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Usual situation at the end of a thesis (or any analysis):

I Finally data are taken, the selection is optimized, the Monte
Carlo is produced, and the fit is implemented and working!

=⇒ Result = x ± σstat

I The thesis/paper is of course overdue, but still the systematics
have to be evaluated. . .

And worse: No clear concept how to do it!

I Common solution in this situation:

“Let’s vary a few cuts, that’s quickly done, and see if and how
the result changes. We then call the variations of the result
the systematic uncertainty!”

Worst Method!
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What is needed for estimating systematic uncertainties:

I Some experience
I Time
I Care
I Common sense
I Self confidence (but not too much!)

Unfortunately everything except the first item is out of the scope of
this lecture. . .

Disclaimer:

Unlike for statistical uncertainties, there are often no clear pro-
cedures and recipes for the determination of systematics.

You have to think yourself!
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Outline

I How to detect systematic uncertainties

I How to avoid systematic uncertainties

I How to estimate systematic uncertainties

I How to work with systematic uncertainties
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What are Systematic Uncertainties?

Definition used here:

Systematic uncertainties =

Measurement errors, which are not due to

statistics in real or simulated data samples.

Side remark: Usually the term “uncertainty” is preferred.

Your analysis hopefully does not contain “errors”!
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Examples for systematics in HEP analyses: (not complete!)

I Badly known detector acceptance or trigger efficiency.

I Wrong detector calibrations.

I Badly known detector resolutions.

I Time variations of the experimental conditions.

I Badly known background.

I Uncertainties in the simulation/theoretical model.

I Uncertainties on input parameters (BR’s, lifetimes, luminosity, . . . ).

I Computational errors / program bugs / fit routines.

I Biased experimentalist (wants to measure “expected” result).

I All other usually unknown effects on the measurement.
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Variation of some constants with time (PDG 2016):

Introduction 1

Figure 2: A historical perspective of values of a few particle properties tabulated in this Review as a function of date of publication of the
Review. A full error bar indicates the quoted error; a thick-lined portion indicates the same but without the “scale factor.”
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1. How to find systematic uncertainties

First: Think about any possible effect!

I Is every single input number/parameter well-known and
understood? (efficiencies, calibrations, theory, external parameters,

PDG, . . . )

I Every possible detector effect considered?
(geometrical acceptance, trigger efficiency, resolutions, detector

inefficiencies, calibrations [energy scales!], . . . )

I Backgrounds complete and well understood?
I Fit routine working correctly?
I Theoretical inputs correct?

In case of any doubt:

Think of the cause of a possible effect!

=⇒ Look at corresponding distributions
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Examples:

1. Background estimation correct?

DELPHI search for SUSY particles (Eur.Phys.J., C31, 421 (2004))

E.g.: stop-quark t̃ search in e+e− annihilation:

I t̃ should be pair-produced and to decay like t̃ → cχ̃0
1.

I Signature: Missing energy and two acoplanar jets.
I Main analysis problem (as usual for searches):

Background suppression and estimation.
I Main backgrounds:

SM 2-jet, 4-jet, two-photon events (e+e− → e+e−γγ).

How to make sure backgrounds are understood?

=⇒ Look for regions with large background contributions
— are they well-described?

To enlarge backgrounds: Release corresponding cuts!
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DELPHI stop analysis with loosened (preselection) cuts:

Θ
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Look at one variable only (transverse energy):

Transverse Energy
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=⇒ Some discrepancy between data and γγ simulation (∼ 15%).
(Unfortunately in the expected signal region.)
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DELPHI stop analysis with final cuts:

After background evaluation, cuts are tightened:

Transverse Momentum Acoplanarity
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Systematic error estimation:
Vary background by the 15 % obtained above =⇒ limit changes.

Caveat: Be careful when extrapolating from very many to very few
events! Tails may not be well described and events in the
tails may exhibit different behaviour than “normal” events.
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2. Possible detector effects

(i.e.: poor MC description of e.g. inefficiencies)

=⇒ Look at as many as possible data-MC
comparisons, especially critical parameters!

