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Outline
Introduction to Fitting in ROOT 
Introduction to RooFit 

Basic functionality and model building using the workspace
Composite models 

Exercises on RooFit:  building and fitting models
RooStats: 

Introduction 
Interval estimation tools (Likelihood/Bayesian)
Exercises on interval/limit estimation 

Hypothesis Test
Frequentist interval/limit calculator (CLs)

Exercises on frequentist interval/limit estimation and discovery 
significance (hypothesis test)

Building models with the HistFactory tool 

72



Terascale Statistics School 2016L. Moneta

RooStats Goal

Common framework for statistical calculations
work on arbitrary models and datasets

factorize modeling from statistical calculations
implement most accepted techniques 

frequentists, Bayesian and likelihood based tools
possible to easy compare different statistical methods 
provide utility for combinations of results
using same tools across experiments facilitates the 
combinations of results
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Statistical Applications

Statistical problems:
point estimation (covered by RooFit) 
estimation of confidence (credible) intervals 
hypothesis tests
goodness of fit (not addressed)
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RooStats Technology
Built on top of RooFit 

generic and convenient description of models (probability density 
function or likelihood functions)
provides workspace (RooWorkspace)

container for model and data and can be written to disk 
inputs to all RooStats statistical tools
convenient for sharing models (e.g digital publishing of results)

easily generation of models (workspace factory and HistFactory 
tool)
tools for combinations of model (e.g. simultaneous pdf)

Use of ROOT core libraries: 
minimization (e.g. Minuit), numerical integration, etc...
additional tools provided when needed (e.g. Markov-Chain MC)
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RooStats Design
C++ interfaces and classes mapping to real statistical concepts 
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RooStats Interfaces
IntervalCalculator

built from a model (workspace + ModelConfig) 
and data set
has the function:

ConfInterval * GetInterval(); 

ConfInterval  
built from a given confidence level
bool IsInInterval(const RooArgSet * point) 
can tell if a point is inside or outside the interval 
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RooStats Interfaces (2)
HypoTestCalculator

built from a data set and null and alternate models (e.g. 
background and signal plus background) 

model can be common and defined only by different 
parameter values (S = 0 and S = Standard Model)

has the function:
HypoTestResult * GetHypoTest(); 

HypoTestResult
double NullPValue();      double Significance(); 
double AlternatePValue(); 
SamplingDistribution * GetAlt/
NullDistribution();  
SamplingDistribution is the sampled test statistic distribution
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RooStats Calculator classes

BayesianCalculator
interval estimation based on Bayes 
theorem using adaptive numerical 
integration

MCMCCalculator
Bayesian calculator using Markov-Chain 
Monte Carlo

HypoTestInverter
invert hypothesis test results  to estimate 
an interval 

CLs limits, FC interval
NeymanConstruction and 
FeldmanCousins

frequentist interval calculators

HybridCalculator, 
FrequentistCalculator 

frequentist hypothesis test calculators 
using toy data (difference in treatment of 
nuisance parameters)

AsymptoticCalculator
hypothesis tests using asymptotic 
properties of likelihood function

79

Interval Calculators HypoTest Calculators
ProfileLikelihoodCalculator

interval estimation using asymptotic properties of the likelihood function
also an hypothesis test calculator (same as AsymptoticCalculator)
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ModelConfig class input to all Roostats calculators 
contains a reference to the RooFit workspace class
provides the workspace meta information needed to run 
RooStats calculators

pdf of the model stored in the workspace
what are observables (needed for toy generations)
what are the parameters of interest and the nuisance 
parameters
global observables (from auxiliary measurements) for 
frequentist calculators
prior pdf for the Bayesian tools  

ModelConfig can be imported in workspace for storage and 
later retrieval

ModelConfig Class
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ModelConfig must be built after having the workspace
Identify all the components which are present in the workspace

Some tools (Bayesian) require to specify prior pdf

ModelConfig can be imported in a workspace to be then stored in a file

//specify components of model for statistical tools
ModelConfig  modelConfig(“G(x|mu,1)”);
modelConfig.SetWorkspace(workspace);
//set components using the name of ws objects
modelConfig.SetPdf( “normal”);
modelConfig.SetParameterOfInterest(“poi”);
modelConfig.SetObservables(“obs”);

Building ModelConfig Class

//can import modelConfig into workspace too
workspace.import(*modelConfig);

//Bayesian tools would also need a prior
modelConfig.SetPriorPdf( “prior”);
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Method based on properties of the likelihood function
Profile likelihood function:

Uses asymptotic properties of λ based on Wilks’ theorem:
from a Taylor expansion of logλ around the minimum:

➔ -2logλ is a parabola (λ is a gaussian function)
➔  interval on % from logλ values

Method of MINUIT/MINOS
lower/upper limits for 1D 
contours for 2 parameters

Profile Likelihood Calculator

� 82

maximize w.r.t nuisance parameters ν and fix POI !

maximize w.r.t. all parameters

λ is a function of only the parameter of interest !

�(µ) =
L(x|µ,

ˆ̂
⌫)

L(x|µ̂, ⌫̂)
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Using the  Profile Likelihood Calculator

For one-dimensional intervals:
68% CL (1 σ) interval :
95% CL interval :

LikelihoodIntervalPlot can plot the 2D contours

// create the class using data and model 
ProfileLikelihoodCalculator plc(*data, *model); 

// set the confidence level 
plc.SetConfidenceLevel(0.683); 

// compute the interval 
LikelihoodInterval* interval = plc.GetInterval(); 
double lowerLimit = interval->LowerLimit(*mu); 
double upperLimit = interval->UpperLimit(*mu); 

// plot the interval 
LikelihoodIntervalPlot plot(interval); 
plot.Draw();
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∆logλ = 0.5
∆logλ = 1.96

�
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Bayesian Analysis in RooStats
RooStats provides classes for

marginalize posterior and estimate credible 
interval 

support for different integration algorithms:
adaptive (numerical) 
MC integration 
Markov-Chain

can work with models with many parameters 
(e.g few hundreds)

