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reminder 
— part I —
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* now you are sure that you can read a limit plot 

* you know how a confidence interval is defined (single- 
and double-sided)

* you learned about the confidence belt

* and you know the major difference between the frequentist 
(give for each theory the probability to be observed) and 
bayesian (assigns probabilities to theories) approaches

* next to come in part II:
— formulate null-hypothesis
— how to calculate the observed (expected) limit with 
and w/o systematic uncertainties
— estimate and interpret the p-value
— explain limits to “outside” wild world



4Adrian Perieanu

hypothesis
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* goal: quantify the agreement between theory model 
and measured data

* what we need before we start quantifying:
— to define a hypothesis (the model)
— setup a list of parameters of the model to be determined
— measure the wanted parameters
— test hypothesis with measurements 

* methods:
— statistical hypothesis test
— 𝛘2 test
— student’s t-test
— Kolmogorov-Smirnov test
— Mann–Whitney U test
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null-hypothesis
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* proposes a general/default position
* can be tested against of an alternative hypothesis
* should be defined with care 
* definitely should be defined before making the 
experiment/analysis

* if data rejects the null-hypothesis than the opposite is true 
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* take a 2 EURO Belgian coin and toss it three times
* let’s say it came head down each time

binomial null-hypothesis test

* null-hypothesis: the coin is fair
one in a million coins is phony

* alternative hypothesis: the coin is phony
one in twenty coins is phony

* estimate the probabilities using bayesian statistics approach

* how often does the coin have to came head down to be phony 
with a 95% CL?
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* take a 2 EURO Belgian coin and toss it three times
* let’s say it came head down each time

binomial null-hypothesis test

* null-hypothesis: the coin is fair
one in a million coins is phony: 10-6 

* alternative hypothesis: the coin is phony
one in twenty coins is phony: 5%

use Bayesian theorem

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Bayes theorem

A quick reminder

Conditional probability P(A|B): The probability of A to occur under the
condition that B has occured.
Bayes theorem:

P(A|B) =
P(B|A) · P(A)

P(B)

The following useful identity follows from the three Kolmogorov axioms:

P(B) =
X

i

P(B|A
i

) · A

i

for a binomial experiment this becomes:
= P(B|A) · P(A) + P(B|!A) · P(!A)

prior probabilitylikelihood

posterior probability
evidence

Limit determination I Christian Autermann 7/ 44

* conditional probability P(A|B): probability of A to occur 
under the condition that B has occurred

posterior probability

prior probabilitylikelihood

evidence
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* take a 2 EURO Belgian coin and toss it three times
* let’s say it came head down each time

binomial null-hypothesis testBayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Bayes statistics

Example (Barlow): Subjective probability
Choose a coin from your pocket and toss it three times: It
comes down head each time. The probability for this to happen
is (1

2)
3 = 1

8 . But could the coin be a double-headed phony
(biased coin)?

P(phony|3 heads) =
P(3 heads|phony)

P(3 heads)
· P(phony)

=
1 · 10�6

0.125 · (1 � 10�6) + 1 · 10�6

= 8 · 10�6

Our subjective prior: One of a million randomly choosen coins is a phony.
And P(3 heads) = P(3 heads|fair) · P(fair) + P(3 heads|phony) · P(phony).

Limit determination I Christian Autermann 8/ 44

Bayes theorem Confidence Levels Confidence Level Belt Confidence Intervals Coverage Exercises

Bayes statistics

Example (Barlow): Subjective probability
Choose a coin from your pocket and toss it three times: It
comes down head each time. The probability for this to happen
is (1

2)
3 = 1

8 . But could the coin be a double-headed phony
(biased coin)?

P(phony|3 heads) =
P(3 heads|phony)

P(3 heads)
· P(phony)

=
1 · 10�6

0.125 · (1 � 10�6) + 1 · 10�6

= 8 · 10�6

Our subjective prior: One of a million randomly choosen coins is a phony.
And P(3 heads) = P(3 heads|fair) · P(fair) + P(3 heads|phony) · P(phony).