“critical parameter”: Selection cuts hard into acceptance.
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Acceptance:

true: εtrue = 99.8 %

bad MC: εwrong = 99.9 %

Acceptance:

true: εtrue = 64.5 %

bad MC: εwrong = 75.3 %
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Data-MC comparison:

1. Normalize MC sample to data and plot both.

Good Monte Carlo:
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=⇒ Most problems can already be seen by eye.
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2. Divide data by normalized MC sample.

Good Monte Carlo:

 / ndf 2χ  15.61 / 16
p0        0.0615± 0.9442 

track momentum [GeV/c]
0 1 2 3 4 5 6 7 8 9 10

da
ta

 / 
M

C

0
0.5

1
1.5

2
2.5

3
3.5

4
 / ndf 2χ  15.61 / 16

p0        0.0615± 0.9442 

Bad Monte Carlo:
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I Deviations usually immediately obvious by eye.

I Significance of disagreement:

Fit a constant line =⇒ χ2/ndof

I However: still look at the original distributions!
(deviations may e.g. fall into an unimportant region)
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3. Plot result as function of analysis parameters

I Possible time variations

I Usually the data sample consists of several sub-samples of
more or less similar size.

I Each sub sample has similar experimental conditions
(detector status, trigger conditions, magnet polarities, collider
performance, . . . ), which may differ from sub-sample to
sub-sample.

I Normally some shut-down between the sub-samples.

I Typical examples: LHC years; Tevatron Run I, IIa, IIb; . . .

Important check: Determine separate results for each
sub-sample! Do they agree?

If not: 1. Why not?
2. Possibly discard sub-sample from analysis!
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I Other crucial parameters

Example: Measurement of direct CP violation by NA48.

Measured parameter: Double ratio

R =
Γ(K0

L → π0π0)

Γ(K0
S → π0π0)

/
Γ(K0

L → π+π−)

Γ(K0
S → π+π−)

≈ 1 − 6 × Re
(
ε′

ε

)
∼ 0.99

Analysis is done in separate
bins of kaon momentum
(to be independent of the kaon

spectra).

Disagreement at the borders
of the momentum region!
No obvious reason for such a
behaviour found.
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o
 R

χ
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I First question:

Is it really that bad?

Rough estimation:

σχ2 distribution =
√

2 ndof ≈ 6.2

=⇒ about a 1.5σ effect

Better:
Probability(27, 19) = 10.5 %

=⇒ once in ten times kaon energy (GeV)

d
o

u
b

le
 r

a
ti

o
 R

χ
2/ndf = 27/19

I Second question:

How can we check?

=⇒ Enlarge region!

Additional bins are ok!

Decision: No systematic!
kaon energy (GeV)
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χ
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Hypothetical question:

What, if it would have

looked like that?

At first:

Need to understand the effect!

Then:

kaon energy (GeV)

d
o

u
b

le
 r

a
ti

o
 R

χ
2/ndf = 27/19

Decide between two options:

— Discard outer momentum bins.
(But base this decison on independent data/MC samples!)

— Determine a systematic error.
(Would probably not that large in this example.)
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4. Detector resolutions

In general: Simulations are pretty bad in reproducing resolutions.

Example: Mass resolution

I MC not necessarily has same
mass resolution as data.

I Simple way of changing
resolution in the simulation:

invariant mass
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Modify reconstructed invariant
mass mreco to

mreco + k × (mreco −mtrue),

with: mtrue = true invariant mass (e.g. PDG value).
I Parameter k: Relative change in resolution.

Its reasonable range has to be found from “general
considerations”. ( =⇒ “educated guess”, see later)

I Similarly for other resolutions (e.g. shower widths)
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5. Fit routines

Analyses usually involve more or less complex fit routines.

=⇒ Make sure they do, what they should!

I Trivial test:
Run a full MC sample (as large as possible) with known input
parameters instead of data.

=⇒ Result as expected?