Bayesian Theorem

nuisance  parameters 
marginalization posterior probability

likelihood function prior probability 

normalisation term

POI data

P (µ|x) =
R

L(x|µ, ⌫)⇧(µ, ⌫)d⌫RR
L(x|µ, ⌫)⇧(µ, ⌫)dµd⌫
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Bayesian Classes
BayesianCalculator class

posterior and interval estimation using numerical integration
working only for one parameter of interest but can integrate (marginalize) many nuisance 
parameters
support for different integration algorithms,   
using BayesianCalculator::SetIntegrationType

adaptive numerical (default type),   
working only for few nuisances (< 10) 

Monte Carlo integration  
(PLAIN, MISER, VEGAS) 
TOYMC : average from toys where the  
nuisance parameters are sampled from a  
given p.d.f.  (nuisance pdf), but can work  
in model with many parameters

can compute: 
central interval  
one-sided interval (upper limit)  
a shortest interval 

provide plot of  posterior and interval 

BayesianCalculator bc(data, model);
bc.SetConfidenceLevel(0.683); 
bc.SetLeftSideTailFraction(0.5);
bc.SetIntegrationType(“ADAPTIVE”); 
SimpleInterval* interval = bc.GetInterval();
double lowerLimit = interval->LowerLimit();
double upperLimit = interval->UpperLimit();
RooPlot * plot = bc.GetPosteriorPlot();
plot->Draw();

Example:  68% CL central interval
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MCMCCalculator mc(data, model);
mc.SetConfidenceLevel(0.683); 
mc.SetLeftSideTailFraction(0.5);
SequentialProposal sp(0.1); 
mc.SetProposalFunction(sp); 
mc.SetNumIters(1000000);         
mc.SetNumBurnInSteps(50);    
MCInterval* interval = bc.GetInterval();
RooRealVar * s = (RooRealVar*) 
model.GetParametersOfInterest()->find(“s”);
double lowerLimit = interval->LowerLimit(*s);
double upperLimit = interval->UpperLimit(*s);
MCMCIntervalPlot plot(*interval);

MCMC Calculator

MCMCCalculator class
integration using Markov-Chain Monte 
Carlo (Metropolis Hastings algorithm)
can deal with more than one parameter 
of interest 
can work with many nuisance 
parameters

e.g. used in Higgs combination with 
more than 300 nuisances

possible to specify ProposalFunction
multivariate Gaussian from fit result
Sequential proposal 

can visualize posterior and also the 
chain result

MCMCCalculator

86



Terascale Statistics School 2016L. Moneta

Markov-Chain Monte Carlo

87G. Cowan CERN Academic Training 2010 / Statistics for the LHC / Lecture 4 page 28

MCMC basics:  Metropolis-Hastings algorithm

Goal:  given an n-dimensional pdf 

generate a sequence of points 

1)  Start at some point 

2)  Generate  

Proposal density

e.g. Gaussian centred

about

3)  Form Hastings test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate
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RooStats Standard Macros 
RooStats provides standard tutorials taking all as input workspace, 
ModelConfig and data set names

StandardProfileLikelihoodDemo.C

StandardBayesianNumericalDemo.C

StandardBayesianMCMCDemo.C

88

run ProfileLikelihoodCalculator - get interval and produce plot 

root[]StandardProfileLikelihoodDemo("ws.root","w","ModelConfig","data")

run Bayesiancalculator: get a credible interval and produce plot of posterior function 

root[]StandardBayesianNumericalDemo("ws.root","w","ModelConfig","data")

run bayesian MCMCCalculator: get a credible interval and produce plot of posterior function 

root[]StandardBayesianMCMCDemo("ws.root","w","ModelConfig","data")
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Time For Exercises ! 
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RooStats Exercises
Model building example 

CountingModel notebook for a Poisson model (signal plus 
background)

following examples at this link:  
https://twiki.cern.ch/twiki/bin/view/RooStats/RooStatsTutorialsAugust2012#Create_Poisson_Counting_model 

1. use different parameterisation for the systematics in the 
background events (e.g. log-normal or gamma)

2. add an extra systematic contribution (e.g. in the signal efficiency)
ProfileLikelihood  example 

 ProfileLikelihood notebook
Bayesian examples 

BayesianNumerical 
BayesianMCMC

Can also use the Standard tutorial macros to run the RooStats calculators 
example is StandardDemos notebook
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Useful Terminology

" Observable (or random variable): quantities that are directly measured 
by an experiment (eg. candidates mass, helicity angle, NNet output) – 
they form a dataset 

" Model: based on probability density function (PDF) that describes one 
or multiples observables – parametric or non-parametric. PDF are 
normalized such that their integral over any observable is 1 

" Parameters of interest: parameters of the model that one wishes to 
estimate or constrain (eg. particle mass, cross-section) 

" Nuisance parameters: parameters of the model that are uncertain but 
not “of interest” (systematics-associated normalization or shape 
parameters) 

" treatment of systematic uncertainties depends on the statistical 
method used
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RooStats 
Part2

Hypothesis tests in RooStats using toys and 
asymptotic formulae
Hypothesis test inversion

Limit and interval calculators 
CLs, Feldman-Cousins
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Frequentist Hypothesis Tests

Ingredients: 
Null Hypothesis: the hypothesis being tested   (e.g.   θ = θ0 ), assumed to 
be true and one tries to reject it 

e.g. the data consists only of background events
Alternate Hypothesis: the competitive hypothesis (e.g.   θ ≠ θ0 )

e.g. the data consists of signal and background 
w is the critical region, a subspace of all possible data used to define if 
hypothesis is rejected

size of test :      α = P( X ∊ w | H0 )    H0 is rejected while is true 
power of test :  1- β = P( X ∊ w | H1 )    

Test statistics: a function of the data, t(X) ,used for defining the critical region 
in multidimensional data: X ∊ w ➞ t(X) ∊ wt
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RooStats Hypothesis Test
Define null and alternate model using ModelConfig

can use ModelConfig::SetSnapshot(const RooArgSet &) to define 
parameter values for the null in case of a common model 
(e.g. % = 0 for the B model)

Select test statistics  to use 
Select calculator 

Use toys or asymptotic formula  
 to get sampling distribution  
 of test statistics
FrequentistCalculator or  
HybridCalculator have different  
treatment of nuisance parameters  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Test Statistics
Test statistics maps multidimensional space in one, in a 
way relevant to the hypothesis being tested

preferred choice is profile likelihood ratio which has 
known asymptotic distribution

95

Sven Kreiss

Test Statistics

Test Statistic: Maps high dimensional data (points in “observable”-space) to a real number. 
(source?), Fred James: “Any function of the data is called a statistic.”

