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SVM – Basics

I will mention:

– Lagrangian minimisation

– Infinite dimensional Hilbert spaces

– Operators with complete eigen-systems

Is this going to be a QM lecture ?
Support Vector Machines are the perfect toy for physicists !
They appeals to your geometric intuition and can be understood as

an “mechanical” device
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SVM – Basics

Support Vector Machines are

• A successful ML technique

• Conceived in the 60th

(Vapnik and Chervonenkis 1964)

• Final shape in the 90th

(Cortes and Vapnik 1995, etc.)

• and widely used since then

• A search for

”Support Vector Machine”

results in ≈ 1.9 million hits

• Dozens of youtube videos

• Thousands of papers, tutorials,

lectures

E.g.: Wikipedia! SVM, KKT SMO etc.

• http://www.support-vector-machines.org

• http://www.svms.org

• http://www.csie.ntu.edu.tw/~cjlin/libsvm

our favourite library

But why is it not popular in HEP? (Somewhat limited TMVA implementation.

The most important aspect of an SVM is not the training but the parameter

tuning!) 4

http://www.support-vector-machines.org
http://www.svms.org
http://www.csie.ntu.edu.tw/~cjlin/libsvm


Machine learning

What’s that all about?



Machine learning – What’s that all about?

We need a toy example:

• Assume we have 1 particle decaying into 2 particles

P
p1

p2

I E.g. a 750 GeV particle decays into 2 massless particles that

we observe in our favourite detector

• The heavy particle does have some varying z-momentum in

the lab-frame

• There are many other background particles

• We measure (lab system) the energies and the relative angle:
E1,E2 and φ

I Some cuts to select high energetic particles, e.g.:

E > 400 GeV cut
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Toy Example – Invariant mass implied correlations

Invariant mass implied correlations with a wicked background:
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• The signal and background distribution for E1, E2 and φ are

identical in this example

• The “background” had been created by resampling from the

E1,E2 and φ distribution but with mixing particles from

different events correlation destroyed!

7



Toy Example – Invariant mass implied correlations

Invariant mass implied correlations with a wicked background:

/GeV1E
0 1000 2000 3000 4000 5000 6000

n

1

10

210

3
10

1E

signal
bgrd

1E

/GeV2E
0 1000 2000 3000 4000 5000 6000

n
1

10

210

3
10

2E

signal
bgrd

2E

φ
0 0.5 1 1.5 2 2.5 3

n

0

50

100

150

200

250

φ

signal
bgrd

φ

• The signal and background distribution for E1, E2 and φ are

identical in this example

• The “background” had been created by resampling from the

E1,E2 and φ distribution but with mixing particles from

different events correlation destroyed!

7



Toy Example – Invariant mass implied correlations

Invariant mass implied correlations with a wicked background:

/GeV1E
0 1000 2000 3000 4000 5000 6000

n

1

10

210

3
10

1E

signal
bgrd

1E

/GeV2E
0 1000 2000 3000 4000 5000 6000

n
1

10

210

3
10

2E

signal
bgrd

2E

φ
0 0.5 1 1.5 2 2.5 3

n

0

50

100

150

200

250

φ

signal
bgrd

φ

 - signal2:E1E

/GeV1E
0 1000 2000 3000 4000 5000 6000

/G
eV

2
E

0

1000

2000

3000

4000

5000

6000

 - signal2:E1E

 - backgrd2:E1E

/GeV1E
0 1000 2000 3000 4000 5000 6000

/G
eV

2
E

0

1000

2000

3000

4000

5000

6000

 - backgrd2:E1E

 - signalφ:1E

/GeV1E
0 1000 2000 3000 4000 5000 6000

φ

0

0.5

1

1.5

2

2.5

3

 - signalφ:1E

 - backgrdφ:1E

/GeV1E
0 1000 2000 3000 4000 5000 6000

φ

0

0.5

1

1.5

2

2.5

3

 - backgrdφ:1E

E2
0

1000
2000

3000
4000

5000
6000

E1

0
500

1000
1500

2000
2500

3000
3500

4000
4500

5000

ph
i

0.5

1

1.5

2

2.5

3

phi:E1:E2

8



Toy Example – Invariant mass implied correlations
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Toy Example – Invariant mass implied correlations
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“Monte Carlo”:

Pz ← exp(PZ/τ)

isotropic

(M=750GeV)

2-body decay

E1 ± 10% E2 ± 10%

9



Toy Example – Invariant mass implied correlations
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Toy Example – Invariant mass implied correlations
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Strategies