I Check for biases:
Repeat the above MC analysis (or possibly toy-MC)
N ∼ 20 − 100 times with MC sample size ≈ data sample size.

=⇒ Do results follow a (gaussian) distribution around the
input value with variance as expected?

I Repeat analysis with different binning.
(but distinguish statistical from systematic fluctuations!)

I Plot logL distributions.
Do they look as expected? (correlations, other minima, . . . ?)
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2. How to avoid systematic uncertainties

Usually most systematics cannot easily be avoided when doing
data analysis (e.g. trigger inefficiencies, calibrations,
backgrounds).

However: Some systematics may still be avoided or suppressed
during planning/performing an analysis.

Examples:
I Choice of selection cuts

I Every cut reduces the acceptance and may introduce errors, if
acceptance is not well-known.

I Usually uncritical: Geometrical cuts
(exception: in inefficient detector regions)

I More problematic: e.g. particle ID, jet energy, etc.

Therefore:
I Check every cut: is it really needed (in particular partially

redundant cuts)? Often more but known background is better
than unknown systematics.
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I Biased experimentalist

Everyone doing analysis usually has some prejudice on what
will be the outcome (previous measurements, theory
expectations, personal likes and dislikes, . . . ).

=⇒ Any deviation from the “expected” result is
investigated, and possible causes are made up.
No deviation, however, will not be investigated.

Historical example: A2 mass splitting

Observation of a narrow dip of six standard deviations in the
center of the peak of the A2 resonance in the reaction
π− + p → p + X by the CERN Missing-Mass-Spectrometer
group (1967).
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data), a clear double-peak structure was observed (Figure 8.13b). A fit with a single
Breit–Wigner function yielded a !2 probability of 0.1%, but a tuned double-Breit–
Wigner function obtained 70% probability.
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Figure 8.13 Measurement of the A2 meson
by the CERN Missing-Mass Spectrometer. (a)
π! p ! p X data with pπ D 7 GeV from the
year 1967. The bin size is 15 MeV. (b) Select-
ed 1967 data with detector mass resolution

(FWHM) 15 < Γexp < 25 MeV plus data from
two 1965 runs with a different detector config-
uration and Γexp ! 30 MeV. The bin size is
5 MeV. (Adapted from [5].)

Of course, many people – theorists and experimentalists – were excited about
this very unexpected structure, as it did not fit into the meson octet structure. Fol-
lowing on from this, several experiments also reported the double-peak structure,
but, strangely, always with a significance of about three standard deviations. Finally,
with much more statistics available, a BNL experiment [6] excluded the double-peak
structure, and the A 2 returned to being a normal meson.

What had happened? Why did many independent experiments observe a fake,
non-existing structure? Were all the physicists working on these analyses bad sci-
entists, trying to fake results to become famous? That is hard to believe, in partic-
ular as very many people were involved. Instead, what obviously happened in the
understandable excitement of discovering a completely new phenomenon, was that
the analysts – without being conscious of it – chose their selection criteria and fit
methods in a way that enhanced a possible double peak. Of course, since there was
no real mass-splitting, they were never able to observe significances of more than
three standard deviations, but because of the biased analyses, they usually observed
a signal just on the edge of an observation, thus boosting trust in the reality of the
observed structure.

Results of fits to the data:

I Fit of a single Breit-Wigner:

χ2 probability p = 0.1 %
(3.1σ)

I Two independent
Breit-Wigner’s: p = 15 %

I Two Breit-Wigner’s with same
masses, widths, and
destructive phase: p = 70 %

However:

Last two options would not fit into the quark-model of mesons!
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Further developments after the observation:

I Several other experiments observed a split of the A2 peak in
several different reactions, with smaller significance (< 3σ).

I After many more data were taken, the split disappeared.

Lessons learned:
I Experimenters tend to prefer a “wanted or expected result”.

I Biased choices of selection cuts.
I Biased removal of “bad data”.
I Looking for systematics, which could explain a difference to

the expected result.

=⇒ Biased experimentalist!