➡ a complicated shape that defines the boundary between acceptance and critical 
region gets mapped to a point on a line

At the LHC, the Profile-Likelihood-Test-Statistic is used.

➡ takes nuisance parameters into account

22Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

SoS, Autrans, May 19 & 20, 2010

Three common test statistics
We express cross-section as                       for convenience.
Effect of systematics is parametrized by one or more “nuisance 
parameters” denoted    .  

● best fit point is:
● best fit of nuisance parameters with µ fixed is     (aka “profiled”)

In principle, s+b and b-only models can have different parametrizations

RooStats has the three common test statistics used in the field (and more)
● simple likelihood ratio (used at LEP, nuisance parameters fixed)

● ratio of profiled likelihoods (used commonly at Tevatron)

● profile likelihood ratio (related to Wilks’s theorem)

�(µ) = Ls+b(µ, ˆ̂⇥)/Ls+b(µ̂, ⇥̂)

QLEP = Ls+b(µ = 1)/Lb(µ = 0)

QTEV = Ls+b(µ = 1, ˆ̂�)/Lb(µ = 0, ˆ̂�0)

µ = �/�SM

⌫

µ̂, �̂
ˆ̂⌫
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FrequentistCalculator
Generate toys using nuisance parameter at their conditional ML 
estimate ( θ = θ%) by fitting them to the observed data
Treat constraint terms in the likelihood (e.g. systematic errors) 
as auxiliary measurements

introduce global observables which will be varied (tossed) 
for each pseudo-experiment
L = Poisson( nobs | % +b) Gaussian( b0 | b, σb) 

b0 is a global observables, varied for each toys but it needs to be 
considered constant when fitting
nobs is the observable which is part of the data set
% is the parameter of interest (poi) 
b is the nuisance parameter

96
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HybridCalculator
Nuisance parameters are integrated using their pdf (the 
constraint term) which is interpreted as a Bayesian prior

integration is done by generating for each toys 
different nuisance parameters values
need to have a pdf for the nuisance parameters (often it 
can be derived automatically from the model)

    L = Poisson( nobs | % +b) Gaussian( b| b0, σb) 

 L = ∫  Poisson( nobs | % +b) Gaussian( b| b0, σb) db
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Example: FrequentistCalculator
Define the models

N.B for discovery significance null is B model and alt is S+B

98

// create first HypoTest calculator (data, alt model , null model) 
FrequentistCalculator fcalc(*data, *sbModel, *bModel); 

// create the test statistics 
ProfileLikelihoodTestStat profll(*sbModel->GetPdf()); 
// use one-sided profile likelihood for discovery tests 
profll.SetOneSidedDiscovery(true); 
   
// configure  ToyMCSampler and set the test statistics 
ToyMCSampler *toymcs = (ToyMCSampler*)fcalc.GetTestStatSampler(); 
toymcs->SetTestStatistic(&profll); 

fcalc.SetToys(1000,1000);  // set number of toys for (null, alt) 

// run the test 
HypoTestResult * r = fcalc.GetHypoTest(); 
r->Print(); 

// plot test statistic distributions 
HypoTestPlot * plot = new HypoTestPlot(*r); 
plot->Draw();

Results HypoTestCalculator_result:  
 - Null p-value = 0.034 +/- 0.00573097 
 - Significance = 1.82501 sigma 
 - Number of Alt toys: 1000 
 - Number of Null toys: 1000

B model

S+B model

data
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AsymptoticCalculator
Use the asymptotic formula for the test statistic distributions
one-sided profile likelihood test statistic: 

null model (% = %TEST )
half Χ2 distribution

alt model (% ≠ %TEST )
non-central Χ2

use Asimov data to get  

 the non centrality  

 parameter  Λ = (%-%TEST)/σ
p-values for null and  

alternate can be obtained  

without generating toys 

99

➡ see Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727,EPJC 71 (2011) 1-1

�(µ) =
L(x|µ,

ˆ̂
⌫)

L(x|µ̂, ⌫̂)

λ(%) = 0  for 
% < 0 (discovery)
% < %TEST (limits)
 

^
^
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Example: Discovery Significance

Performing the tests for different mass hypotheses  
(i.e  different signal models):
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Inversion of Hypothesis Tests
one-to-one mapping  between hypothesis tests and 
confidence intervals

101

Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

A Point about the Neyman Construction

119

x0

��

�+

x

�

This is not Bayesian... it doesn’t mean the probability 
that the true value of   is in the interval is        !� 1� �

�true

Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

Inverting Hypothesis Tests
There is a precise dictionary that explains how to move from from 
hypothesis testing to parameter estimation.
‣ Type I error: probability interval does not cover true value of the 

parameters (eg. it is now a function of the parameters)
‣ Power is probability interval does not cover a false value of the 

parameters (eg. it is now a function of the parameters)
● We don’t know the true value, consider each point      as if it were true

What about null and alternate hypotheses?
‣ when testing a point    it is considered the null 
‣ all other points considered “alternate” 

So what about the Neyman-Pearson lemma & Likelihood ratio?
‣ as mentioned earlier, there are no guarantees like before 
‣ a common generalization that has good power is:
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�0

f(x|�0)
f(x|�best(x))

f(x|H0)
f(x|H1)

�0

Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

The Dictionary
There is a formal 1-to-1 mapping between hypothesis tests and 
confidence intervals:
‣ some refer to the Neyman Construction as an “inverted 

hypothesis test”
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Classical Hypothesis Testing (cont.)

“Test for θ=θ0” ↔ “Is θ0 in confidence interval for θ”

Bob Cousins, CMS, 2008 44

“There is thus no need to derive optimum properties 

separately for tests and for intervals; there is a one-to-one 

correspondence between the problems as in the dictionary in 

Table 20.1” – Stuart99, p. 175.
Using the likelihood ratio hypothesis test, this correspondence is the basis 

of intervals in G. Feldman, R Cousins, Phys Rev D57 3873 (1998).

Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

Discovery in pictures
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N events

P(
 N

 |
 s

+
b
 )

b-only s+b
b-only p-valueobs

more discrepant

Discovery: test b-only (null: s=0 vs. alt: s>0)
• note, one-sided alternative.  larger N is “more discrepant” 

aka “CLb”

Gary Feldman 25 Journeys

Visit to Harvard Statistics Department

Towards the end of this work, I decided to try it out on
some professional statisticians whom I know at Harvard.

They told me that this was the standard method of
constructing a confidence interval!

I asked them if they could point to a single reference of
anyone using this method before, and they could not.

They explained that in statistical theory there is a one-to-
one correspondence between a hypothesis test and a
confidence interval.  (The confidence interval is a
hypothesis test for each value in the interval.)   The
Neyman-Pearson Theorem states that the likelihood ratio
gives the most powerful hypothesis test.  Therefore, it must
be the standard method of constructing a confidence
interval.

I decided to start reading about hypothesis testing…

from G. Feldman visiting Harvard 
statistics department
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Hypothesis Test Inversion
Performing an hypothesis test at each value of the parameter 
Interval can be derived by inverting the p-value curve,  function 
of the parameter of interest (%)

value of % which has  p-value α (e.g. 0.05), is the upper limit 
of 1-α confidence interval (e.g. 95%)
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Hypothesis Test Inversion
use one-sided test for upper limits (e.g. one-side 
profile likelihood test statistics)
use two-sided test for a 2-sided interval

103

1-α = 68.3%

lower 
limit

upper 
limit

Example: 1-σ interval for a Gaussian measurement
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HypoTestInverter class
Input is an  Hypothesis Test calculator:

Frequentist/Hybrid/AsymptoticCalculator
possible to customize test statistic, number of toys, etc..

N.B:  null model is S+B, alternate is B only model 
Compute an Interval (result is a ConfInterval object): 

scan given interval of µ and perform hypothesis tests
compute upper/lower limit from scan result

can use CLs = CLs+b / CLb for the p-value
result (HypoTestInverterResult) contains all the 
hypothesis test results for each scanned µ value 
can compute expected limits and bands

104
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HypoTestInverter
HypoTestInverter class in RooStats

105

// create first HypoTest calculator (N.B null is s+b model) 
FrequentistCalculator fc(*data, *bModel, *sbModel); 

HypoTestInverter calc(*fc); 
calc.UseCLs(true); 

// configure  ToyMCSampler and set the test statistics 
ToyMCSampler *toymcs = (ToyMCSampler*)fc.GetTestStatSampler(); 

ProfileLikelihoodTestStat profll(*sbModel->GetPdf()); 
// for CLs (bounded intervals) use one-sided profile likelihood 
profll.SetOneSided(true); 
toymcs->SetTestStatistic(&profll); 

// configure and run the scan 
calc.SetFixedScan(npoints,poimin,poimax); 
HypoTestInverterResult * r = calc.GetInterval(); 

// get result and plot it 
double upperLimit = r->UpperLimit(); 
double expectedLimit = r->GetExpectedUpperLimit(0); 

HypoTestInverterPlot *plot = new HypoTestInverterPlot("hi","",r); 
plot->Draw();
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Running the HypoTestInverter  

B
S+B

Data

106

Hypothesis test results for each scanned point

p-value, CLs+b (or CLb)  is integral of S+B (or B) 
test statistic distribution from data value

Scan result 

How expected limit and bands are 
obtained ?
 - compute p-value for quantiles 
(median, +/1,2 sigma)  of the B 
model test statistic distribution  
(i.e. use quantile as the observed 
value)
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Asymptotic Limits
AsymptoticCalculator class for HypoTestInverter

use the asymptotic formula for the test statistic distributions 
%2 approximation for the profile likelihood ratio

see G. Cowan et al., arXiv:1007.1727,EPJC 71 (2011) 1-1
p-values CLs+b (null) and  CLb (alt) obtained without generating toys 
also expected limits from the alt distribution  

107

S+B model

B modelCLb

CLs+b

// create first HypoTest calculator (N.B null is s+b model) 
AsymptoticCalculator ac(*data, *bModel, *sbModel); 

HypoTestInverter calc(*ac); 
// run inverter same as using other calculators 
........
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Example of Scan
95% CL limit on a Gaussian measurement: 

Gauss(x,%,1), with %≥0

108

deficit, observation x = -1.5 excess, observation x = 1.5

use CLs as p-value to avoid setting limits which are too good 
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By computing limits for different mass hypothesis:

Example:  Computing Limits

109
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Limits on bounded measurements

110

Downward fluctuations in searches for excesses 
Classic example: Upper limit on mean P of 
Gaussian based on measurement x (in units of V). 
 
 

Bob Cousins, CMSDAS, 1/2012 60 

Frequentist 1-sided 95% C.L. Upper 
Limits, based on D = 1 – C.L. = 5% 
(called CLsb at LEP).  
For x < �1.64 V the confidence 
interval is the null set! 

If  Pt0 in model, as measured x 
becomes increasingly negative, 
standard classical upper limit 
becomes small and then null. 
 
Issue acute 15-25 years ago in 
expts to measure Qe mass in 
(tritium E decay): several 
measured mQ

2 < 0. 
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Figure 4: Upper limits obtained via the Bayesian method recommended by the PDG RPP,
plotted as a confidence belt. The prior probability density for µ is uniform for all µ which
exist in the model, i.e., for µ � 0. The horizontal lines contain more than 95% of the
acceptance for x, so from the frequentist point of view the upper limits are conservative. For
this problem, the upper limits from CLS are the same.
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Figure 5: 95% confidence belt advocated by Feldman and Cousins [8]. For x  1.64, the lower
end of the interval is 0. All horizontal acceptance intervals contain 95% of the probability
for observing x.