Limit determination I Christian Autermann 8/ 44

null-hypothesis:             P (phony/3 heads) = (1*10-6)/[(1/2)3*(1-10-6) + 1*10-6]   = 8*10-6 

alternative-hypothesis: P (phony/3 heads) = (1*0.05)/[(1/2)3*(1-0.05) + 1*0.05] = 0.30  
alternative-hypothesis: P (phony/4 heads) = (1*0.05)/[(1/2)4*(1-0.05) + 1*0.05] = 0.45  
… 
alternative-hypothesis: P (phony/9 heads) = (1*0.05)/[(1/2)9*(1-0.05) + 1*0.05] = 0.96     

* nine times in a row!!!

✓

✘
✘
✘
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hypothesis: in particle physics
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* null-hypothesis: we expect that the observed data follow 
the predictions of the Standard Model (SM)

* from SM: process cross-section

* from experiment: integrated luminosity and selection 
efficiency

* background probability density function: 
from SM and experiment

* test hypothesis: with the test statistics - the event yield of 
your super sensitive selection
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hypothesis: signal, bkg. & data
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* toy example:
— let’s assume we observe after our analysis 7 events in data: d = 7
— SM predicts a background of 4 events:  b = 4
— the theory of our best friend predicts a signal yield of 11 events: s = 11

* null-hypothesis: background only λb = b = 4

* alternative hypothesis: signal & background λs+b = s + b = 15
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event yield
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 = 4bλNull-Hypothesis (background-only):  

Observation d = 7

α

β

 = 15s+bλAlternative hypothesis: 
(signal + background)

* probability (p-value) to reject 
null-hypothesis H0 while H0 is true:

 ∫  f (x |H0 )dx = α < 1 − CLcritical 
 
* probability to reject the                         
alternative hypothesis Ha while Ha is true:

  ∫    f (x |Ha )dx = β < 1 − CLcritical  

* as usual choice: CLcritical = 95%
* estimate for our example: α = ?, β = ?% 

d
∞

∞
d

-

* null-hypothesis: background only λb = b = 4

* alternative hypothesis: signal & background λs+b = s + b = 15

hypothesis: signal, bkg. & data
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event yield
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 = 4bλNull-Hypothesis (background-only):  

Observation d = 7

α

β

 = 15s+bλAlternative hypothesis: 
(signal + background)

* probability (p-value) to reject 
null-hypothesis H0 while H0 is true:

 ∫  f (x |H0 )dx = α < 1 − CLcritical 
 
* probability to reject the                         
alternative hypothesis Ha while Ha is true:

  ∫    f (x |Ha )dx = β < 1 − CLcritical  

* as usual choice: CLcritical = 95%
* in our example: α = 11%, β = 1.8% 

d
∞

∞
d

-

* null-hypothesis: background only λb = b = 4

* alternative hypothesis: signal & background λs+b = s + b = 15

hypothesis: signal, bkg. & data
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hypothesis: type I and II erros
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* let’s regard two mutually exclusive hypotheses that 
are either true or false 
       
* possible outcomes: 

Decisions and Tests Limits CLs Tools Exercises

Type I and Type II Errors
If we regard two mutually exclusive hypotheses that are either true or false

There are four possible outcomes:

Accepting a true hypothesis

Rejecting a wrong hypothesis

Rejecting a true hypothesis (Type I error)

Accepting a wrong hypothesis (Type II error)

If ↵ is the significance of the test,
then Type I errors are bound to occur
less than or equal to ↵:

Z 1

X
Ph(x)dx  ↵ α

x

Hypothesis

Accept Reject

Limit determination II Christian Autermann 13/ 43

Decisions and Tests Limits CLs Tools Exercises

Type I and Type II Errors
If we regard two mutually exclusive hypotheses that are either true or false

There are four possible outcomes:

Accepting a true hypothesis

Rejecting a wrong hypothesis

Rejecting a true hypothesis (Type I error)

Accepting a wrong hypothesis (Type II error)

