



# **Calculation of Exclusion Limits**

17th February 2016

#### **Adrian Perieanu**



# where are you? still here?

#### **Terascale Statistics School 2016**

#### 15-19 February 2016 DESY Hamburg

Europe/Berlin timezone

| Overview                  | Mon 15/02 Tue 16/02 Wed 17/02 Thu 18/02 Fri 19/02 All days |                        |                                                                |                                         |  |  |  |  |
|---------------------------|------------------------------------------------------------|------------------------|----------------------------------------------------------------|-----------------------------------------|--|--|--|--|
| Timetable                 |                                                            |                        | Print PDF Full screen                                          | Detailed view Filter                    |  |  |  |  |
| Registration              |                                                            |                        |                                                                |                                         |  |  |  |  |
| Registration Form         | 09:00                                                      | Limit setting          | Limit setting tutorial                                         | PERIEANU, Adrian                        |  |  |  |  |
| List of registrants       |                                                            |                        | View details   Export +                                        |                                         |  |  |  |  |
| Travel directions to DESY | 10:00                                                      | SR 4a/b, DESY Hamburg  | 10:50 - 12:30                                                  | 09:00 - 10:30                           |  |  |  |  |
| Accomodation              |                                                            | Coffee break           | Room: SR 4a/b                                                  |                                         |  |  |  |  |
|                           | HER                                                        | SR 4a/b, DESY Hamburg  | Location: DESY Hamburg<br>Presenter(s): PERIEANU, Adrian (CMS) | 10:30 - 10:50                           |  |  |  |  |
|                           | 11:00                                                      | Limit setting tutorial |                                                                | PERIEANU, Adrian                        |  |  |  |  |
|                           |                                                            |                        | available for (                                                | (forgotten) questions:                  |  |  |  |  |
|                           | 12:00                                                      | SR 4a/b, DESY Hamburg  | <u>adrian.pe</u>                                               | <u>erieanu@cern.ch</u><br>10:50 - 12:30 |  |  |  |  |
|                           |                                                            | Lunch break            |                                                                |                                         |  |  |  |  |
|                           | 13:00                                                      |                        |                                                                |                                         |  |  |  |  |
|                           |                                                            | SR 4a/b, DESY Hamburg  |                                                                | 12:30 - 14:00                           |  |  |  |  |

Search

# reminder – part I –

\* now you are sure that you can read a limit plot

\* you know how a **confidence interval** is defined (singleand double-sided)

\* you learned about the **confidence belt** 

\* and you know the major difference between the **frequentist** (give for each theory the probability to be observed) and bayesian (assigns probabilities to theories) approaches

#### \* next to come in part II:

- formulate null-hypothesis
- how to calculate the observed (expected) limit with
- and w/o systematic uncertainties
- estimate and interpret the p-value
- explain limits to "outside" wild world

# hypothesis

\* goal: quantify the agreement between theory model and measured data

#### \* what we need before we start quantifying:

- to define a hypothesis (the model)
- setup a list of parameters of the model to be determined
- measure the wanted parameters
- test hypothesis with measurements

#### \* methods:

- statistical hypothesis test
- $-\chi^2$  test
- student's t-test
- Kolmogorov-Smirnov test
- Mann-Whitney U test

## null-hypothesis

\* proposes a general/default position
\* can be tested against of an alternative hypothesis
\* should be defined with care
\* definitely should be defined before making the experiment/analysis

\* if data rejects the null-hypothesis than the opposite is true

# binomial null-hypothesis test



\* take a 2 EURO Belgian coin and toss it three times
\* let's say it came head down each time



\* null-hypothesis: the coin is fair one in a million coins is phony

\* alternative hypothesis: the coin is phony one in twenty coins is phony

\* estimate the probabilities using bayesian statistics approach

\* how often does the coin have to came head down to be phony with a 95% CL?