8

CLs or Bayesian

Feldman-Cousins 
interval

from Bob Cousins:
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Feldman-Cousins intervals
HypoTestInverter class can compute also a Feldman-Cousins 
interval

need to use FrequentistCalculator and CLs+b as p-value
use the 2-sided profile likelihood test statistic 

111

observation x = -1.5

�(µ) =
L(x|µ,

ˆ̂
⌫)

L(x|µ̂, ⌫̂)

observation x = 1.5
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Feldman-Cousins Interval

112

from Kyle Cranmer:



ROOT Users Workshop                     11-14 March 2013

Example: Feldman-Cousins interval

• Same RooStats code but with different configuration 
can compute also a Feldman-Cousins interval
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StandardHypoTestInvDemo.C
Standard ROOT macro to run the Hypothesis Test inversion. 
Inputs to the macro:  

workspace file, workspace name
name of S+B model (null) and for B model (alt)

if no B model is given, use S+B model with poi = 0 
data set name 
calculator type: frequentist (= 0),  hybrid (=1), or asymptotic (=2) 
test statistics

options:
use CLs or CLs+b for computing limit
number of points to scan and min, max of interval

load the macro after having created the workspace and saved in file SPlusBExpoModel.root 
root[] .L StandardHypoTestInvDemo.C

run for CLs (with  frequentist calculator (type = 0) and one-side PL test statistics (type = 3) scan 10 points in [0,100] 

root[] StandardHypoTestInvDemo("SPlusBExpoModel.root","w","ModelConfig","","data",0,3, true, 10, 0, 100)

run for Asymptotic CLs (scan 20 points in [0,100])  

root[] StandardHypoTestInvDemo(SPlusBExpoModel.root","w","ModelConfig","","data",2,3, true, 20, 0, 100)

run for Feldman-Cousins  ( scan 10 points in [0,100])  

root[] StandardHypoTestInvDemo(SPlusBExpoModel.root","w","ModelConfig","","data",0,2, false, 10, 0, 100)
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Time For Exercises ! 

115



Terascale Statistics School 2016L. Moneta

Advanced RooStats Examples

Hypothesis test example (HypothesisTest notebook)
run on the Higgs un-binned or binned model 
(HiggsModel.root or HiggsBinModel.root)
p0Plot for computing the significance for different mass 
values 

Frequentist interval example  (HypoTestInversion notebook)
e.g. run on Counting workspace or any others
be careful when using toys (not using the asymptotic 
calculator). It might need a long time

Can also use the Standard tutorial macros to run on any 
workspace

examples are in StandardDemos notebook
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Convolution

• Model representing a convolution of a theory model and a 
resolution model often useful  
 
 

• But numeric calculation of convolution integral can be 
challenging. No one-size-fits-all solution, but 3 options available 
– Analytical convolution (BW⊗Gauss, various B physics decays) 

– Brute-force numeric calculation (slow) 

– FFT numeric convolution (fast, but some side effects)

⊗ =
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Convolution

• Example 

• FFT usually best 

– Fast: unbinned ML fit to 10K  
events take ~5 seconds 

– NB: Requires installation of FFTW 
package (free, but not default) 

– Beware of cyclical effects 
(some tools available to mitigate)

  w.factory(“Landau::L(x[-10,30],5,1)”) :  
  w.factory(“Gaussian::G(x,0,2)”) ;  

  w.var(“x”)->setBins(“cache”,10000) ; // FFT sampling density 
  w.factory(“FCONV::LGf(x,L,G)”) ;     // FFT convolution 
 
  w.factory(“NCONV::LGb(x,L,G)”) ;    // Numeric convolution
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Open Issues
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HistFactory

see also HistFactory doc (https://cdsweb.cern.ch/record/1456844/files/CERN-OPEN-2012-016.pdf)

120



HistFactory – a new class of pdfs

• Focus of RooFit traditionally on analytical models 

– Assumes you can formulate signal/background in an analytical form 

– Often possible in e+e- experiments,  
shapes for hadron colliders cumbersome 

Wouter Verkerke, NIKHEF 

Analytical form:�
Gaussian+Polynomial

Template form:�
Histogram (discrete) 
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Model Building with HistFactory
Tool to build models from input histograms

122

RooFit  
Workspace
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RooFit/RooStats at LHC (Higgs analysis)

Wouter Verkerke, NIKHEF 

Simplify packaging�
and sharing of models

Class RooWorkspace
Statistical tests based on �

likelihoods from RooFit models

RooStats toolkit

HistFactory package
Constructing models from�

Monte Carlo templates

Higgs observatio
n
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How well does it scale?

Graph of the full 
ATLAS Higgs 
combination 
model

Model has ~23.000 function objects, ~1600 parameters
Reading/writing of full model takes ~4 seconds 
ROOT file with workspace is ~6 Mb
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HistFactory concept

Measurement
used to give global description of the model
can contain one or several channels

Channel
disjoints selected regions of events

Sample
set of process contributions to a channel
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Generalization of number counting models

HistFactory

126

Formally one can either write the probability model in terms of a product over Poisson
distributions for each bin of the histogram, or one can also continue to use the unbinned
expression above recognizing that the shapes f(x) look like histograms (ie. they are discon-
tinuous at the bin boundaries and constant between them). Technically, the HistFactory

makes a model that looks more like the unbinned expression with a single RooAbsPdf that
is “extended” with a discontinuous shape in x. Nevertheless, it can be more convenient to
express the model in terms of the individual bins. Then we have

P(nb|µ) = Pois(n
tot

|µS +B)

"
Y

b2bins

µ⌫

sig

b + ⌫

bkg

b

µS +B

#
= N

comb

Y

b2bins
Pois(nb|µ⌫sigb + ⌫

bkg

b ) , (4)

where nb is the data histogram and N
comb

is a combinatorial factor that can be neglected
since it is constant. Similarly, denote the data histogram is nb.