I Results are only published, if they support the expected result
(bandwagon effect [Lindenbaum 1985]). Measurements are
not published, if they don’t see the expected effect.

=⇒ Biased publication procedure!
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Other historical examples:
I 17 keV/c2 neutrino from tritium β-decay spectrum in 1985

Only one experiment sees it, long discussion about
systematic effects, refuted only in the early 90’s.

I Pentaquark observations in the 00’s

Several experiments find 3-5 σ signals in several channels,
which are attributed to “penta-quarks”. Final refutal only about
2006.

How to avoid biases:
I Free yourself from expectations for the result!

(But large deviations are still worrysome!)

I Never tune the selection by looking at the signal region!

No “Look how my signal increases, when I change this cut!”

Instead: Tune the cuts solely on Monte Carlo or on a
completely different data sample!
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Another example:

Search for the LFV decay K+ → π−µ+µ+ in 2010.
I Main measurement of K+ → π+µ+µ− yields O(104) decays.

Main background: K+ → 3π
I Analysis can easily be extented for a limit on K+ → π−µ+µ+.

region
signal

region
signal
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Zoom into the signal region:

Arrows show ± 3σmass interval.

region
the signal

region

fit inside
the signal

fit outside

signal region

First attempt:
I Taking the signal region

(± 3σ) results in
52 signal candidates.

I Background fit outside the
signal region:
36.7 estimated bkg events.

Almost 3σ signal evidence!

I But: Background probably
not well described.
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Zoom into the signal region:

Arrows show ± 3σmass interval.

region
the signal

region

fit inside
the signal

fit outside

signal region

Second attempt:
I Use Monte Carlo and fit it

to the slope on the left side
of the signal region:

52.7 ± 22.0 estimated bkg
events.
(error from different methods)

Nsig < 17.3 ev. (90 % CL).

I But: Signal region actually
too large, one could also
just fit the signal.
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Zoom into the signal region:

Arrows show ± 3σmass interval.

region
the signal

region

fit inside
the signal

fit outside

signal region

Third attempt:
I Fit the signal together with

a “reasonable” background
shape.

Nsig = −8 ± 6 events

Nsig < 8 events (90 % CL).
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What do we learn from this?:

I Results may vastly change, when changing (“optimizing”) the
analysis procedure.

I Even if the intentions are good: It is not possible to decide
between different methods afterwards!

I You have to decide on your method before looking at the data!

At best a blind analysis is to be done!
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I Blind analysis

Signal region is covered (blinded) until the very end, when
everything is fixed.

Advantage: No bias possible by construction.

Disadvantage: Systematics more difficult to discover
(no simple cross-checks).

Very useful with few statistics or in searches!

Also possible in other analyses:

Example: sin 2β measurement from Belle and BaBar.

Signal: Asymmetry in time-dependent B0B0 mixing.

Blinding: B flavor of tagging side randomized until
end of analysis.

I Talk to other people!

People not involved in the analysis usually have a much
clearer view!
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Conclusions on finding analysis problems

Finding problems is not a straight-forward task!

I Try to think of every possible effect!

I Thoroughly check every possible input value!

I Look critically at every possible distribution!

I Talk to other people!
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3. How to estimate systematic uncertainties

I Simplest case:

Input parameter x has well-known uncertainty σx

Examples: BR’s, lifetimes, luminosity, detector energy scale

=⇒ vary x by ±σx =⇒ result varies by ±σsyst
result

Independent systematics are added in quadrature.

I Sometimes:

Standard deviation σx is not known, but a tolerance (largest
and smallest possible x)

=⇒ assume uniform probability within [xlow, xhigh].

=⇒ σx = 1√
12

(xhigh − xlow) ≈ 0.29 × (xhigh − xlow)

(Gain of 60 % w.r.t. naive
σx = 0.5 × (xhigh − xlow)!)

σσ
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I Not as simple case:

I Some sort of problem was found by deeply looking into the
data.

The reason for the problem is more or less known.
(It should better be!)

I However: Found no way to remove it.

Have to attach a systematic uncertainty.

