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where are you?

Terascale Statistics School 17th February ’16

available for (forgotten) questions:
 adrian.perieanu@cern.ch

mailto:adrian.perieanu@cern.ch
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exercise structure
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* this is an active hands-on exercise:
combines features of frontal lecture with team work 
and workshop advantages

* time: 90’ + 100’
a football and a rugby, e.g., England-Fiji’15, game
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before we start 

Terascale Statistics School 17th February ’16

this lecture and tutorial are based on the material accumulated in the previous years
from the lectures given by Stefan Schmitt and Christian Autermann
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Calculation of Exclusion Limits
 — goals —
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* read a limit plot

* formulate null- and alternative- hypotheses

* understand the mechanism behind the 
limit calculation

* estimate and interpret the p-value

* explain limits to “outside” wild world



Calculation of Exclusion Limits
— rules —
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well, there are no rules, just kind of guide lines…

* communication is (almost) everything - language? doesn’t matter as 
long as we can understand each other 

* if something is not clear, don’t hesitate - go ahead and ask

* if you are hanging in a C++, root or python issue, don’t waste more 
than 10 min searching for a solution - go ahead and ask

* if you are fed up and need a break - go ahead and say it, we all need 
this once in a while :)

“go ahead and ask” is kind of solving 
most of the problems

Terascale Statistics School 17th February ’16
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overview
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* a limit plot: what does it say? how is it done?

* confidence level
— confidence intervals
— confidence belt

* setting up limits: in general and in high energy physics

* p-value: what is it? how is it calculated?
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a limit plot…
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Eur. Phys. J. C 73 (2013) 2469
arXiv:1304.0213

* what shall we understand from the y- and x-
axes description ?

* what does the color code mean?

* where can we exclude a heavy standard-model-
like Higgs?

for the ones that wake up late,
this is the first exercise 
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Legend: black dashed line on yellow and on green  
are wrong, they should have been blue

a limit plot…

Eur. Phys. J. C 73 (2013) 2469
arXiv:1304.0213

* y-axis description: 

* x-axis:

* colour code: 
— red:
— black:
— blue:
— green:
— yellow:
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a limit plot…
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Legend: black dashed line on yellow and on green  
are wrong, they should have been blue

Eur. Phys. J. C 73 (2013) 2469
arXiv:1304.0213

* y-axis description: 95% CL limit on 𝛔/𝛔SM

95 % confidence level (CL) limit on the ratio of the 
production cross section (𝛔) to the standard model 
(SM) expectation (𝛔SM)

* x-axis: mH (GeV)

* colour code: 

— red: 𝛔/𝛔SM = 1

— black: observed upper limit

— blue: dashed line expected limit

— green: 68% (1σ) CL ranges of expectation

— yellow: 95% (2σ) CL ranges of expectation
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a limit plot…
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* where can we exclude a heavy standard-model-
like Higgs?

Eur. Phys. J. C 73 (2013) 2469
arXiv:1304.0213
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a limit plot…

Terascale Statistics School 17th February ’16

* where can we exclude a heavy standard-model-
like Higgs?
in the range 145 < mH < 710 GeV

excluded 
relative to SM

not
excluded
relative 
to SM

710

Eur. Phys. J. C 73 (2013) 2469
arXiv:1304.0213
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a limit plot…
— let’s compare with what authors wrote —
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Eur. Phys. J. C 73 (2013) 2469
arXiv:1304.0213

from the abstract

The combined upper limits at 95% confidence level 
on products of the cross section and branching 
fractions exclude a standard-model-like Higgs 
boson in the range 145 < mH < 710 GeV, thus 
extending the mass region excluded by CMS from 
127–600 GeV up to 710 GeV. 

in section: 6 Summary
Figure 11: Observed (solid line) and expected 

(dashed line) 95% CL upper limit on the ratio of the 
production cross section to the SM expectation for 
the Higgs boson with all WW and ZZ channels 
combined. 