1.2 Generalizations and Use-Cases

Based on the discussion above, we want to generalize the model in the following ways:

• Ability to include multiple signal and background samples

• Ability to include unconstrained scaling of the normalization of any sample (as was
done with µ)

• Ability to parametrize variation in the normalization of any sample due to some sys-
tematic e↵ect

• Ability to parameterize variations in the shape of any sample due to some systematic
e↵ect

• Ability to include bin-by-bin statistical uncertainty on the normalization of any sample

• Ability to incorporate an arbitrary contribution where each bin’s content is parametrized
individually

• Ability to combine multiple channels (regions of the data defined by disjoint event
selections) and correlate the parameters across the various channels

• Ability to use the combination infrastructure to incorporate control samples for data-
driven background estimation techniques

• Ability to reparametrize the model

Constrained Unconstrained
Normalization Variation OverallSys (⌘cs) NormFactor (�p)
Coherent Shape Variation HistoSys �csb –
Bin-by-bin variation ShapeSys & StatError �cb ShapeFactor �csb

Table 1: Conceptual building blocks for constructing more complicated PDFs: parameters.
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in general HistFactory produces model of this form

2 The Likelihood Template

2.1 Index Convention

In what follows we use the term channel as a region of the data defined by the corresponding
event selection, as opposed to a particular scattering process. The channels are required to
have disjoint event selection requirements. We use the term sample for a set of scattering
processes that can be added together incoherently; thus scattering processes that interfere
quantum mechanically must be considered in the same sample.

We will use the following mnemonic index conventions:

• e 2 events

• b 2 bins

• c 2 channels

• s 2 samples

• p 2 parameters

We define the following subsets of parameters N = {�p} the unconstrained normalization
factors (ie. NormFactor), S = {↵p} the parameters associated to systematic that have ex-
ternal constraints (ie. OverallSys and HistoSys), � = {�csb} (the bin-by-bin uncertainties
with constraints (statistical errors, ShapeSys but not those associated to an unconstrained
ShapeFactor). We also use greek symbols for parameters of the model and roman symbols
for observable quantities with a frequentist notion of probability.

2.2 The Template

The parametrized probability density function constructed by the HistFactory is of a con-
crete form, but su�ciently flexible to describe many analyses based on template histograms.
In general, the HistFactory produces probability density functions of the form

P(nc, xe, ap |�p,↵p, �b) =
Y

c2channels

"
Pois(nc|⌫c)

ncY

e=1

fc(xe|↵)

#
·G(L

0

|�,�L) ·
Y

p2S+�

fp(ap|↵p) (5)

where fp(ap|↵p) is a constraint term describing an auxiliary measurement ap that constrains
the nuisance parameter ↵p (see Section 4.2). Denote the bin containing xe as be. We have
the following expression for the expected (mean) number of events in a given bin

⌫cb(�p,↵p, �b) = �cs �cb �cs(↵) ⌘cs(↵) �csb(↵) , (6)

where the meaning of the various terms is described below and the specific interpolation
algorithms are described in Section 4.1. The mean number of events in each bin implies the
following probability density

fc(xe|�p,↵p, �b) =
⌫cbe

⌫c
with ⌫c =

X

b2bins of channel c

⌫cb (7)

It is perhaps more convenient to think of the likelihood as a product over bins

P(ncb, ap |�p,↵p, �b) =
Y

c2channels

Y

b2bins
Pois(ncb|⌫cb) ·G(L

0

|�,�L) ·
Y

p2S+�

fp(ap|↵p)
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2 The Likelihood Template

2.1 Index Convention
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• �cs - luminosity parameter for a given channel and sample. Within a given channel
this parameter is a common luminosity parameter for all the samples that include
luminosity uncertainty (i.e.. NormalizeByTheory="True"). For all the samples with
NormalizeByTheory="False" it is fixed to the nominal luminosity �cs = L

0

.
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expected number of events in a bin
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• �cs - luminosity parameter for a given channel and sample. Within a given channel
this parameter is a common luminosity parameter for all the samples that include
luminosity uncertainty (i.e.. NormalizeByTheory="True"). For all the samples with
NormalizeByTheory="False" it is fixed to the nominal luminosity �cs = L

0

.

• �cbe - Bin-by-bin scale factor used for statistical uncertainties, bin-by-bin shape system-
atics (ShapeSys), and data-driven shape extrapolations (ShapeFactor). For statistical
errors, the �csbe is shared for all the samples in the channel (ie. subscript s can be
omitted). For samples that do not have any bin-by-bin scale factors �csbe = 1.

• �cs - Product of unconstrained normalization factors for a given sample within a given
channel. These typically include the parameter of interest, eg. the signal cross-section
or branching ratio.

�cs =
Y

p2Nc

�p (8)

• ⌘cs(↵) - The parametrized normalization uncertainties (ie. OverallSys) for a given
sample within a given channel (a factor around 1).

• �csbe - The parametrized histogram (ie. the nominal histogram and the HistoSys) for
a given sample within a given channel.

2.2.1 Incorporating Monte Carlo statistical uncertainty on the histogram templates

The histogram based approach described above are based Monte Carlo simulations of full
detector simulation. These simulations are very computationally intensive and often the
histograms are sparsely populated. In this case the histograms are not good descriptions
of the underlying distribution, but are estimates of that distribution with some statistical
uncertainty. Barlow and Beeston outlined a treatment of this situation in which each bin of
each sample is given a nuisance parameter for the true rate, which is then fit using both the
data measurement and the Monte Carlo estimate [?]. This approach would lead to several
hundred nuisance parameters in the current analysis. Instead, the HistFactory employs a
lighter weight version in which there is only one nuisance parameter per bin associated with
the total Monte Carlo estimate and the total statistical uncertainty in that bin. If we focus
on an individual bin with index b the contribution to the full statistical model is the factor

Pois(nb|⌫b(↵) + �b⌫
MC

b (↵)) Pois(mb|�b⌧b) , (9)

where nb is the number of events observed in the bin, ⌫b(↵) is the number of events expected
in the bin where Monte Carlo statistical uncertainties need not be included (either because the
estimate is data driven or because the Monte Carlo sample is su�ciently large), ⌫MC

b (↵) is the
number of events estimated using Monte Carlo techniques where the statistical uncertainty
needs to be taken into account. Both expectations include the dependence on the parameters
↵. The factor �b is the nuisance parameter reflecting that the true rate may di↵er from the
Monte Carlo estimate ⌫MC

b (↵) by some amount. If the total statistical uncertainty is �b, then
the relative statistical uncertainty is given by ⌫