I Unfortunately: usually no clear and proper way to determine it.

Have to use a mixture of knowledge, reasoning, creativity,
common sense, and — sometimes — believe.

“Educated guess”
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“Educated guess”:
I Example: Intensity of a radioactive source

(see R.J. Barlow, “Statistics”)

Radioactive source 90Sr, half life 28.5 a:

Labelled “10 µCi”, but purchase date unknown.

Question: What is the actual activity?
I Activity is measured in Bq since 5 years

=⇒ source older than 5 years
I Laboratory was set up 10 years ago

=⇒ source younger than 10 years

=⇒ Age between 5 and 10 years.

Original activity: 10 µCi = 370 000 Bq

I After 5 years: × 2−5/28.5 = 328 000 Bq
I After 10 years: × 2−10/28.5 = 290 000 Bq

σ = 1/
√

12 interval =⇒ Activity: 309 000 ± 11 000 Bq
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I Example: Background estimation

Decay Ξ0 → Σ0γ → (Λγ)γ, background Ξ0 → Λ π0 → Λ(γγ)

Background:

From MC simulation,
normalized to total Ξ0 flux.

=⇒ ≈ 3 % under the signal.

But: Seems a factor of 2 too
large in the left side-band.
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Scale to mass side-band.

=⇒ ≈ 1.5 % background.

Good arguments for both
methods.

Decision (conservative):

Background = (1.5 ± 1.5)%
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I Example: Theory errors

Often more than one theoretical description available.

Fragmentation function:

I One function used as
default, but one (or more)
other available.

Use discrepancy to other
theory as ±σsyst.
(Not satisfying, but only
possibility.)

Peterson

Kartvelishvili

Power law

B hadron spectrum
in top decay

I More than one theory:
Can take spread of different results as ±σsyst.

Radiative corrections:
I Two descriptions: 1. With radiative corr. (but not complete)

2. No radiative corr. (surely wrong)
I Take a fraction of the difference as systematic.

(which? → educated guess!)
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I Example: Data-MC disagreement

Rare decay K+ → π0e+νγ

Many data-MC comparisons, everything fine, except
e+ energy in kaon rest frame:
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I χ2/ndof = 29.7/27 =⇒ quite ok!

However: significant disagreement above 0.15 GeV.
(“Normal” χ2/ndof due to extremely well agreement below 0.15 GeV!)

I No known source of the disagreement (additional
background?).
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~20%

~10%

How to estimate a systematic uncertainty?
I About 20 % more data than MC seen above 0.15 GeV.
I About 10 % of all data lie above 0.15 GeV.

=⇒ Uncertainty of ± 2% on decay rate.

However:
I Would be largest single uncertainty in this analysis.
I Reason not understood – could also be too few data below

0.15 GeV!

=⇒ More investigations needed!
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I Analyses with little statistics

With too little statistics data-MC comparison not possible:

I Statistical fluctuations could fake systematic problems.
I Systematics may be hidden by statistical uncertainties.

Possible solutions:
I Enlarge data sample by releasing cuts (in a controlled way)

=⇒ see e.g. DELPHI analysis on SUSY searches.

I Use similar but more abundant control channel.

=⇒ previous example:
use K+ → π0e+ν instead of K+ → π0e+νγ.
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K+ → π0e+νγ:

Electron energy [GeV]
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K+ → π0e+ν:
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=⇒ No discrepancy in control channel.

=⇒ No estimation of systematics possible this way.

Still learned something: Probably no detector problem!

Analogon in B physics: B0
d decays as control for B0

s decays.
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I Cut variations

Idea: Vary analysis cuts within a reasonable range and check,
if the result stays stable.

I Very commonly used (mostly because of lack of better ideas).
I However: Not really recommended here.

Reason: The information from cut variations usually is very
limited.

In virtually all cases it is better to look at the underlying
distributions for understanding of what is going on!

I Still: in some cases it may
be useful for systematics
estimation.
(If reason for variation is
understood!)