in section: 4 Data Analysis
Figure 2: … The 68% (1σ) and 95% (2σ) CL ranges 
of expectation for the background-only model are 
also shown with green and yellow bands, 
respectively. The horizontal solid line at unity 
indicates the SM expectation.
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few buzzwords:
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* expected limit
* observed upper limit
* 95 % confidence level (CL)
* 68% (1σ) CL ranges of expectation 
* 95% (2σ) CL ranges of expectation
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limit:
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* a point beyond which it is not possible to go
* an amount or number that is the highest or 
lowest allowed

— there is a theory: SM

— this theory (SM): predicts signal-like events
— there is also a detector: CMS (in this example)

— this detector: has a certain accuracy and can “measure” signal-like events 

— there is also an analysis group: collaboration

— this analysis group:  exploits or not most sensitive methods
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limit:
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* a point beyond which it is not possible to go
* an amount or number that is the highest or 
lowest allowed

* expected limit:

is the upper 95% CL limit that COULD BE 
achieved given the predicted signal by a theory, 
the detector accuracy and analysis methods 
sensitivity

* observed upper limit:

is the upper 95% CL limit that WAS MEASURED 
given the predicted signal by a theory, the 
detector accuracy and analysis methods 
sensitivity 
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confidence level
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* statistical measure for a test results that can be 
expected to be within a specified range:
95 % CL: a result will probably meet the 
expectations 95% of the time

* in order to understand the meaning of a 
confidence level we need two ingredients:
— confidence interval
— confidence belt
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confidence interval
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* an interval which reflects the statistical 
uncertainty of the measured parameter

* it should:
— communicate the result in an objective mode
— give probability of containing the true parameter
— if needed, provide information to draw conclusions 
about measured parameter (prior “beliefs”)

* it can be:
— single-sided
— double-sided

x
single-sided: x < xmax at 95% CL

< xmax

x
double-sided: x = 𝛍 ± 𝛔 at 60% CL

𝛍 + 𝛔𝛍 - 𝛔 𝛍
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x
single-sided: x < xmax at 95% CL

< xmax

when do we need it? when we are lazy and 
want to sleep more, still not being fired for coming late at work

confidence interval: single-sidedBayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Example single sided confidence interval: Journey to work
An employee needs to be at work at 8:00 o’clock sharp. The journey takes
30 minutes on average, with a Gaussian uncertainty of � = 10 minutes due
to varying traffic.

When must he leave home to be late only once a year (⇠ 0.5%)?

Single sided limit: (2.3�=̂99.0%, 3�=̂99.87%) �! 99.5% ⇡̂ 2.5�
He has to leave at t ⇡ 8:00 - 0:30 - 0:10·2.5 =7:05 o’clock!

x
7 7.2 7.4 7.6 7.8 8 8.2 8.4

f(x
)
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0.7

0.8

0.9

1

 = 1 - CL = 0.005α

 = t + 0.5 hµ

 = 1/6 hσ

Z 1

X

up

1p
2⇡�

e

� (x�µ)2

2�2
dx = 1 � CL

mean µ = t + 30 minutes
limit X

up

= 8 : 00 o’clock
width � = 10 minutes

Limit determination I Christian Autermann 16/ 44

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Example single sided confidence interval: Journey to work
An employee needs to be at work at 8:00 o’clock sharp. The journey takes
30 minutes on average, with a Gaussian uncertainty of � = 10 minutes due
to varying traffic.

When must he leave home to be late only once a year (⇠ 0.5%)?

Single sided limit: (2.3�=̂99.0%, 3�=̂99.87%) �! 99.5% ⇡̂ 2.5�
He has to leave at t ⇡ 8:00 - 0:30 - 0:10·2.5 =7:05 o’clock!

x
7 7.2 7.4 7.6 7.8 8 8.2 8.4

f(x
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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Z 1

X
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� (x�µ)2

2�2
dx = 1 � CL

mean µ = t + 30 minutes
limit X

up

= 8 : 00 o’clock
width � = 10 minutes

Limit determination I Christian Autermann 16/ 44

mean  𝛍 = xstart + 30’ 
width  𝛔 = 10’ 
limit    xarrival = 08:00

in 2016 in Hamburg there are 
254 working days, 
30 days vacation:

1/224 ~0.0045

         An employee needs to be at work at 8:00 o’clock sharp. 
The journey takes 30 minutes on average, with a Gaussian 
uncertainty of σ = 10 minutes due to traffic. 
When must he leave home to be late only once a year (~0.5%)?
Or to be in time in 99.5% of the cases?

xstart (0.5%)  = ? 

   xarrival
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x
single-sided: x < xmax at 95% CL

< xmax

when do we need it? when we are lazy and 
want to sleep more, still not being fired for coming late at work

confidence interval: single-sidedBayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Example single sided confidence interval: Journey to work
An employee needs to be at work at 8:00 o’clock sharp. The journey takes
30 minutes on average, with a Gaussian uncertainty of � = 10 minutes due
to varying traffic.

When must he leave home to be late only once a year (⇠ 0.5%)?

Single sided limit: (2.3�=̂99.0%, 3�=̂99.87%) �! 99.5% ⇡̂ 2.5�
He has to leave at t ⇡ 8:00 - 0:30 - 0:10·2.5 =7:05 o’clock!
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 = t + 0.5 hµ

 = 1/6 hσ

Z 1

X

up
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2⇡�

e

� (x�µ)2

2�2
dx = 1 � CL

mean µ = t + 30 minutes
limit X

up

= 8 : 00 o’clock
width � = 10 minutes

Limit determination I Christian Autermann 16/ 44

xstart (0.5%)  = ? 

in 2016 in Hamburg there are 
254 working days, 
30 days vacation:

1/224 ~0.0045

         An employee needs to be at work at 8:00 o’clock sharp. 
The journey takes 30 minutes on average, with a Gaussian 
uncertainty of σ = 10 minutes due to traffic. 
When must he leave home to be late only once a year (~0.5%)?
Or to be in time in 99.5% of the cases?

* write a ROOT macro to estimate the 
correspondence between the number of 
sigmas and the single-sided interval for a 
Gauss distribution
* estimate number of sigmas for a single-
sided interval of 1 - 0.005
* estimate starting time
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x
single-sided: x < xmax at 95% CL

< xmax

when do we need it? when we are lazy and 
want to sleep more, still not being fired for coming late at work

confidence interval: single-sidedBayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Example single sided confidence interval: Journey to work
An employee needs to be at work at 8:00 o’clock sharp. The journey takes
30 minutes on average, with a Gaussian uncertainty of � = 10 minutes due
to varying traffic.

When must he leave home to be late only once a year (⇠ 0.5%)?

Single sided limit: (2.3�=̂99.0%, 3�=̂99.87%) �! 99.5% ⇡̂ 2.5�
He has to leave at t ⇡ 8:00 - 0:30 - 0:10·2.5 =7:05 o’clock!
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� (x�µ)2
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mean µ = t + 30 minutes
limit X

up

= 8 : 00 o’clock
width � = 10 minutes

Limit determination I Christian Autermann 16/ 44

xstart (0.5%)  = 08:00 - 00:30 - 00:26 = 07:04  

in 2016 in Hamburg there are 
254 working days, 
30 days vacation:

1/224 ~0.0045

         An employee needs to be at work at 8:00 o’clock sharp. 
The journey takes 30 minutes on average, with a Gaussian 
uncertainty of σ = 10 minutes due to traffic. 
When must he leave home to be late only once a year (~0.5%)?
Or to be in time in 99.5% of the cases?

1 𝛔                                84.13 %  
2 𝛔                                97.72 %
2.3 𝛔                             98.92 %
2.6 𝛔  correspond  to  99.53 %
2.7 𝛔                             99.65 %
3 𝛔                                99.86 %
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Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Central confidence intervals for a Gaussian distributions:

P(X� � x � X+) =
R

X+

X�
P(x)dx = CL

x: measurement, X± limits of the confidence interval.

measurement m

0
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0.25

0.3

0.35

0.4

0.45

0.5
90% CL

measurement m

0
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0.25

0.3

0.35
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0.45

0.5

 = 0.052
1 - CL  = 0.052

1 - CL

90% CL

X� X+

Common values:

1� =̂ 68.27% 1.6449� =̂ 90%
2� =̂ 95.45% 1.9600� =̂ 95%
3� =̂ 99.73% 2.5758� =̂ 99%
5� =̂ 99.99994%