The probability to mistakenly accept
the hypothesis Ha is �, and 1 � � is

the power of the test:
Z X

�1
Pa(x)dx  �

β

x

Alternative hypothesis

Accept Reject

Limit determination II Christian Autermann 13/ 43

— Accepting a true hypothesis  
— Rejecting a wrong hypothesis

— Rejecting a true hypothesis (type I error)                
— Accepting a wrong hypothesis (type II error) 

* for α, test significance, type I errors 
occur for: 

Decisions and Tests Limits CLs Tools Exercises

Type I and Type II Errors
If we regard two mutually exclusive hypotheses that are either true or false

There are four possible outcomes:

Accepting a true hypothesis

Rejecting a wrong hypothesis

Rejecting a true hypothesis (Type I error)

Accepting a wrong hypothesis (Type II error)

If ↵ is the significance of the test,
then Type I errors are bound to occur
less than or equal to ↵:

Z 1

X
Ph(x)dx  ↵ α

x

Hypothesis

Accept Reject

Limit determination II Christian Autermann 13/ 43

* probability to accept the wrong hypothesis
Ha is β, type II errors occur for: 

Decisions and Tests Limits CLs Tools Exercises

Type I and Type II Errors
If we regard two mutually exclusive hypotheses that are either true or false

There are four possible outcomes:

Accepting a true hypothesis

Rejecting a wrong hypothesis

Rejecting a true hypothesis (Type I error)

Accepting a wrong hypothesis (Type II error)

The probability to mistakenly accept
the hypothesis Ha is �, and 1 � � is

the power of the test:
Z X

�1
Pa(x)dx  �

β

x

Alternative hypothesis

Accept Reject

Limit determination II Christian Autermann 13/ 43
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hypothesis: type I and II erros
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* let’s regard two mutually exclusive hypotheses that 
are either true or false 
       
* possible outcomes: 

Decisions and Tests Limits CLs Tools Exercises

Type I and Type II Errors
If we regard two mutually exclusive hypotheses that are either true or false

There are four possible outcomes:

Accepting a true hypothesis

Rejecting a wrong hypothesis

Rejecting a true hypothesis (Type I error)

Accepting a wrong hypothesis (Type II error)

If ↵ is the significance of the test,
then Type I errors are bound to occur
less than or equal to ↵:

Z 1

X
Ph(x)dx  ↵ α

x

Hypothesis

Accept Reject

Limit determination II Christian Autermann 13/ 43

Decisions and Tests Limits CLs Tools Exercises

Type I and Type II Errors
If we regard two mutually exclusive hypotheses that are either true or false

There are four possible outcomes:

Accepting a true hypothesis

Rejecting a wrong hypothesis

Rejecting a true hypothesis (Type I error)

Accepting a wrong hypothesis (Type II error)

The probability to mistakenly accept
the hypothesis Ha is �, and 1 � � is

the power of the test:
Z X

�1
Pa(x)dx  �

β

x

Alternative hypothesis

Accept Reject

Limit determination II Christian Autermann 13/ 43

— Accepting a true hypothesis  
— Rejecting a wrong hypothesis

— Rejecting a true hypothesis (type I error)                
— Accepting a wrong hypothesis (type II error) 

* α and β should be as small as possible
* a tradeoff between minimising α and β 
* importance of α or β depends on topic

in practice: 
— b-tagging: b-jet and light-jet hypothesis
— tau reconstruction: real and fake candidates
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hypothesis: life decisions
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* let’s assume that a ”bird flu” symptom is always fever with 39.7 °C 
with a Gaussian spread of 0.2 °C 
* patients with normal flu only have temperature 39.2 ± 0.2 °C and 
are 100 times more likely in Europe (so far)

— where to decide (fever-threshold for treating a patient ambulant or 
stationary) if we want a test-power of 1 − β = 90%? 
— where to decide (fever-threshold for treating a patient ambulant or 
stationary) if we want a test-significance of α = 5%? 

Decisions and Tests Limits CLs Tools Exercises

Example: Cow-fever epidemic
Let’s assume the really dangerous „cow-fever” disease results always in a
fever of 39.7 C with a Gaussian spread of 0.2 C. Patients with normal flu only
have temperature 39.2 ± 0.2 C and are 100 times more likely.