Problem:
Errors are correlated. tighter cut

re
s

u
lt

default
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Determination of uncorrelated errors:

Default cut =⇒ sample A , result xA ± σA

Tighter cut =⇒ sample B ⊂ A , result xB ± σB

Question: Is xB significant deviation from xA ?

Problem: σA , σB from partially same data

=⇒ Correlated errors!

re
s

u
lt

analysis
variable

Cut A Cut B
(default)

Solution: Consider separate data samples

B and C = (A without B)

Well-known formula for averaging results:
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Known: xA , xB , σA , σB

=⇒ determine xC , σC !

=⇒
1
σ2

C

=
1
σ2

A

−
1
σ2

B

, xC =
xA/σ

2
A − xB/σ

2
B

1/σ2
A − 1/σ2

B

re
s
u

lt

analysis
variable

Cut A Cut B
(default)

Hypothetical
sample C

Difference between uncorrelated xB and xC :

xC − xB = · · · = σ2
B

xA − xB

σ2
B − σ

2
A

Statistical significance of the difference:
xC − xB√
σ2

B + σ2
C

= · · · =
xA − xB√
σ2

B − σ
2
A

re
s
u

lt

analysis
variable

Cut A Cut B
(default)

Uncorrelated
error

σ   − σ
AB

2 2

σ2
uncorr = |σ2

B − σ
2
A|
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Interpretation of variations:

Common result from cut variation:

I Shall we attach a systematic
uncertainty?

selection cutdefault

tighter looser

fo
r 

d
e

fa
u

lt
 c

u
t

s
ta

t.
 e

rr
o

r

uncorrelated errors

re
s
u

lt

I First:

Is there any known reason for a possible variation?

How do the original data & MC distributions agree?

What happens with even tighter/looser cuts?

I Could attach variation (≈ 1
2σstat) as systematic error.

=⇒ probably overcautious!

I Usually here: No systematic uncertainty!

46 / 56



Other possibility:

I No way to attach a
systematic uncertainty!

I Variation has to be
understood!

=⇒ Look at underlying
distributions! selection cutdefault

tighter looser

re
s
u

lt

Similar case:
I Variation has to be

understood!

=⇒ Look at underlying
distributions!

=⇒ What happens for
looser/tighter cuts? selection cutdefault

tighter looser

re
s
u

lt

I Only, if no other way: variation = systematic uncertainty!

Dangerous situation: systematic error ≥ O(statistical error)!
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Similar, but not as worse:
I By far not as dangerous,

since variation� σstat.
I Still: better be understood.

=⇒ Could attach variation
as systematic.
(if no other way found) selection cutdefault

tighter looser

s
y
s
te

m
a
ti

c
 e

rr
o

r?
!

re
s

u
lt

Yet another case:
I Could be fluctuation!

=⇒ Look at underlying
distributions!

=⇒ Any reason for
a possible problem?

I In case of doubt:
systematics as above

selection cutdefault

tighter looser

re
s

u
lt

No obvious reason for systematics: Be bold!
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Special case:
I Significant variation, but

only to one side.

I Usual situation:

MC description bad, but
cut is almost fully efficient.

=⇒ Disagreement does
not matter.

No reason for a

systematic uncertainty!

(As long as the bad MC does
not have other impacts.)

selection cutdefault

tighter looser

re
s
u

lt

track momentum [GeV/c]
0 1 2 3 4 5 6 7 8 9 10

e
n

tr
ie

s

0

5

10

15

20

25

30

35

40

45

Data

MC
uncritical

cut
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4. How to work with systematic uncertainties

Example:

Trigger efficiency

Measured from data in several
bins of e.g. momentum:

εi ± σ
ε
i

Bins are independent from
each other.

momentum [GeV/c]

i
ε

i
σ

ε

2422201816141210

1

0.99

0.98

0.97

0.96

tr
ig

g
e
r 

e
ff

ic
ie

n
c
y

bin i

Option 1: Vary each bin i by ±σεi =⇒ result varies by ±σresult
i

=⇒
(
σresult

total

)2
=

∑
i

(
σresult

i

)2

I Might be tedious for many bins.
I Problem, if σresult

i asymmetric (σ+
i , σ

−
i ).