Of course, as physicists we immediately

understand that the long story about correlations is

just about the invariant mass of the mother particle

and calculate the invariant mass

M12 =
√

2E1E2(1− cos(φ))
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The way of the physicists

• Understand the nature of

the problem

• Apply theory

I Here: SR i.e. kinematics

High level variables

The way of the data analyst

• Take the data – the more

the better

• Run complicated algorithms

to find pattern in your data

Low level variables
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SVM – Introduction



Input for Supervised Learning

• A set of n variables (in ML called features)
I ~x = (x (1), . . . , x (n))

• We assume them to form an Euclidean vector space. ~x ∈ Rn

I That’s not trivial! We lump together totally different things

e.g. b-tag estimators, energies, pixel-counts etc.; without a

common scale or unit but we calculate distances

• In HEP the properties of signal and background are encoded
in Monte Carlo programs

I Two sets of trainings data: Nsig + Nbgrd = N events
I The training data gets a label: yi ∈ {+1,−1}

signal | background
I A ML algorithm is called supervised if the class membership of

all training vectors is known and used

• The training data is a set of labeled vectors:

(y1,~x1), (y2,~x2), ..., (~xi , yi ), ..., (yN ,~xN)
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Terminology

• We have a classification problem

The aim is that the ML algorithm learns to decide between

the classes

• We do supervised learning

We train the ML algorithm on data where we know the class

membership

• The training data consists of a set of labeled vectors

(y1,~x1), (y2,~x2), ..., (~xi , yi ), ..., (yN ,~xN)

• The ~x vector components are called features
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SVM – Intuitively

• Let’s assume we have a

2-dimensional problem

~x = (x1, x2)

• Signal and background

training data points form

2 separate cluster

• A simple 1d-cut is not

sufficient

• There is a separating line

The problem is linearly separable

• Which separating line is the best?

What do we mean by “best”?

x2

x1

15
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SVM – Intuitively linearly separable

• A separating hyperplane

in Rn can be described

by offset b and normal

vector ~w

~w·~x + b = 0

• Scanning over all possible

b and ~w allows to find

the optimal hyperplane

• Intuitively we would prefer the one with the largest margin

x2

x1︸ ︷︷ ︸
−b

~w
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SVM – Intuitively linearly separable

We train the SVM on a

random sample from some

unknown distribution. The

best we can do is to put a

hyperplane in between the

two cluster such that the

margin becomes maximal.

Principle of Minimal Risk

x2

x1

≈ 18.1

≈ 21.2≈ 14.5
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SVM – Intuitively linearly separable

• The data points defining

the hyperplane are called

Support Vectors

Like a mechanical model

• In Rn we need at least

n + 1 to define the

margin

• How to formulate this

mathematically?

x2

x1
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SVM – Math linearly separable

• Separating hyperplane
~w·~x + b = 0

I Training vectors are either

“above” or “below”

• Rescaling of ~w and b such that

on the margin for the

support vectors:

~w·~xk + b = ±1

(since scale of ~w and b is arbitrary)

• Signal side labels are +1

background side labels are −1

• Multiply with class label yi for

all vectors:

yi (~w·~xi + b) > 1

x2

x1

~w

+1

−1

These conditions are fulfilled

iff all trainings vectors are

properly classified 19



SVM – Math linearly separable

• Separating hyperplane:

~w·~x + b = 0

• Constraints:

yi (~w·~xi + b)− 1 > 0

• For the width of the margin

take 2 arbitrary support vectors

~x+, ~x− and construct

ρ(~w, b) = ~w · ~x+

|~w| −
~w · ~x−
|~w| = 2

|~w|

Maximizing the margin ρ = 2/|~w|
is equivalent to minimizing |~w|2

x2

x1

~x−
~x+

ρ(~w, b) = 2
|~w|

20



SVM – Math linearly separable

• Finding the optimal separating hyperplane is identical to solving a

quadratic (convex) optimization problem

• The correct classification is enforced by the constraints

primal problem

min
~w∈V, b∈R

1
2
|~w|2

subject to yi (~w·~xi + b) > 1 for all i = 1 . . .N

I Can be solved with Lagrangian Multiplier αi > 0

I This is pure classical mechanics with constraints

I Unequality constraints needs special care!