# binomial null-hypothesis test



\* take a 2 EURO Belgian coin and toss it three times\* let's say it came head down each time



\* null-hypothesis: the coin is fair one in a million coins is phony: 10<sup>-6</sup>

\* alternative hypothesis: the coin is phony one in twenty coins is phony: 5%

use Bayesian theorem

\* conditional probability *P*(*A*|*B*): probability of *A* to occur under the condition that *B* has occurred



# binomial null-hypothesis test



\* take a 2 EURO Belgian coin and toss it three times\* let's say it came head down each time



$$P(\text{phony}|3 \text{ heads}) = \frac{P(3 \text{ heads}|\text{phony})}{P(3 \text{ heads})} \cdot P(\text{phony})$$

 $P(3 \text{ heads}) = P(3 \text{ heads}|\text{fair}) \cdot P(\text{fair}) + P(3 \text{ heads}|\text{phony}) \cdot P(\text{phony})$ 

null-hypothesis: $P(phony/3 heads) = (1*10^{-6})/[(1/2)^{3*}(1-10^{-6}) + 1*10^{-6}] = 8*10^{-6}$ × alternative-hypothesis: $P(phony/3 heads) = (1*0.05)/[(1/2)^{3*}(1-0.05) + 1*0.05] = 0.30$ × alternative-hypothesis: $P(phony/4 heads) = (1*0.05)/[(1/2)^{4*}(1-0.05) + 1*0.05] = 0.45$ × ... $\checkmark$  alternative-hypothesis: $P(phony/9 heads) = (1*0.05)/[(1/2)^{9*}(1-0.05) + 1*0.05] = 0.96$ 

nine times in a row!!!

## hypothesis: in particle physics

\* null-hypothesis: we expect that the observed data follow the predictions of the Standard Model (SM)

\* from SM: process cross-section

\* from experiment: integrated luminosity and selection efficiency

\* background probability density function: from SM and experiment

\* **test hypothesis:** with the test statistics - the event yield of your super sensitive selection

## hypothesis: signal, bkg. & data

#### \* toy example:

- let's assume we observe after our analysis 7 events in data: d = 7
- SM predicts a background of 4 events: b = 4
- the theory of our best friend **predicts** a **signal** yield of 11 events: **s = 11**

\* null-hypothesis: background only  $\lambda_b = b = 4$ 

\* alternative hypothesis: signal & background  $\lambda_{s+b} = s + b = 15$ 

## hypothesis: signal, bkg. & data



\* null-hypothesis: background only  $\lambda_b = b = 4$ 

\* alternative hypothesis: signal & background  $\lambda_{s+b} = s + b = 15$ 

\* probability (p-value) to reject null-hypothesis H<sub>0</sub> while H<sub>0</sub> is true:  $\int_{d}^{\infty} f(x | H_0) dx = \alpha < 1 - CL_{critical}$ \* probability to reject the alternative hypothesis H<sub>a</sub> while H<sub>a</sub> is true:  $\int_{-\infty}^{d} f(x | H_a) dx = \beta < 1 - CL_{critical}$ \* as usual choice:  $CL_{critical} = 95\%$ \* estimate for our example:  $\alpha = ?, \beta = ?\%$ 



## hypothesis: signal, bkg. & data



\* null-hypothesis: background only  $\lambda_b = b = 4$ 

\* alternative hypothesis: signal & background  $\lambda_{s+b} = s + b = 15$ 

\* probability (p-value) to reject null-hypothesis H<sub>0</sub> while H<sub>0</sub> is true:  $\int_{d}^{\infty} f(x | H_0) dx = \alpha < 1 - CL_{critical}$ \* probability to reject the alternative hypothesis H<sub>a</sub> while H<sub>a</sub> is true:  $\int_{-\infty}^{d} f(x | H_a) dx = \beta < 1 - CL_{critical}$ \* as usual choice:  $CL_{critical} = 95\%$ \* in our example:  $\alpha = 11\%$ ,  $\beta = 1.8\%$ 



# hypothesis: type I and II erros

\* let's regard two mutually exclusive hypotheses that are either true or false

\* possible outcomes:

Accepting a true hypothesis
Rejecting a wrong hypothesis

Rejecting a true hypothesis (type I error)
 Accepting a wrong hypothesis (type II error)

\* for  $\alpha$ , test significance, type I errors occur for:  $\int_{x}^{\infty} P_{h}(x) dx \leq \alpha$ 

\* probability to accept the wrong hypothesis  $H_a$  is  $\beta$ , type II errors occur for:

$$\int_{-\infty}^{X} P_a(x) dx \leq \beta$$



# hypothesis: type I and II erros

\* let's regard two mutually exclusive hypotheses that are either true or false

\* possible outcomes:

Accepting a true hypothesis
Rejecting a wrong hypothesis

Rejecting a true hypothesis (type I error)
 Accepting a wrong hypothesis (type II error)

\* α and β should be as small as possible
\* a tradeoff between minimising α and β
\* importance of α or β depends on topic

#### in practice:

- b-tagging: b-jet and light-jet hypothesis
- tau reconstruction: real and fake candidates



**x** Reject

Accept

# hypothesis: life decisions



\* let's assume that a "bird flu" symptom is always fever with 39.7 °C with a Gaussian spread of 0.2 °C \* patients with normal flu only have temperature  $39.2 \pm 0.2$  °C and are 100 times more likely in Europe (so far)

- where to decide (fever-threshold for treating a patient ambulant or stationary) if we want a **test-power of 1 – \beta = 90%?** 

- where to decide (fever-threshold for treating a patient ambulant or stationary) if we want a **test-significance of a = 5\%**?

— how many patients with "bird flu" are rejected in the 2 cases?

estimate how many of the patients will have normal flu

usually when I have flu I do not go to hospital... higher chances to get something more serious, but I am curios what your tests are saying



# hypothesis: life decisions



\* let's assume that a "bird flu" symptom is always fever with 39.7 °C with a Gaussian spread of 0.2 °C \* patients with normal flu only have temperature  $39.2 \pm 0.2$  °C and are 100 times more likely in Europe (so far)

- where to decide (fever-threshold for treating a patient ambulant or stationary) if we want a **test-power of 1 – \beta = 90%?** 

- where to decide (fever-threshold for treating a patient ambulant or stationary) if we want a **test-significance of a = 5\%**?

- accepting  $\beta = 10\%$  of normal flu patients, leads to the rejection of ~15% bird flu fever patients (Type I error)

> 92% beds are occupied by normal flu patients

usually when I have flu I do not go to hospital... higher chances to get something more serious, but I am curios what your tests are saying



# hypothesis: life decisions



\* let's assume that a "bird flu" symptom is always fever with 39.7 °C with a Gaussian spread of 0.2 °C \* patients with normal flu only have temperature  $39.2 \pm 0.2$  °C and are 100 times more likely in Europe (so far)

- where to decide (fever-threshold for treating a patient ambulant or stationary) if we want a **test-power of 1 – \beta = 90%?** 

— where to decide (fever-threshold for treating a patient ambulant or stationary) if we want a **test-significance of a = 5%**?

accepting 95% of bird flu fever patients (significance a = 5%) by cutting at 39.37 C leads to a Type II error (accepted normal flu patients) of β ≈ 80%
> 98.8% beds are occupied by normal flu patients

> usually when I have flu I do not go to hospital... higher chances to get something more serious, but I am curios what your tests are saying



# hypothesis: "best" test

#### \* Neyman-Pearson lemma:

— when performing a hypothesis test between two hypotheses  $H_0$  and  $H_a$ , then the likelihood-ratio test which rejects  $H_a$  in favour of  $H_0$  when

$$\frac{L_{H_0}(x)}{L_{H_a}(x)} \ge 0$$

for a given significance a

is the most powerful test-statistic to minimise both  $\alpha$  and  $\beta$ 

- \*  $H_0$  and  $H_a$  hypothesis have to be:
- explicitly defined
- simple

\* acceptance region giving the highest power 1 –  $\beta$  for a given significance  $\alpha$  is the region comprised by the above equation