Limit determination I Christian Autermann 14/ 44

879 g

* value of the measurement m lies in the interval X - . . . X+   in „CL” 
% of the time 
or
 * saying „m will lie in the interval X - . . . X+” has “CL” % confidence 

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Central confidence intervals for a Gaussian distributions:

P(X� � x � X+) =
R

X+

X�
P(x)dx = CL

x: measurement, X± limits of the confidence interval.

measurement m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
90% CL

measurement m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 = 0.052
1 - CL  = 0.052

1 - CL

90% CL

X� X+

Common values:

1� =̂ 68.27% 1.6449� =̂ 90%
2� =̂ 95.45% 1.9600� =̂ 95%
3� =̂ 99.73% 2.5758� =̂ 99%
5� =̂ 99.99994%

Limit determination I Christian Autermann 14/ 44

central confidence intervals for a 
Gaussian distributions:

x: measurement, 
X± : limits of the confidence interval. 

confidence interval: double-sided

* given a precisely known true value μ of a certain 
property, e.g., the weight of cereal packets 879g, 
one can ask: 
— what is the weight-range into which a certain 
amount, e.g., 90%, of measurements x will fall? 



23Adrian Perieanu Terascale Statistics School 17th February ’16

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Central confidence intervals for a Gaussian distributions:

P(X� � x � X+) =
R

X+

X�
P(x)dx = CL

x: measurement, X± limits of the confidence interval.

measurement m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
90% CL

measurement m

0
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0.15

0.2
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0.3

0.35
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0.5

 = 0.052
1 - CL  = 0.052

1 - CL

90% CL

X� X+

Common values:

1� =̂ 68.27% 1.6449� =̂ 90%
2� =̂ 95.45% 1.9600� =̂ 95%
3� =̂ 99.73% 2.5758� =̂ 99%
5� =̂ 99.99994%

Limit determination I Christian Autermann 14/ 44

879 g

* write a ROOT macro to estimate 
the correspondence between the 
number of sigmas and the double-
sided interval for a Gauss 
distribution
* estimate number of sigmas for a 
double-sided interval of 1 - 2*0.05
* estimate the weight-range

confidence interval: double-sided

* given a precisely known true value μ of a certain 
property, e.g., the weight of cereal packets 879g, 
one can ask: 
— what is the weight-range into which a certain 
amount, e.g., 90%, of measurements x will fall? 
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Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Central confidence intervals for a Gaussian distributions:

P(X� � x � X+) =
R

X+

X�
P(x)dx = CL

x: measurement, X± limits of the confidence interval.

measurement m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
90% CL

measurement m

0

0.05

0.1
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0.2

0.25

0.3

0.35

0.4

0.45

0.5

 = 0.052
1 - CL  = 0.052

1 - CL

90% CL

X� X+

Common values:

1� =̂ 68.27% 1.6449� =̂ 90%
2� =̂ 95.45% 1.9600� =̂ 95%
3� =̂ 99.73% 2.5758� =̂ 99%
5� =̂ 99.99994%

Limit determination I Christian Autermann 14/ 44

879 g
weight - range (90%)  = μ ± 1.6449 𝛔 at 90% CL

1 𝛔                               68.27 %  
1.6449 𝛔                      90.00 %
1.96 𝛔                          95.00 %
2 𝛔   correspond  to   95.45 %
3 𝛔                               99.73 %

* given a precisely known true value μ of a certain 
property, e.g., the weight of cereal packets 879g, 
one can ask: 
— what is the weight-range into which a certain 
amount, e.g., 90%, of measurements x will fall? 

confidence interval: double-sided
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confidence: interval & belt

* so far we figured it out that 90% of the measurements 
of the cereal packet weight will be within μ ± 1.6449 𝛔  

* but, usually we buy only a packet, not the entire 
truck… so, what we could say about μ given that we 
have only one measurement x0?

some like this kind of belt 
to be confident

some others prefer 
this one

almost none of us 
like this one

almost none of us  would say no
to wear this confidence belt

* we need a confidence belt to translate our 
measurement into a confidence interval
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confidence belt
Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Confidence Level Belt