MC

b /�b. This corresponds to a total Monte
Carlo sample in that bin of size mb = (�b/⌫MC

b )2. Treating the Monte Carlo estimate as
an auxiliary measurement, we arrive at a Poisson constraint term Pois(mb|�b⌧b), where mb

would fluctuate about �b⌧b if we generated a new Monte Carlo sample. Since we have scaled
� to be a factor about 1, then we also have ⌧b = (⌫MC

b /�b)2; however, ⌧b is treated as a fixed
constant and does not fluctuate when generating ensembles of pseudo-experiments.
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luminosity parameter for each sample of  a channel

bin by bin scale factor (statistical + systematics)
product of unconstrained normalisation. Depend on P.O.I. 
(e.g. signal rate)

normalisation uncertainty for  each sample of a channel
nominal bin content and its uncertainty (from input 
histograms) 
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HistFactory can include: 
multiple channels and samples
unconstrained normalisation for any sample
parametrize variation in normalization due to systematic effects
bin by bin statistical uncertainty (overall for all samples)
parametrize systematic variation of a single bin

HistFactory Capabilities 

128

where be is the index of the bin containing xe and �be is the width of that same bins. Note,

because the f(x) are normalized to unity we have S =
P

b ⌫
sig

b

and B =
P

b ⌫
bkg

b

.

Formally one can either write the probability model in terms of a product over Poisson
distributions for each bin of the histogram, or one can also continue to use the unbinned
expression above recognizing that the shapes f(x) look like histograms (ie. they are discon-
tinuous at the bin boundaries and constant between them). Technically, the HistFactory

makes a model that looks more like the unbinned expression with a single RooAbsPdf that
is “extended” with a discontinuous shape in x. Nevertheless, it can be more convenient to
express the model in terms of the individual bins. Then we have

P(nb|µ) = Pois(n
tot

|µS +B)

"
Y

b2bins

µ⌫

sig

b + ⌫

bkg

b

µS +B

#
= N

comb

Y

b2bins
Pois(nb|µ⌫sigb + ⌫

bkg

b ) , (4)

where nb is the data histogram and N
comb

is a combinatorial factor that can be neglected
since it is constant. Similarly, denote the data histogram is nb.

1.2 Generalizations and Use-Cases

Based on the discussion above, we want to generalize the model in the following ways:

• Ability to include multiple signal and background samples

• Ability to include unconstrained scaling of the normalization of any sample (as was
done with µ)

• Ability to parametrize variation in the normalization of any sample due to some sys-
tematic e↵ect

• Ability to parameterize variations in the shape of any sample due to some systematic
e↵ect

• Ability to include bin-by-bin statistical uncertainty on the normalization of any sample

• Ability to incorporate an arbitrary contribution where each bin’s content is parametrized
individually

• Ability to combine multiple channels (regions of the data defined by disjoint event
selections) and correlate the parameters across the various channels

• Ability to use the combination infrastructure to incorporate control samples for data-
driven background estimation techniques

• Ability to reparametrize the model

Constrained Unconstrained
Normalization Variation OverallSys (⌘cs) NormFactor (�p)
Coherent Shape Variation HistoSys �csb –
Bin-by-bin variation ShapeSys & StatError �cb ShapeFactor �csb

Table 1: Conceptual building blocks for constructing more complicated PDFs: parameters.

3
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HistFactory Capabilities (2)

In addition the HistFactory can 
can combine multiple channels 
produce a RooFit workspace which can be 
used in RooStats

can be used to combine several 
measurements

Configuration can be done in XML or directly 
in C++ or Python

129
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How To Create a Model
Simple counting model 

Poisson( nobs | % +b) Gaussian( b| b0, σb) 

130

// create first input histograms 
int nobs = 3; double b = 1; double errb = 0.2;  

// observed histogram 
TH1D * hobs = new TH1D(“hobs","hobs",1,0,1); 
hobs->SetBinContent(1,nobs);  

//signal histogram (assume expected one is 1) 
TH1D * hs = new TH1D("hs","signal  histo",1,0,1); 
hs->SetBinContent(1,1); 

    
TH1D * hb = new TH1D("hb","bkg  histo",1,0,1); 
hb->SetBinContent(1,b);
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How To Create a Model (2)
Create HistFactory Measurement class

Create Channels and Sample

131

HistFactory::Measurement meas("CountingModel","CountingModel"); 
meas.SetPOI("mu"); 

meas.SetLumi(1.0); 
meas.SetLumiRelErr(0.1);  // not relevant  
// this does not make lumi varying 
meas.AddConstantParam("Lumi"); 

HistFactory::Channel channel("SignalRegion");  
channel.SetData(hobs); 

HistFactory::Sample signal("signal"); 
signal.AddNormFactor("mu",1,0,30); 
//signal.AddOverallSys("sig_unc",0.9, 1.1); 
signal.SetHisto(hs);  
channel.AddSample(signal); 

HistFactory::Sample backg("background"); 
backg.SetHisto(h1_b); 
backg.AddOverallSys("b_unc",1.-errb, 1+errb);  // b uncertainty 
channel.AddSample(backg); 

meas.AddChannel(channel);
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How To Create a Model (3)
Creating a RooWorkspace given the Measurement
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 RooWorkspace * w = HistFactory::MakeModelAndMeasurementFast(meas);

RooWorkspace(SignalRegion) SignalRegion workspace contents 

variables 
--------- 
(Lumi,alpha_b_unc,binWidth_obs_x_SignalRegion_0,binWidth_obs_x_SignalRegion_1,mu,nom_alpha_b_unc,nominalLumi,obs_x_Sig
nalRegion,weightVar) 

p.d.f.s 
------- 
RooRealSumPdf::SignalRegion_model[ binWidth_obs_x_SignalRegion_0 * L_x_signal_SignalRegion_overallSyst_x_Exp + 
binWidth_obs_x_SignalRegion_1 * L_x_background_SignalRegion_overallSyst_x_Exp ] = 2/2 
RooGaussian::alpha_b_uncConstraint[ x=alpha_b_unc mean=nom_alpha_b_unc sigma=1 ] = 1 
RooGaussian::lumiConstraint[ x=Lumi mean=nominalLumi sigma=0.001 ] = 1 
RooProdPdf::model_SignalRegion[ lumiConstraint * alpha_b_uncConstraint * SignalRegion_model(obs_x_SignalRegion) ] = 2 