\* in the one-dimensional case, a cut on x for a specific  $\alpha$ , e.g., b-tag efficiency, determines  $\beta$ , therefore the purity

## what is a likelihood?

\* for a binomial distribution:

$$P(x|n,p) = inom{n}{x} p^x (1-p)^{(n-x)}$$

\* probability question:

"if an event has probability p = 0.6, and we have n = 10 trials, what is the probability of the event occurring x = 3 times"?

\* statistical question:

"in n = 10 trials I observed the event occur x = 3 times, so what is a good estimator of the success probability p?"

 same function, different point of view: now the data (x) are fixed, and we view the expression in terms of the parameter (p), and use it to obtain an estimator of the parameter (success probability p)

\* likelihood function for binomial data as:

$$L(p|n,x) = {n \choose x} p^x (1-p)^{(n-x)}$$

same expression now viewed as a function of p instead of x

# is time for limits



remember

\* a point beyond which it is not possible to go
 \* an amount or number that is the highest or lowest allowed

\* observed limit on the signal event yield at  $CL_{s+b} = 95\%$  is defined as the *s*, for which:  $\int_{-\infty}^{d} Q(x \ IH_a) dx = \beta \le 1 - CL_{s+b}$ 

### **limits** – hands on –



\* **observed limit** on the signal event yield at  $CL_{s+b} = 95\%$  is defined as the *s*, for which:  $\int_{-\infty}^{d} Q(x \ IH_a) dx = \beta \le 1 - CL_{s+b}$ 

\* for our toy example:
– events in data: d = 7

— background events: b = 4

\*  $Q(x|H_a)$ : Poisson probability density function with a mean  $\lambda = s + b$ 

\* calculate the limit on s + b at 95% CL







#### \* for our toy example:

- events in data: d = 7
- background events: b = 4
- limit on s + b at 95% CL: s + b = ?

$$eta = \sum_{d=0}^{d_{\mathrm{obs}}} rac{e^{-(s+b)}(s+b)^d}{d!}$$







#### \* for our toy example:

- events in data: d = 7
- background events: b = 4
- limit on s + b at 95% CL: s + b = 12.5

$$eta \ = \ \sum_{d=0}^{d_{ ext{obs}}} rac{e^{-(s+b)}(s+b)^d}{d!}$$



### **limits** – few extra points –

\* test-statistic  $Q(x|H_a)$  was in the example a Poisson probability density function modelling the under  $H_a$  hypothesis expected statistical uncertainties of the measurement (the data)

\* test-statistics  $Q(x|H_a)$  may incorporate also systematical uncertainties on the background  $\sigma_b$  and on the signal estimation  $\sigma_s$ , e.g.,

 $Q(x|H1) = Poisson(\lambda s+b) \otimes Gauss(b, \sigma b) \otimes Gauss(s, \sigma s)$ 

\*  $Q(x|H_0)$  and  $Q(x|H_a)$  may be defined by a likelihood that distinguishes both hypotheses

\* agreement of the measured data with the background-only expectation, i.e. the null-hypothesis *H*<sub>0</sub>, is not directly considered

\* limit on the observed signal event yield does not depend on the expected signal event yield

### more than one channel

\* because likelihood functions are multiplicative, multiple statistically exclusive channels, i.e. from different exclusive selections or histogram bins, can be combined:

$$L(x) = \prod_{b=1}^{\text{bins}} L_b(x)$$

where the  $L_b(x)$  are the test-statistics of the individual single-bin counting experiments.