KKT (Karush-Kuhn-Tucker) conditions

21



Karush-Kuhn-Tucker Conditions

• KKT conditions

generalizes the method of

Lagrange multipliers

I Inequality

constraints

• It combines the two cases

I Minimum within

feasible area,

constraint inactive

λ∗ = 0

I Minimum at the

border of the

constraint area,

constraint active as

equality g(x) = 0

and λ∗ > 0

Given the optimization problem

min
~x∈Rn

f (~x)

subject to g(~x) ≤ 0

Define Lagrangian as

L = f (~x) + λg(~x)

Then ~x∗ is a local minimum

⇐⇒ there exist a uniq λ∗ s.t. the KKT

1.) ∇~xL (~x∗, λ∗) = 0

2.) λ∗ ≥ 0

3.) λ∗g(~x∗) = 0

4.) g(~x∗) ≤ 0

5.) H =
[

∂2

∂xi∂xj
L (~x∗, λ∗)

]
� 0

Hessian wrt. ~x positive definite

22
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SVM – Math linearly separable

Lagrangian multiplier αi to include constraints

primal Lagrangian

L =
1

2
|~w|2 −

N∑
i=1

αi [yi (~w·~xi + b)− 1]

Stationarity wrt. the primal variables

0 =
∂L

∂~w
= ~w∗ −

N∑
i=1

αiyi~xi ; 0 =
∂L

∂b
=

N∑
i=1

αiyi

The solution is a saddle

point (~w∗, b∗, α∗i ) and

minimal with respect to

~w and b

Substituting these conditions gives

dual Lagrangian

L (~α) = −1

2

N∑
i=1

N∑
j=1

αiαjyiyj ~xi ·~xj +
N∑
i=1

αi

We are left with an

quadratic optimization

problem in ~α

23
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SVM – Math linearly separable

dual Lagrangian

L (~α) = −1

2

N∑
i=1

N∑
j=1

αiαjyiyj ~xi ·~xj +
N∑
i=1

αi

• Most SVM implementation solve the dual problem

I Although the dual is of dim N (number of traning vectors)

while the primal is of dim n (number of features)

• Remaining KKT conditions

αi (yi (~w
∗ ·~xi + b∗)− 1) = 0; i = 1 . . .N, αi > 0

I All non-support vectors are forced to have vanishing Lagrange

multipliers αi = 0

Only the support vectors contribute to the sums

• Sparse solution i.e. only a small subset of training vectors

contribute
24



SVM – Math linearly separable

The expression to predict the
class label ŷu of a new vector ~u
follows from the hyperplane
equation at the optimum

decision function

ŷ = sign(

NSV∑
k=1

ykαk~xk ·~u+b∗)

NSV number of support vector

x2

x1

.~u yu = ±1 ?

−b∗

~w∗

+1

−1

To train an SVM means we have to find the parameters

αk , k = 1 . . .NSV

SVM codes typical use the iterative Sequential Minimal Optimization (SMO)
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SVM – Math overlapping distribution

• The SVM described so far works

for linearly separable data

• In most real world problems we

have overlapping distribution for

signal and background

• By allowing misclassification, we

get from the hard margin to the

Soft margin approach

x2

x1

This can be achieved by introducing slack variables (ξi > 0, i = 1 . . .N) which

measure for each training vector the distance by which it enters the separating

margin
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SVM – Math overlapping distribution

Slack variables

• Constraints are weakened

yi (~w·~xi + b) > 1− ξi

• Positivity constraint on slacks

ξi > 0 new Lag. mult. βi

• Sum of the slacks
∑N

i ξi as a

penalty term

• Penalty is to be minimized

∂L /∂ξi = 0

x2

x1

.

missclassified

training

vector xi

−b∗

~w∗

+1

−1

ξi

This can be achieved by introducing slack variables (ξi > 0, i = 1 . . .N) which

measure for each training vector the distance by which it enters the separating

margin
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SVM – Math overlapping distribution

We get a new

constraint optimization

problem with an

additional variable ξi

• Penalty term

• Positiv slacks

• Soft margin

L =
1

2
|~w|2 + C

∑
i

ξi −
∑
i

αi [yi (~w·~x + b)− 1 + ξi ] −
∑
i

βiξi

primal Lagrangian with soft margin

If we do the math

we get exactly the

same Lagrangian up

to: 0 6 αi 6 C . Can

be solved by the

same code!

dual Lagrangian with soft margin

L (~α) = −1

2

N∑
i=1

N∑
j=1

αiαjyiyj ~xi ·~xj +
N∑
i=1

αi

We must set the strength C of the penalty term before we do the training!
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SVM – Math non-linear border

So far we can classify linearly separated, even overlapping data
sets. This is nice but not really impressive ...