Neyman construction for Confidence Level intervals
Given a particular true value µ , there is a probability density function P(µ,�)

that defines the most probable measurement x , and the interval
x � � . . . x + � into which the measurements will fall with a given CL.

measurement

 tr
ue

 v
al

ue
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0.6

0.8

1

µ

xσx- σx+

1 For a different µ there are
different measurements x and
limits x ± �.

2 The measurement limits x � �
and x + � can be considered as
functions from the true value µ.

3 The functions X�(µ) and X+(µ)
are the confidence belt.

Limit determination I Christian Autermann 20/ 44

* for a particular true value μ, the probability density 
function P(μ,σ) defines the most probable measurement 
x0, and the interval x0 − σ . . . x0 + σ into which the 
measurements will fall with a given CL

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Confidence Level Belt

Neyman construction for Confidence Level intervals
Given a particular true value µ , there is a probability density function P(µ,�)

that defines the most probable measurement x , and the interval
x � � . . . x + � into which the measurements will fall with a given CL.

measurement
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µ

xσx- σx+

-X

+X

1 For a different µ there are
different measurements x and
limits x ± �.

2 The measurement limits x � �
and x + � can be considered as
functions from the true value µ.

3 The functions X�(µ) and X+(µ)
are the confidence belt.

Limit determination I Christian Autermann 20/ 44

* different μ implies different 
measurements x0 and limits x0 ± σ

* measurement limits x0 − σ and x0 + σ are 
functions, X- and X+, of true value μ 

the confidence belt
defined by X- (μ) and X+ (μ) 

0 00 0 00
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how to use a confidence belt
— “inside” statistics —

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Confidence Level Belt

Neyman construction for Confidence Level intervals
Given a particular true value µ , there is a probability density function P(µ,�)

that defines the most probable measurement x , and the interval
x � � . . . x + � into which the measurements will fall with a given CL.

measurement

 tr
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ue

0

0.2

0.4

0.6

0.8

1

x

-X

+X
+µ

-µ

Given a measurement x a confidence
interval for the true value µ� . . . µ+ can be
constructed from the confidence belt.

The confidence belt is constructed horizontally

using the known probability density for all
possible true values µ. Having a
measurement x , it is read vertically.

The µ� . . . µ+ enclose with CL probability the
true value µ.

Limit determination I Christian Autermann 20/ 44

* back to our problem:  
— usually we buy only a packet, not the entire truck… 
so, what we could say about μ given that we have only 
one measurement x0?

* for a measurement x0, a confidence interval for 
the true value: μ- . . . μ+ , can be constructed from 
the confidence belt

* confidence belt is constructed horizontally 
using the known probability density for all 
possible true values μ

* with a measurement x0, confidence belt is read 
vertically

* interval μ- . . . μ+   contains the true value μ with 
a “CL” probability

0
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confidence belt for a Gaussian

* back to our problem:  
— usually we buy only a packet, not the entire truck… 
so, what we could say about μ given that we have only 
one measurement x0? now we know that the packet 
weight should follow a Gauss distribution

if the producer of the cereal packet 
is not cheating, 

the weight of a packet should be 
normally distributed

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Confidence Level Belt

Neyman construction for Confidence Level intervals
Given a particular true value µ

, there is a probability density function P(µ,�)

that defines the most probable measurement x , and the interval
x � � . . . x + � into which the measurements will fall with a given CL.

measurement
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1

µ

1 For a different µ there are
different measurements x and
limits x ± �.

2 The measurement limits x � �
and x + � can be considered as
functions from the true value µ.

3 The functions X�(µ) and X+(µ)
are the confidence belt.

Limit determination I Christian Autermann 20/ 44

x0

* estimate shape of the confidence 
belt borders

* sketch the confidence belt
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confidence belt for a Gaussian

if the producer of the cereal packet 
is not cheating, 

the weight of a packet should be 
normally distributed

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Example: Confidence Belt for a Gaussian

measurement

 tr
ue

 v
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ue
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0.2

0.4

0.6

0.8

1

x

-X

+X
+µ

-µ

For Gaussian distributions the
conversion from the horizontal
measurement confidence interval
x

� . . . x+ to the vertical true
confidence interval µ� . . . µ+ is simple:
The confidence belt X�, X+ becomes
two straight lines with unit gradient.

x± = µ± n · � when constructed
horizontally

µ± = x ± n · � when read vertically

With n = 1 for CL = 68%, etc...