Where to cut (fever-threshold for treating a patient ambulant or stationary) if
we want a test-power of 1 � � = 90%?

αβ

x

Hypothesis Alternative hypothesis

Accept Reject

Limit determination II Christian Autermann 14/ 43

— how many patients with “bird flu“ are rejected 
in the 2 cases?

— estimate how many of the patients will have 
normal flu

usually when I have flu I do not go to hospital… 
higher chances to get something more serious, 

but I am curios what your tests are saying
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hypothesis: life decisions
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Decisions and Tests Limits CLs Tools Exercises

Example: Cow-fever epidemic
Let’s assume the really dangerous „cow-fever” disease results always in a
fever of 39.7 C with a Gaussian spread of 0.2 C. Patients with normal flu only
have temperature 39.2 ± 0.2 C and are 100 times more likely.

Where to cut (fever-threshold for treating a patient ambulant or stationary) if
we want a test-power of 1 � � = 90%?

αβ

x

Hypothesis Alternative hypothesis

Accept Reject

Limit determination II Christian Autermann 14/ 43

— accepting β = 10% of normal flu patients, 
leads to the rejection of ~15% bird flu fever 
patients (Type I error) 

> 92% beds are occupied by normal flu patients

* let’s assume that a ”bird flu” symptom is always fever with 39.7 °C 
with a Gaussian spread of 0.2 °C 
* patients with normal flu only have temperature 39.2 ± 0.2 °C and 
are 100 times more likely in Europe (so far)

— where to decide (fever-threshold for treating a patient ambulant or 
stationary) if we want a test-power of 1 − β = 90%? 
— where to decide (fever-threshold for treating a patient ambulant or 
stationary) if we want a test-significance of α = 5%? 

usually when I have flu I do not go to hospital… 
higher chances to get something more serious, 

but I am curios what your tests are saying
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hypothesis: life decisions
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Decisions and Tests Limits CLs Tools Exercises

Example: Cow-fever epidemic
Let’s assume the really dangerous „cow-fever” disease results always in a
fever of 39.7 C with a Gaussian spread of 0.2 C. Patients with normal flu only
have temperature 39.2 ± 0.2 C and are 100 times more likely.

Where to cut (fever-threshold for treating a patient ambulant or stationary) if
we want a test-power of 1 � � = 90%?

αβ

x

Hypothesis Alternative hypothesis

Accept Reject

Limit determination II Christian Autermann 14/ 43

— accepting 95% of bird flu fever patients 
(significance α = 5%) by cutting at 39.37 C leads 
to a Type II error (accepted normal flu patients) 
of β ≈ 80%
> 98.8% beds are occupied by normal flu 
patients

* let’s assume that a ”bird flu” symptom is always fever with 39.7 °C 
with a Gaussian spread of 0.2 °C 
* patients with normal flu only have temperature 39.2 ± 0.2 °C and 
are 100 times more likely in Europe (so far)

— where to decide (fever-threshold for treating a patient ambulant or 
stationary) if we want a test-power of 1 − β = 90%? 
— where to decide (fever-threshold for treating a patient ambulant or 
stationary) if we want a test-significance of α = 5%? 

usually when I have flu I do not go to hospital… 
higher chances to get something more serious, 

but I am curios what your tests are saying
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hypothesis: “best” test
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* H0 and Ha hypothesis  have to be: 
— explicitly defined 
— simple  

* acceptance region giving the highest power 1 − β for a given 
significance α is the region comprised by the above equation 
* in the one-dimensional case, a cut on x for a specific α, e.g., b-tag 
efficiency, determines β, therefore the purity

* Neyman-Pearson lemma: 
— when performing a hypothesis test between two hypotheses H0 and Ha, 
then the likelihood-ratio test which rejects Ha in favour of H0 when 

                                                                        for a given significance α 

is the most powerful test-statistic to minimise both α and β

LH0(x)
LHa(x)

≥ Q0
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what is a likelihood?
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* for a binomial distribution:

* probability question:
 "if an event has probability p = 0.6, and we have n = 10 trials, what 
is the probability of the event occurring x = 3 times"? 

