisticsCommittee</u>

Thank you !