Limit determination I Christian Autermann 21/ 44

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Example single sided confidence interval: Journey to work
An employee needs to be at work at 8:00 o’clock sharp. The journey takes
30 minutes on average, with a Gaussian uncertainty of � = 10 minutes due
to varying traffic.

When must he leave home to be late only once a year (⇠ 0.5%)?

Single sided limit: (2.3�=̂99.0%, 3�=̂99.87%) �! 99.5% ⇡̂ 2.5�
He has to leave at t ⇡ 8:00 - 0:30 - 0:10·2.5 =7:05 o’clock!
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2

* confidence belt defined by X- and X+ becomes two 
straight lines with the corresponding number of sigmas 
as gradient:  

X± = μ ± n * σ  when constructed horizontally

μ± = x0 ± n * σ when read vertically

with n = 1 for CL = 68.27%, n = 2 for CL = 95.45% 

* equation for μ-: requires x0 to be “n” sigmas above μ-

* back to our problem:  
— usually we buy only a packet, not the entire truck… 
so, what we could say about μ given that we have only 
one measurement x0? now we know that the packet 
weight should follow a Gauss distribution
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confidence intervals
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* Binomial Confidence Intervals

* Poisson Confidence Intervals

* Constrained Confidence Intervals
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binomial confidence interval
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* binomial experiments: only two possible outcomes 0 or 1
* discrete observed value: number of successes m (out of n trials)
* true value: single trial probability μ is continuous

* for m successes in n binomial trials
the limits on the individual probabilities
p- and p+ of the confidence interval “CL” 
are given by:

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Binomial Confidence Intervals

„Coin-flip” experiments
Binomial experiments have only two possible outcomes. While
the true value µ is continous the observed value is discrete.
The confidence integrals become summations.
For m successes in n binomial tries, the limits p� and p+ of the
confidence interval are found by:

m�1X

r=0

B(µ, p�, n) 
CL
2

nX

r=m+1

B(µ, p+, n) 
CL
2

where
B(µ, p, n) =

✓
n

k

◆
p

µ(1 � p)n�µ

is the binomial distribution.
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Binomial Confidence Intervals

„Coin-flip” experiments
Binomial experiments have only two possible outcomes. While
the true value µ is continous the observed value is discrete.
The confidence integrals become summations.
For m successes in n binomial tries, the limits p� and p+ of the
confidence interval are found by:
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B(µ, p, n) =

✓
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◆
p
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is the binomial distribution.
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with binomial distribution: B(μ, p, n) =                   pμ (1 - p) n - μn!
μ! (n-μ)!
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* and the limits of the confidence interval 
“CL” given by:

* poisson distribution approximates the binomial one for a large 
number of n trials and small probabilities p: n→∞ and p→0

* with probability depending on with k (number of success per 
interval) and λ (true expectation)

poisson confidence interval

some people remember this  
distribution having in mind 
Siméon Denis Poisson

I remember it more like: 
(I catch it, I don’t catch it) n

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Poisson Confidence Intervals

„Coin-flip” experiments
A Poisson-distribution is a approximation for a binomial for large
n and small probabilities p, i.e. n ! 1 and p ! 0.

P(k ,�) =
�k

k !
e

��

where k is the number of successes per interval, and � the true
expectation.
The limits of the confidence interval become:

k�1X

r=0

P(r ,��) 
CL
2

1X

r=n+1

P(r ,�+) 
CL
2

(lower) (upper)
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poisson confidence interval
— proton decay —

* Super-Kamiokande (50 000 tons of water) observes less than s 
proton-decay candidate events per year 
* what is the 95% CL interval for proton-decays and the proton half-
life, assuming no background events and s = 1 found event per year? 

pssst, don’t disturb!  
experimentalist working 

* write a ROOT macro to estimate the confidence 
intervals of the poisson probability for n signal events 

* estimate the time our experimentalist has to “work”
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poisson confidence interval
— proton decay —

* Super-Kamiokande (50 000 tons of water) observes less than s 
proton-decay candidate events per year 
* what is the 95% CL interval for proton-decays and the proton half-
life, assuming no background events and s = 1 found event per year? 

pssst, don’t disturb!  
experimentalist still working 

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Poisson Confidence Intervals

Example: Proton decay
In Super-Kamiokande with 50 000 tons of water, less than s proton-decay
candidate events per year are observed. What is the 95% CL interval for
proton-decays and the proton half-life, assuming no background events and
s = 1 found event per year?