* statistical question:
“in n = 10 trials I observed the event occur x = 3 times, so what is a 
good estimator of the success probability p?”

— same function, different point of view: now the data (x) are fixed, 
and we view the expression in terms of the parameter (p), and use 
it to obtain an estimator of the parameter (success probability p)

* likelihood function for binomial data as:

— same expression now viewed as a function of p instead of x 
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is time for limits
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∞-
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limits
— finally  —
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* observed limit on the signal event yield at CLs+b = 95% is 
defined as the s, for which: 

  ∫     Q(x |Ha )dx = β ≤ 1 − CLs+b 

* a point beyond which it is not possible to go
* an amount or number that is the highest or lowest 
allowed

remember

∞
d

-
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event yield
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 = 4bλNull-Hypothesis (background-only):  

Observation d = 7

α

β

 = 15s+bλAlternative hypothesis: 
(signal + background)

* observed limit on the signal event yield at CLs+b = 95% is 
defined as the s, for which: 

  ∫     Q(x |Ha )dx = β ≤ 1 − CLs+b ∞
d

-

* for our toy example:
— events in data: d = 7
— background events:  b = 4

* Q(x|Ha): Poisson probability density 
function with a mean λ = s + b

* calculate the limit on s + b at 95% CL

limits
— hands on  —
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∞
d

-

* for our toy example:
— events in data: d = 7
— background events:  b = 4
— limit on s + b at 95% CL: s + b = ?

limits
— hands on  —

Decisions and Tests Limits CLs Tools Exercises

Limit definition

An observed limit on the signal event-yield at CLs+b = 95% can be
defined as the s, for which

� =

dobsX

d=0

es+b(s + b)d

d!

 1 � CLs+b.

Example:

background expectation:

b = 4

observed data:

d = 7

limit on s + b at 95% C.L.:

s + b = 12.5 event yield
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 = 4bλNull-Hypothesis (background-only):  

Observation d = 7

α

β

 = 15s+bλAlternative hypothesis: 
(signal + background)

Limit determination II Christian Autermann 24/ 43

e-(s+b)
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∞
d

-

* for our toy example:
— events in data: d = 7
— background events:  b = 4
— limit on s + b at 95% CL: s + b = 12.5

limits
— hands on  —

expected yield < d >
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d = 7

signal yield s = 8.55

CLs+b = 0.0493565
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Decisions and Tests Limits CLs Tools Exercises

Limit definition

An observed limit on the signal event-yield at CLs+b = 95% can be
defined as the s, for which

� =

dobsX

d=0

es+b(s + b)d

d!

 1 � CLs+b.

Example:

background expectation:

b = 4

observed data:

d = 7

limit on s + b at 95% C.L.:

s + b = 12.5 event yield
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Observation d = 7
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 = 15s+bλAlternative hypothesis: 
(signal + background)

Limit determination II Christian Autermann 24/ 43

e-(s+b)
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limits
— few extra points —
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* test-statistic Q(x|Ha) was in the example a Poisson probability density 
function modelling the under Ha hypothesis expected statistical uncertainties of 
the measurement (the data)

* test-statistics Q(x|Ha) may incorporate also systematical uncertainties on the 
background σb and on the signal estimation σs, e.g. ,
Q(x|H1) = Poisson(λs+b) ⊗ Gauss(b, σb) ⊗ Gauss(s, σs) 

* Q(x|H0) and Q(x|Ha) may be defined by a likelihood that distinguishes both 
hypotheses 

* agreement of the measured data with the background-only expectation, i.e. 
the null-hypothesis H0, is not directly considered

* limit on the observed signal event yield does not depend on the expected 
signal event yield
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more than one channel
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* because likelihood functions are multiplicative, multiple statistically 
exclusive channels, i.e. from different exclusive selections or 
histogram bins, can be combined: 

where the Lb(x) are the test-statistics of the individual single-bin 
counting experiments. 
* systematic uncertainties affecting the estimation of the background 
or signal prediction σib and σis may be correlated among different 
bins - this needs to be considered

Decisions and Tests Limits CLs Tools Exercises

Multi-channel limits

Since likelihood functions are multiplicative, multiple statistically
exclusive channels i.e. from different exclusive selections or histogram
bins can be easily combined:

L(x) =
binsY

b=1

Lb(x)

where the Lb(x) are the test-statistics of the individual single-bin
counting experiments.