• The spiral consists of two clearly

separated areas

I Certainly not linearly

separable

I But there is a simple

transformation:

Φ : (x , y) 7→ (r , φ)

r =
√

x2 + y 2

If we apply this

;

28
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SVM – Math non-linear border

So far we can classify linearly separated, even overlapping data
sets. This is nice but not really impressive ...

• The spiral consists of two clearly

separated areas

I Certainly not linearly

separable

I But there is a simple

transformation:

Φ : (x , y) 7→ (r , φ)

r =
√

100 ∗ x2 + y 2

We missed the scale difference.

Now it is linearly separable!

;

Can we find such a transformation

automatically?
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SVM – Math non-linear separation

Kernelizing

L (~α) = −1

2

N∑
i=1

N∑
j=1

αiαjyiyj ~xi ·~xj +
N∑
i=1

αi , 0 6 αi 6 C

• The dual Lagrangian and the

decision function only depend on

scalar products of the data

vectors!

• If we map ~x into some other

space we must define a scalar

product ~x ·~y 7→ 〈Φ(~x),Φ(~y)〉

ŷ = sign(

NSV∑
k=1

ykαk~xk · ~u + b∗)

• Instead of defining the transformation

and the scalar product explicitly we

can as well define a

29



SVM – Math non-linear separation

Kernelizing

L (~α) = −1

2

N∑
i=1

N∑
j=1

αiαjyiyj K(~xi ,~xj) +
N∑
i=1

αi , 0 6 αi 6 C

• The dual Lagrangian and the

decision function only depend on

scalar products of the data

vectors!

• If we map ~x into some other

space we must define a scalar

product ~x ·~y 7→ 〈Φ(~x),Φ(~y)〉

ŷ = sign(

NSV∑
k=1

ykαkK(~xk ,~u) + b∗)

• Instead of defining the transformation

and the scalar product explicitly we

can as well define a

Kernel function

K(~x,~y) ∈ R
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SVM – Math non-linear separation

Now we can solve ALL kinds of

non-linear Machine Learning

Problems

!

30



SVM – Math non-linear separation

I think you should be a bit

more precise, here in Step 3!
31



SVM – Math non-linear separation

Kernels• There is no need to restrict the

transformation to finite

dimensional Vector spaces.

• H may be a even infinite

dimensional Hilbert space

Φ : Rn 7→H

• This is the case for the most

successful Gaussian Kernel aka

RBF (Radial Basis Function)

K(~x,~y) = e−γ|~x−~y|
2

• Mapping data to a space with an

enormous number of dimensions

seems to be a bad idea for good

generalization properties.

• Not all functions K(~x,~y) are valid

Kernels. They must fulfil

Mercer’s conditions, in particular

symmetric and positive

semidefinite

=⇒ H exists with a suitable

scalar product

• If this sounds familiar from QM,

you are right. There is a

connection to the Spectral

Theorem

• The “Kernel trick” is a general

technique to transform a linear

algorithm into a non-linear one

The maximum margin/minimal risk approach helps; see VC dimension
32



SVM in a nut shell

• The SVM selects a smaller subset of

training vectors: Support Vectors

• A penalty term of strength C allows

for overlapping distribution

BTW The penalty term can become event dependent

→ Weighted SVM

• The Kernel acts as a kind of “basis”

functions to model a non-linear

separating hyper-surface. For the

RBF case

ŷ(~u) = sign(

NSV∑
k=1

ykαke
−γ|~xk−~u|2 + b∗) ;

• γ ∼ 1/σ controls the width of the

Gaussian

• We must fix the two parameters

C and γ before training

γ = 1

γ = 10

γ = 100

33



We are doing convex quadratic optimisation. Do you understand

why we still can do convex quadratic optimization after the Kernel

trick? Isn’t it mapping wildly simple constraints into complex,

non-linear borders?

34



SVM – Usage (bits ad bolts)



SVM – Usage scaling

The apples and oranges problem

• There is no natural common scale between features. Distance

|~x| =
∑

i (x
(i))2 is arbitrary

• This influences the max margin decision and the performances of the SVM

• In addition, the RBF kernel knows only one scale γ and treats all

dimensions equally

• A common approach is to scale each dimension by the range of the

trainings data e.g. x (i) → x(i)

x
(i)
max−x

(i)
min

i = 1, . . . , n
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SVM – Usage Machine learning performance measures

• We have a binary classification

problem. On a test sample we

have true and a predicted labels

4 cases of classified events

• Different ML quality measures are

in use

labels predicted

true
N++ N+−

N−+ N−−
events numbers

all = N++ + N+− + N−+ + N−−

Accuracy =
N++ + N−−

all

Precision =
N++

N++ + N−+

etc.