Poisson limits:

Lower Upper
n 90% 95% 99% 90% 95% 99%
0 � � � 2.30 3.00 4.61
1 0.11 0.05 0.01 3.89 4.74 6.64
2 0.53 0.36 0.15 5.32 6.30 8.41
3 1.10 0.82 0.44 6.68 7.75 10.05
4 1.74 1.37 0.82 7.99 9.15 11.60
5 2.43 1.97 1.28 9.27 10.51 13.11
6 3.15 2.61 1.79 10.53 11.84 14.57
7 3.89 3.29 2.33 11.77 13.15 16.00
8 4.66 3.98 2.91 12.99 14.43 17.40
9 5.43 4.70 3.51 14.21 15.71 18.78

10 6.22 5.43 4.13 15.41 16.96 20.14

Number of protons in 50 ktons of
water: N = 1.65 · 1034

95% CL interval, e.g. for 1 event:
CL

dn

= 0.05, CL
up

= 4.74.

Prob. one decay/year:
P =

CL

dn

N

= 3.03 · 10�36. . .2.87 · 10�34

and mean lifetime interval:
3.48 · 1033 < ⌧ = 1

P

< 3.3 · 1035 years.

Limit determination I Christian Autermann 25/ 44

* Number of protons in 50 000 tons of 
water: N = 1.65 · 1034 

* the 95% CL interval for 1 event:       
CLdn = 0.05, CLup = 4.74
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poisson confidence interval
— proton decay —

pssst, don’t disturb!  
experimentalist (still) keeping working 

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Poisson Confidence Intervals

Example: Proton decay
In Super-Kamiokande with 50 000 tons of water, less than s proton-decay
candidate events per year are observed. What is the 95% CL interval for
proton-decays and the proton half-life, assuming no background events and
s = 1 found event per year?
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Poisson Confidence intervals
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Poisson Confidence intervals

Number of protons in 50 ktons of
water: N = 1.65 · 1034

95% CL interval, e.g. for 1 event:
CL

dn

= 0.05, CL
up

= 4.74.

Prob. one decay/year:
P =

CL

dn

N

= 3.03 · 10�36. . .2.87 · 10�34

and mean lifetime interval:
3.48 · 1033 < ⌧ = 1

P

< 3.3 · 1035 years.
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* probability for one decay/year: 
P= CLdn/N = 3.03·10−36… 2.87·10−34 

* and mean lifetime interval:            
3.48 · 1033 < τ =1 / P < 3.3 · 1035 years

* Super-Kamiokande (50 000 tons of water) observes less than s 
proton-decay candidate events per year 
* what is the 95% CL interval for proton-decays and the proton half-
life, assuming no background events and s = 1 found event per year? 
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* let’s assume we want to measure the mass of a “real” object, x
* some of the measurements lead to a negative upper limit - that’s 
not “real” — it is absurd 

constraint confidence interval

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Constrained Confidence Intervals

Constrained Gaussian Distributions
Given a measurement x with resolution � we want to find the
limits of the confidence intervals of the true underlying variable
µ, which we know must be within a specific interval.

Example: Measuring a
mass x , which we know
must be positive.

Some measurements
lead to a negative upper
mass limit, which is
absurd.

mass measurement x
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=2µmean 
=2σwidth 
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Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Constrained Confidence Intervals

Constrained Gaussian Distributions
Given a measurement x with resolution � we want to find the
limits of the confidence intervals of the true underlying variable
µ, which we know must be within a specific interval.