Systematic uncertainties affecting the estimation of the background or
signal prediction �b

i and �s
i may be correlated among different bins. This

can be considered when drawing pseudo-data from the hypotheses
test-statistics.

Limit determination II Christian Autermann 21/ 43
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more than one channel
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18 6 Summary
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Figure 10: (left) Expected and (right) observed 95% CL limits for all individual channels and
their combination. The horizontal dashed line at unity indicates the SM expectation.

200 GeV the ZZ ! 2`2`0 channel becomes dominant, since low background contributions in
this channel allow to keep high efficiency of the selection requirements. Starting at approx-
imately 400 GeV the ZZ ! 2`2n starts to contribute significantly. The branching fraction of
ZZ ! 2`2n is higher than ZZ ! 2`2`0, and the major background contributions decrease with
mH increase, thus allowing for selection requirements to be more and more effective in the 2`2n
channel. The combined observed and expected limits agree well within uncertainties as shown
in Fig. 11.

The previously expected exclusion range at 95% CL, 118–543 GeV, is extended up to 700 GeV.
Previously published results exclude at 95% CL the SM-like Higgs boson in the range 127 <
mH < 600 GeV [13]. The results of this analysis extend the upper exclusion limit to mH =
710 GeV.

6 Summary

Results are presented from searches for a standard-model-like Higgs boson in H ! WW and
H ! ZZ decay channels, for Higgs boson mass hypotheses in the range 145 < mH < 1000 GeV.
The analysis uses proton-proton collision data recorded by the CMS detector at the LHC, corre-
sponding to integrated luminosities of up to 5.1 fb�1 at

p
s = 7 TeV and up to 5.3 fb�1 at

p
s =

8 TeV. The final states analysed include two leptons and two neutrinos, H ! WW ! `n`n and
H ! ZZ ! 2`2n, a lepton, a neutrino, and two jets, H ! WW ! `nqq, two leptons and two
jets, H ! ZZ ! 2`2q, and four leptons, H ! ZZ ! 2`2`0, where ` = e or µ and `0 = e or µ,
or t. The results are consistent with standard model background expectations. The combined
upper limits at 95% confidence level on products of the cross section and branching fractions
exclude a standard-model-like Higgs boson in the range 145 < mH < 710 GeV, thus extending
the mass region excluded by CMS from 127–600 GeV up to 710 GeV.
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* one has to make sure that:
— different exclusive selections are used for the considered channels
— correlations of the systematic uncertainties need to be taken into account
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expected limits and uncertainties
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* expected limits are defined as the 50% quantile, i.e. the median of the 
distribution of observed limits for a number of pseudo-experiments 

* pseudo-observations are drawn according to the background-only null-
hypothesis test-statistic H0. 

* the ±1σ uncertainties on the expected limit are equivalent to 16% and 
84% quantiles

0 quartile = 0 quantile = 0 percentile 
1 quartile = 0.25 quantile = 25 percentile 
2 quartile = 0.5 quantile = 50 percentile (median) 
3 quartile = 0.75 quantile = 75 percentile 
4 quartile = 1 quantile = 100 percentile
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CLs: modified frequentist procedure

Terascale Statistics School 17th February ’16

* CLs is a frequentist like statistical analysis which avoids 
excluding or discovering signals, that the analysis is not 
really sensitive to

* null-hypothesis is that there is no signal 
* alternate hypothesis that signal exists 

* CLs gives an approximation to the confidence in the signal 
hypothesis one might have obtained if the experiment had 
been performed in the complete absence of background

* CLs  tries to reduce the dependency on the uncertainty due 
to the background

Decisions and Tests Limits CLs Tools Exercises

Introducing CLs method

The modified frequentist re-normalization is simply:

CLs =
CLs+b

CLb

CLs gives an approximation to the confidence in the signal hypothesis one
might have obtained if the experiment had been performed in the complete
absence of background. CLs tries to reduce the dependency on the
uncertainty due to the background.