functions 
-------- 
RooProduct::L_x_background_SignalRegion_overallSyst_x_Exp[ Lumi * background_SignalRegion_overallSyst_x_Exp ] = 1 
RooProduct::L_x_signal_SignalRegion_overallSyst_x_Exp[ Lumi * signal_SignalRegion_overallSyst_x_Exp ] = 1 
RooStats::HistFactory::FlexibleInterpVar::background_SignalRegion_epsilon[ paramList=(alpha_b_unc) ] = 1 
RooHistFunc::background_SignalRegion_nominal[ depList=(obs_x_SignalRegion) ] = 1 
RooProduct::background_SignalRegion_overallSyst_x_Exp[ background_SignalRegion_nominal * 
background_SignalRegion_epsilon ] = 1 
RooHistFunc::signal_SignalRegion_nominal[ depList=(obs_x_SignalRegion) ] = 1 
RooProduct::signal_SignalRegion_overallNorm_x_sigma_epsilon[ mu * signal_SignalRegion_epsilon ] = 1 
RooProduct::signal_SignalRegion_overallSyst_x_Exp[ signal_SignalRegion_nominal * 
signal_SignalRegion_overallNorm_x_sigma_epsilon ] = 1 
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HistFactory Output 
makes a combined workspace with data 

create also a ModelConfig
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=== Using the following for ModelConfig === 
Observables:             RooArgSet:: = (obs_x_SignalRegion,weightVar,channelCat) 
Parameters of Interest:  RooArgSet:: = (mu) 
Nuisance Parameters:     RooArgSet:: = (alpha_b_unc) 
Global Observables:      RooArgSet:: = (nom_alpha_b_unc) 
PDF:                     RooSimultaneous::simPdf[ indexCat=channelCat SignalRegion=model_SignalRegion ] = 2

RooWorkspace(combined) combined contents 

variables 
--------- 
(channelCat,nom_alpha_b_unc,obs_x_SignalRegion,weightVar) 

datasets 
-------- 
RooDataSet::asimovData(obs_x_SignalRegion,weightVar,channelCat) 
RooDataSet::obsData(channelCat,obs_x_SignalRegion) 

named sets 
---------- 
ModelConfig_GlobalObservables:(nom_alpha_b_unc) 
ModelConfig_Observables:(obs_x_SignalRegion,weightVar,channelCat) 
globalObservables:(nom_alpha_b_unc) 
observables:(obs_x_SignalRegion,weightVar,channelCat)
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Using HistFactory Models

Combined model saved in a ROOT file
Model can be used directly in RooStats tools

134

root[] .L StandardHypoTestInvDemo.C

run for CLs (with  frequentist calculator (type = 0) and one-side PL test statistics (type = 3) scan 10 points in [0,10] 

root[] StandardHypoTestInvDemo(“model.root","combined","ModelConfig","","obsData",0,3, true, 10, 0, 10)
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Interpolation Options
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Figure 3: Comparison of the three interpolation options for di↵erent ⌘

±. (a) ⌘

� = 0.8,
⌘

+ = 1.2, (b) ⌘� = 1.1, ⌘+ = 1.5, (c) ⌘� = 0.2, ⌘+ = 1.8, and (d) ⌘� = 0.95, ⌘+ = 1.5

4.2 Constraint Terms (+ global observables and nuisance parameter priors)

4.2.1 Consistent Bayesian and Frequentist modeling

The variational estimates ⌘± and �

± correspond to so called “±1� variations” in the source
of the uncertainty. Here we are focusing on the source of the uncertainty, not its a↵ect on
rates and shapes. For instance, we might say that the jet energy scale has a 10%
uncertainty. 2 This is common jargon, but what does it mean? The most common
interpretation of this statement is that the uncertain parameter ↵p (eg. the jet energy
scale) has a Gaussian distribution. However, this way of thinking is manifestly bayesian. If
the parameter was estimated from an auxiliary measurement, then it is the PDF for that
measurement that we wish to include into our probability model. In the frequentist way of
thinking, the jet energy scale has an unknown true value and upon repeating the
experiment many times the auxiliary measurements estimating the jet energy scale would
fluctuate randomly about this true value. To aid in this subtle distinction, we use greek
letters for the parameters (eg. ↵p) and roman letters for the auxiliary measurements ap.

2Without loss of generality, we choose to parametrize ↵p such that ↵p = 0 is the nominal value of this
parameter, ↵p = ±1 are the “±1� variations”.
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HistFactory has different option for interpolating the systematic variations :  η(α)

0) Linear
1) Exponential
2) Quadratic interp.  
linear extrapolation
4) Polynomial interpolation  
Exponential extrapolation  
(default)

[0.8,1.2] [1.1,1.5]

[0.2,1.8]

[0.95,1.5]
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Time For Last Exercise ! 
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Simple Model building example (HistFactoryModel notebook)
build of a counting model using the HistFactory
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Summary
RooFit/RooStats allow you to perform advanced 
statistical data/analysis 

LHC results (e.g. Higgs observation)
Capable of using different tools and interpretations 
(Frequentist/Bayesian) on the same model 
Generic tools capable to deal with large variety of 
models

based on histograms or un-binned data
multi-dimensional observations 

Provide tools to facilitate complex model building
HistFactory for histogram based analysis
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Documentation
RooStats TWiki: https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome

RooStats users guide (not really completed)
http://root.cern.ch/viewcvs/branches/dev/roostats/roofit/roostats/doc/usersguide/RooStats_UsersGuide.pdf

For reference and citation: ACAT 2010 proceedings papers: http://arxiv.org/abs/1009.1003

RooStats tutorial macros: http://root.cern.ch/root/html534/tutorials/roostats/index.html

HistFactory document: https://cdsweb.cern.ch/record/1456844/files/CERN-OPEN-2012-016.pdf

RooStats user support:
Request support via ROOT talk forum: http://root.cern.ch/phpBB2/viewforum.php?f=15  
(questions on statistical concepts accepted)
contact me directly (email: Lorenzo.Moneta at cern.ch  )

Contacts for statistical questions:
ATLAS statistics forum: 

TWiki: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/StatisticsTools
CMS statistics committee:

TWiki: https://twiki.cern.ch/twiki/bin/view/CMS/StatisticsCommittee

138



Thank you !