\* systematic uncertainties affecting the estimation of the background or signal prediction  $\sigma_i^b$  and  $\sigma_i^s$  may be correlated among different bins - this needs to be considered

### more than one channel



Eur. Phys. J. C 73 (2013) 2469 arXiv:1304.0213

\* one has to make sure that:

different exclusive selections are used for the considered channels

correlations of the systematic uncertainties need to be taken into account

## expected limits and uncertainties

\* expected limits are defined as the 50% quantile, i.e. the median of the distribution of observed limits for a number of pseudo-experiments

\* pseudo-observations are drawn according to the background-only null-hypothesis test-statistic  $H_0$ .

\* the  $\pm 1\sigma$  uncertainties on the expected limit are equivalent to 16% and 84% quantiles

0 quartile = 0 quantile = 0 percentile 1 quartile = 0.25 quantile = 25 percentile 2 quartile = 0.5 quantile = 50 percentile (median) 3 quartile = 0.75 quantile = 75 percentile 4 quartile = 1 quantile = 100 percentile

## CL<sub>s</sub>: modified frequentist procedure

$$CL_s = rac{CL_{s+b}}{CL_b}$$

\* CL<sub>s</sub> is a frequentist like statistical analysis which avoids excluding or discovering signals, that the analysis is not really sensitive to

\* null-hypothesis is that there is no signal

\* alternate hypothesis that signal exists

\* CL<sub>s</sub> gives an approximation to the confidence in the signal hypothesis one might have obtained if the experiment had been performed in the complete absence of background

\* CL<sub>s</sub> tries to reduce the dependency on the uncertainty due to the background

### CL<sub>s</sub>: single counting channel/experiment — hands on —



\* for our toy example:

- events in data: d = 7
- background events: b = 4



### CL<sub>s</sub>: single counting channel/experiment — hands on —



\* for our toy example:

- events in **data**: **d** = 7
- background events: b = 4

$$CL_{s+b} = \sum_{d=0}^{d_{obs}} \frac{e^{-(s+b)}(s+b)^d}{d!}$$



### CL<sub>s</sub>: single counting channel/experiment — hands on —



\* for our toy example:

- events in **data**: **d** = 7
- background events: b = 4

arbitrary

$$CL_{s+b} = \sum_{d=0}^{d_{obs}} \frac{e^{-(s+b)}(s+b)^d}{d!}$$

$$CL_s = rac{CL_{s+b}}{CL_b}$$

$$CL = 1 - rac{\sum_{n=0}^{d_{obs}} rac{e^{-(b+s)}(b+s)^n}{n!}}{\sum_{n=0}^{d_{obs}} rac{e^{-b}b^n}{n!}}$$

0.2 arbitrary Null-Hypothe 0.2 0.18 Null-Hypothesis (backg 0.18 0.16 Observatic 0.16 0.14 Observation d = 70.14 0.12 AI 0.12 0.1 0.1 0.08 0.08 0.06 α 0.04 0.06 α 0.02 0.04 0.02 10 8 2 6

\* limit on s + b at 95% CL: *s* + *b* = 12.5

## CL<sub>s</sub>: more than one channel

\* with a likelihood-ratio as test-statistics compute  $CL_{s+b}$  and  $CL_b$ :

 $X = rac{ extsf{Poisson}(s(m_H) + b, d_{obs})}{ extsf{Poisson}(b, d_{obs})}$ 

 $^{\ast}$  expected signal s depends on a model parameter, e.g., the Higgs mass  $m_{\text{H}}$ 

\* likelihoods are multiplicative, different exclusive *N* channels can be combined:

$$X(m_h) = \prod_i^N X_i(m_h)$$

\* if d<sub>i</sub> data events are observed, then this leads to a value  $X_{obs}$  of the teststatistics  $CL_{s+b} = P_{s+b}(X < X_{obs})$ 

$$CL_{s+b}$$
 is then given by:

$$L_{s+b} = P_{s+b}(X \le X_{obs})$$
$$= \int_{-\infty}^{X_{obs}} \frac{dX_{s+b}}{dx} dx$$

where  $dX_{s+b}/dx$  is the probability density function distribution of the teststatistics X for signal+background experiments.



from "former times"



\* once in a while it happens that you see something coming out of the two sigmas band: what do you do?