Strictly, CLs is not a confidence, but a ratio of confidences.

Consequentially, the false exclusion rate is generally less than the
nominal rate CL,

it increases the „coverage” of the analysis,

it gives a consistent performance compared to CLs+b at small expected
signal but different background rates.
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* for our toy example:
— events in data: d = 7
— background events:  b = 4

CLs: single counting channel/experiment
— hands on  —

Decisions and Tests Limits CLs Tools Exercises

CLs: Single counting experiment
For a counting experiment with a single channel, CLs takes the following form:

CLs =
CLs+b

CLb

=
Poisson(s + b, dobs)

Poisson(b, dobs)

where s + b (or b) come from the Poisson distributions of number of events
for the signal+background (background-only) hypotheses, and dobs is the
number of events observed.

The modified frequentist signal exclusion confidence becomes:

CL = 1 �
Pdobs

n=0
e�(b+s)(b+s)n

n!Pdobs
n=0

e�bbn

n!

Which is (accidentally!) similar to the result we obtained by computing the
constrained Bayesian integral with a flat prior.
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* calculate the limit on s + b at 95% CL 
with CLs
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Decisions and Tests Limits CLs Tools Exercises

CLs: Single counting experiment
For a counting experiment with a single channel, CLs takes the following form:
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CLb
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for the signal+background (background-only) hypotheses, and dobs is the
number of events observed.

The modified frequentist signal exclusion confidence becomes:
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n=0

e�bbn
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Which is (accidentally!) similar to the result we obtained by computing the
constrained Bayesian integral with a flat prior.
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* calculate the limit on s + b at 95% CL 
with CLs

CLs+b =
e-(s+b)

CLs: single counting channel/experiment
— hands on  —
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* limit on s + b at 95% CL: s + b = 12.5

Decisions and Tests Limits CLs Tools Exercises

CLs: Single counting experiment
For a counting experiment with a single channel, CLs takes the following form:
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Decisions and Tests Limits CLs Tools Exercises

Limit definition

An observed limit on the signal event-yield at CLs+b = 95% can be
defined as the s, for which
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CLs+b =
e-(s+b)

CLs: single counting channel/experiment
— hands on  —
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CLs: more than one channel

* with a likelihood-ratio as test-statistics compute CLs+b and CLb: 

* expected signal s depends on a model parameter, e.g., the Higgs mass 
mH 

* likelihoods are multiplicative, different exclusive N channels can be 
combined: 

* if di data events are observed, then this leads to a value Xobs of the test-
statistics
* CLs+b is then given by:

where dXs+b/dx is the probability density function distribution of the test-
statistics X for signal+background experiments. 

Decisions and Tests Limits CLs Tools Exercises

CLs: Likelihood-ratio test-statistic for a counting experiment

Using a likelihood-ratio as test-statistic to compute CLs+b and CLb:

X =
Poisson(s(mH) + b, dobs)

Poisson(b, dobs)

Where the expected signal s depends e.g. on a model parameter (e.g. the
Higgs mass mH ). Likelihoods are multiplicative, different N channels can be
combined:

X (mh) =
NY

i

Xi(mh)

If di data events are observed, then this leads to a value Xobs of the
test-statistics. CLs+b is then given by:

CLs+b = Ps+b(X  Xobs)

=

Z Xobs

�1

dXs+b

dx
dx

where dXs+b/dx is the p.d.f. distribution of the test-statistics X for
signal+background experiments.
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Decisions and Tests Limits CLs Tools Exercises

CLs: Likelihood-ratio test-statistic for a counting experiment
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Decisions and Tests Limits CLs Tools Exercises

CLs: Likelihood-ratio test-statistic for a counting experiment

Using a likelihood-ratio as test-statistic to compute CLs+b and CLb:
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Where the expected signal s depends e.g. on a model parameter (e.g. the
Higgs mass mH ). Likelihoods are multiplicative, different N channels can be
combined:

X (mh) =
NY

i

Xi(mh)
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p-Value

Decisions and Tests Limits CLs Tools Exercises

LHC Higgs limits (2011, 7 TeV, 5 fb�1)
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elsewhere effect correction
Interpretation requires look-
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from “former times”

* once in a while it happens that you see something coming out 
of the two sigmas band: what do you do?
— calculate p-Value
— p-Value helps you determine the significance of your results
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* p-Value ≤ 0.05: strong evidence against the null-hypothesis, 
so you reject the null hypothesis

* p-Value > 0.05: weak evidence against the null hypothesis, 
so you fail to reject the null hypothesis

— always report the p-value

* classical example: pizza delivery!!!
— to attract clients a pizzeria promote: delivery times in less than 30’
* you, the hungry particle physicist: 
— null-hypothesis H0: mean delivery time is 30 minutes max
— alternative-hypothesis Ha: mean delivery time is greater than 30’
* you randomly sample some delivery times and, after you eat, run the data 
through the hypothesis test: p = 0.001
— how shall we interpret this?

p-Value in normal life
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* classical example: pizza delivery!!!
— to attract clients a pizzeria promote: delivery times in less than 30’
* you, the hungry particle physicist: 
— null-hypothesis H0: mean delivery time is 30 minutes max
— alternative-hypothesis Ha: mean delivery time is greater than 30’
* you randomly sample some delivery times and, after you eat, run the data 
through the hypothesis test: p = 0.001
— how shall we interpret this?

p-Value in normal life

* there is a probability of 0.001 (of 0.1%) that you will 
wrongly reject the pizza place’s claim that their delivery 
time is 30’ max

ahhhaaa… so they are wrong, but 
did the right thing… during your sampling 
you became their client… good to know 
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p-Value ≤ 0.05
— how many sigmas? —

* estimate how many sigmas correspond to for 
p-Value ≤ 0.05 

* write a ROOT  macro and estimate the p-Value 
for 1𝛔, 2𝛔, 3𝛔, 4𝛔 and 5𝛔 

(1-CL)/2
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p-Value ≤ 0.05
— how many sigmas? —

* estimate how many sigmas correspond to for 
p-Value ≤ 0.05 

* write a ROOT  macro and estimate the p-Value 
for 1𝛔, 2𝛔, 3𝛔, 4𝛔 and 5𝛔 

(1-CL)/2

𝝰 = (1-CL)

* in particle physics we claim a discovery when we see 
“a signal with five standard deviations”
— for 5 𝛔 the corresponding p-Value = 5.7 x 10-7

in normal life what is above  
1.96 𝛔 is “significant”

http://pdg.lbl.gov/2013/reviews/rpp2013-rev-statistics.pdf

http://pdg.lbl.gov/2013/reviews/rpp2013-rev-statistics.pdf
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* 
*
*
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to take home with you
— instead of summary —
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what about a little 
homework?

Decisions and Tests Limits CLs Tools Exercises

Task 4: Frequentist vs Bayesian

After background subtraction, an experiment “observes” a yield of �2 ± 1 particles.
The uncertainty is assumed to be Gaussian. Determine an 90% upper limit µlim for the
expectation value of the number of events using the

Frequentist approach: taking the result at face value
Instruction: determine the 90% upper limit from

CL =

1Z

µlim

dx 0 1
2⇡

e
�(x0+2)2

2 = 10%.

Hint: The solution can be read off from the CL curves for a Gaussian.
Bayesian approach: the result has to be positive
Instruction: determine the 90% upper limit from

CL =

1R

µlim

dx 0 1
2⇡ e

�(x0+2)2
2 ✓(x 0)

1R

0
dx 0 1

2⇡ e
�(x0+2)2

2

= 10%.

Hint: The ✓(x 0) can be ignored since only positive values of µlim will solve the
equations. The solutions to both integrals can be read off from the CL curves for
a Gaussian.
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www.desy.de/~sschmitt/LimitStatSchool2013and a useful link in case  
you have more time

http://www.desy.de/~sschmitt/LimitStatSchool2013
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before the end…
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backup
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