AUC: the area under the receiver

operator curve (ROC)

The ROC curve shows the background

rejection (false positive) against the

signal efficiency (true positive) vs

threshold of the decision function.

(You have seen this TMVA)

37



SVM – Usage parameter tuning

Training a SVM is easy. Quadratic optimisation

one minimum, uniqe solution!

But, how to find the parameters (C , γ)? Brute force

• We scan a reasonable part of the parameter space

(grid search on a logarithmically defined grid or iteratively refined grid

search)

• For each (C , γ)-pair we train a SVM and evaluate the classification

performance e.g. accuracy

need to split input sample∗ into training and test samples to avoid bias

• At the end we take the best (C , γ)-pair

∗Alternatively cross validation instead of splitting into training and test sample
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SVM – Usage cross validation

E.g. 5-fold cross validation

1. Split sample in 5 sub-samples

2. Train on 4/5th of the sample

3. Evaluate on remaining 5th

4. Repeat with changing roles

5. Evaluate final accuracy on

5 x 1/5

training

testing
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SVM – Usage Probabillity Estimate

• The SVM is a binary classifier with yes or no output.

• Often a probability P that quantifies the belief in the class label is useful

• Can be estimated by fitting a sigmoid model to the distancees to the

hyperplane for training data (yi ,~xi )

(max likelihood fit with 5fold cross validation to avoid overfitting)

• A cut on the probability can be used to improve the S/N ratio

• NB: P > pcut > 0.5 N++ + N−− < N

P(+1|f̂ ) =
1

1 + exp(Af̂ + B)

f̂ =

NSV∑
k=1

ykαke
−γ|~xk−~u|2 + b∗x

distance to the sepa-

rating hyperplane

x2

x1

. ~u

f̂

−b∗
~w∗
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SVM – Usage Significance based tuning

• From a machine learning perspective, a natural performance measure

describes how well a classifier separates the two distinct classes.

E.g. accuracy correct
all

• Accuracy improves if we can identify a lot of background but we do not

care much if the bgrd is predicted correct, especially if

signal<<background

• From a physics perspective one wants to optimise the discovery

significance

Tuning for best significance instead of accuracy

• No mathematical prove that this converges to the best solution

but its works in practice http://arxiv.org/abs/1601.02809

• We tune C , γ and pcut to optimise discovery significance

Machine learning classifier are independent of the number of events while significance based tuning is meant for a

certain expected number of events (Luminosity)
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SVM – Usage Asimov significance

Assume a new physics search – a counting experiment

• You plan an analysis that would yield n-events

• You expect b background events

• Your data is Poisson distributed and you want to check for a signal s

• Your background only hypothesis s = 0 looks like this

Poisson(n|b) =
bn

n!
eb 7→ G(n|µ = b, σ =

√
b)

• For large n the Poisson looks like a Gaussian and the significance to reject

the background only hypothesis is

discovery significance =
nobs − b√

b

i.e. the number of “sigmas”

you a away from the mean

• Since you have not yet done the experiment and you want to check for a

signal s, you replace this by the expected 〈n〉 = s + b

ZA := 〈disc. significance =〉 =
〈nobs〉 − b√

b
=

s√
b
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SVM – Usage Asimov significance

Q: But what if n is not large?

A: You read this paper (arXiv:1007.1727):

“Asymptotic formulae for likelihood-based tests of new physics”

Or a talk by Glen Cowan here

• It starts with the Poisson distribution, tests for discovery by using a

profile likelihood ratio, approximate with Wilk’s theorem and applies the

“Asimov” data set which is just the 〈n〉 = s + b

Asimov significance ZA =
[
2
(

(s + b) ln
[
1 +

s

b

]
− s
)]1/2

• This approach allows to include a uncertainty σ2
b on b

ZA =

[
2

(
(s + b) ln

[
(s + b)(b + σ2

b)

b2 + (s + b)σ2
b

]
− b2

σ2
b

ln

[
1 +

σ2
bs

b(b + σ2
b)

])]1/2
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SVM – Conclusions

• SVMs are an efficient ML algorithm, widely used

• Good performance, (BTW robust against a large number,

partly correlated features)

• For an RBF kernel SVM only 2 parameters must be tuned

• Parameter tuning can be used to optimise a physical

motivated target (discovery significance)
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