I σεi have to be independent from each other
(usually the case for trigger efficiencies).
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Option 2: Toy Monte Carlo
I Generate simultaneously random trigger efficiencies for each

bin i according to gaussians with mean εi and width σεi .

=⇒ perform analysis with these modified values.

=⇒ obtain new analysis result.

I Do this N ∼ 100 times

=⇒ distribution of different
results around central
value

Take the variance
(or fit a gaussian)

=⇒ ±σresult
syst

analysis result
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

0

2

4

6

8

10

12

14

16

result

syst
σ

central value

I Advantages:
I Total error in one go (but have to redo analysis quite often, too).
I Non-gaussian effects automatically taken care of and

immediately visible.
I Correlations between variables can easily be included.
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Correlations between external parameters

Example: Background shape

Signal over some combinatorial
background, which is not known
from MC simulation.

Common procedure:
Fit background in side-bands
with 1. (or 2.) order polynomial. invariant mass [GeV/c]

1.28 1.29 1.3 1.31 1.32 1.33 1.34 1.35

e
n

tr
ie

s

0

100

200

300

400

500

600

signal

region

a =  6910 +− 120

b = −5070 +− 90

rho = − 0.999

Background:

side band side band

=⇒ constant = a ± σa

slope = b ± σb

correlation coefficient = ρ

For systematics generate random a, b
according to binormal distribution:

b

a
ρ = − 0.54 σ

y

xa

b

σ

P(x, y) = 1

2πσaσb

√
1−ρ2
× exp

(
− 1

2(1−ρ2)

[
( x−a
σa

)2 + ( y−b
σb

)2 − 2 ρ x−a
σa

y−b
σb

])
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Adding correlated/uncorrelated systematics
I Consider a two-parameter fit, with results

a ±σstat, b ±σstat, and correlation coeff. ρ.

=⇒ confidence contours in the x, y plane.

I Systematics have been determined for a
and b — but how to properly take them
into account?

b

a
ρ = − 0.54 σ

y

xa

b

σ

I Figure out the correlations for each contribution to the
systematics!

I Very often: systematic errors are fully or not at all correlated.
I Often: Same correlation as statistical errors. (e.g. external

parameters, which affect both variables the same way)
I Sometimes: Correlation is not known.

In this case: same correlation as for statistical errors is usually
a good assumption. (But document it!)
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I Add covariance matrices of single contributions:

Vsyst =

(
σ2

a,uncorr 0
0 σ2

b ,uncorr

)
uncorrelated

+

(
σ2

a,corr σa,corr σb ,corr

σa,corr σb ,corr σ2
b ,corr

)
correlated

+

(
σ2

a,i ρi σa,i σb ,i

ρi σa,i σb ,i σ2
b ,i

)
+ · · · partially correlated

I Finally add statistics and systematics

Vstat + Vsyst = Vtotal

x
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y
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statistical error total errorsystematic error

= −0.30ρ = −0.55ρ

+

= −0.70

=

ρ
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Some final words

I To be avoided (if possible):
One single dominant contribution to the systematics (in
particular, if it is ≥ statistical error)

I One single mistake/mis-estimation and the result is worthless.
I Also: systematics usually have no gaussian behaviour

(No problem when adding several small contributions
=⇒ Central Limit Theorem ensures gaussian distribution)

I Exception: largest systematic is of statistical nature
(e.g. trigger efficiency).

I Be cautious, but don’t be too shy!

If there’s no reason for quoting a conservative systematic or
for quoting it at all, don’t do it!
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Conclusions

I Be aware of any possible systematic
I Look at as many distributions as possible.
I Try to look from “outside” on your analysis.

I Avoid biases
I Free yourself from expections on the result.
I Never look at the data when tuning cuts!

I Do your best when estimating systematics
I Few cases: systematics are straight-forward.
I Mostly: have to use some sort of “educated guess”
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