Example: Measuring a
mass x , which we know
must be positive.
Some measurements
lead to a negative upper
mass limit, which is
absurd.
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Limit determination I Christian Autermann 26/ 44* the mass of a “real” object is positive: 
the upper limit cannot be negative

* the way out: incorporate prior knowledge about 
the expected true value μ - Bayesian statistics 
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bayesian vs. frequentist

it’s all 
about probabilities

* probability: predicts the number of expected events given
— the theory (which has parameters)
— the experimental setup (your favoured detector)

what we want to know: 
— what a specific observation can say about a certain theory

* frequentist:
— give for each theory the probability to be 
observed, it does not give: the probability for 
a theory 

* bayesian:
— assigns probabilities (degree of “belief”) to 
theories

high energy physics: use both of them, still prefer frequentist 
especially for discoveries

in case you wanted to know, 
but wan can live  

also without it
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* back to our problem:                                                                              
let’s assume we want to measure the mass of a “real” object, x
* some of the measurements lead to a negative upper limit - that’s 
not “real” — it is absurd 

constraint confidence interval

* show how one can estimate the 
confidence interval for this kind of 
cases where a property is prior  known

use Bayesian theorem

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Bayes theorem

A quick reminder

Conditional probability P(A|B): The probability of A to occur under the
condition that B has occured.
Bayes theorem:

P(A|B) =
P(B|A) · P(A)

P(B)

The following useful identity follows from the three Kolmogorov axioms:

P(B) =
X

i

P(B|A
i

) · A

i

for a binomial experiment this becomes:
= P(B|A) · P(A) + P(B|!A) · P(!A)

prior probabilitylikelihood

posterior probability
evidence

Limit determination I Christian Autermann 7/ 44

* conditional probability P(A|B): probability of A to occur 
under the condition that B has occurred

posterior probability

prior probabilitylikelihood

evidence
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* back to our problem:                                                                              
let’s assume we want to measure the mass of a “real” object, x
* some of the measurements lead to a negative upper limit - that’s 
not “real” — it is absurd 

constraint confidence interval

* bayesian statistics can incorporate 
prior knowledge about the true value μ

* our problem becomes:  we a mass measurements of a “real” 
object, x, with the true value μ constraint to be positive

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Constrained Confidence Intervals

Constrained Gaussian Distributions
Bayes statistics allows to incorporate our prior knowledge about
the true value µ.

Example: Mass measurement, µ constrained to positive values
Prior: P(µ) = 1 if µ � 0, P(µ) = 0 else.

P(µ
up

|x) =
P(x |µ)
P(x)

· P(µ)

=

R µ
up

�1 Gauss(�, x � x

0)dx

0

R1
0 Gauss(�, x � x

0)dx

0 ⇥
⇢

1 for x > 0
0 else = 1 � CL

2

) µup @ CL confidence level, (µlower equivalently) by solving the above
equation.

Limit determination I Christian Autermann 27/ 44

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Constrained Confidence Intervals

Constrained Gaussian Distributions
Bayes statistics allows to incorporate our prior knowledge about
the true value µ.

Example: Mass measurement, µ constrained to positive values
Prior: P(µ) = 1 if µ � 0, P(µ) = 0 else.
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2

) µup @ CL confidence level, (µlower equivalently) by solving the above
equation.
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* solving the equation above for a certain “CL” one can obtain μup (equivalent μdown)
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frequentist vs. bayesian
— 68% confidence belt —

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Constrained Confidence Intervals

Frequentists and Bayes confidence belt
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68% confidence belt for
Bayes using a flat prior for
P(µ) (constraint to positive
values), and a „normal”
Frequentists approach.
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* bayesian confidence belt incorporating a 
flat prior knowledge about P(μ) - constraint 
to positive values

* “normal” frequentists confidence belt
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summary 
— part I —
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* now you are sure that you can read a limit plot 

* you know how a confidence interval is defined (single- 
and double-sided)

* you learned about the confidence belt

* and you know the major difference between the frequentist 
(give for each theory the probability to be observed) and 
bayesian (assigns probabilities to theories) approaches

* what comes next:
— formulate null-hypothesis
— how to calculate the observed (expected) limit with and 
w/o systematic uncertainties
— estimate and interpret the p-value
— explain limits to “outside” wild world
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* 