- calculate p-Value
- p-Value helps you determine the significance of your results

# p-Value in normal life



\* p-Value  $\leq$  0.05: strong evidence against the null-hypothesis, so you reject the null hypothesis

\* p-Value > 0.05: weak evidence against the null hypothesis, so you fail to reject the null hypothesis

always report the p-value

\* classical example: pizza delivery!!!

to attract clients a pizzeria promote: delivery times in less than 30'
 \* you, the hungry particle physicist:

null-hypothesis H<sub>0</sub>: mean delivery time is 30 minutes max
 alternative-hypothesis H<sub>a</sub>: mean delivery time is greater than 30'

\* you randomly sample some delivery times and, after you eat, run the data through the hypothesis test: p = 0.001

— how shall we interpret this?

# p-Value in normal life



#### \* classical example: pizza delivery!!!

- to attract clients a pizzeria promote: delivery times in less than 30'
   you, the hungry particle physicist:
- null-hypothesis H<sub>0</sub>: mean delivery time is 30 minutes max
  alternative-hypothesis H<sub>a</sub>: mean delivery time is greater than 30'
  \* you randomly sample some delivery times and, after you eat, run the data through the hypothesis test: p = 0.001
- how shall we interpret this?

\* there is a probability of 0.001 (of 0.1%) that you will wrongly reject the pizza place's claim that their delivery time is 30' max

> ahhhaaa... so they are wrong, but did the right thing... during your sampling you became their client... good to know

### p-Value ≤ 0.05 – how many sigmas? –



\* estimate how many sigmas correspond to for p-Value ≤ 0.05

\* write a ROOT macro and estimate the p-Value for  $1\sigma$ ,  $2\sigma$ ,  $3\sigma$ ,  $4\sigma$  and  $5\sigma$ 



### p-Value ≤ 0.05 – how many sigmas? –



\* estimate how many sigmas correspond to for p-Value ≤ 0.05

\* write a ROOT macro and estimate the p-Value for  $1\sigma$ ,  $2\sigma$ ,  $3\sigma$ ,  $4\sigma$  and  $5\sigma$ 



| Sigma   | 1σ    | 1.28 | 1.64 | 1.96 | 2σ     | 2.58 | 3σ     |
|---------|-------|------|------|------|--------|------|--------|
| CI %    | 68.3% | 80%  | 90%  | 95%  | 95.45% | 99%  | 99.73% |
| P-value | 0.317 | 0.20 | 0.10 | 0.05 | 0.0455 | 0.01 | 0.0027 |

α = (1-CL)

in normal life what is above 1.96 σ is "significant"

\* in particle physics we claim a discovery when we see "a signal with five standard deviations"

- for 5  $\sigma$  the corresponding p-Value = 5.7 x 10<sup>-7</sup>

http://pdg.lbl.gov/2013/reviews/rpp2013-rev-statistics.pdf





### to take home with you — instead of summary —

what about a little homework?

After background subtraction, an experiment "observes" a yield of  $-2 \pm 1$  particles. The uncertainty is assumed to be Gaussian. Determine an 90% upper limit  $\mu_{lim}$  for the expectation value of the number of events using the

Frequentist approach: taking the result at face value Instruction: determine the 90% upper limit from

$$CL = \int_{\mu_{lim}}^{\infty} dx' \frac{1}{2\pi} e^{\frac{-(x'+2)^2}{2}} = 10\%.$$

Hint: The solution can be read off from the CL curves for a Gaussian.

Bayesian approach: the result has to be positive Instruction: determine the 90% upper limit from

$$CL = \frac{\int_{\mu_{lim}}^{\infty} dx' \frac{1}{2\pi} e^{\frac{-(x'+2)^2}{2}} \theta(x')}{\int_{0}^{\infty} dx' \frac{1}{2\pi} e^{\frac{-(x'+2)^2}{2}}} = 10\%$$

Hint: The  $\theta(x')$  can be ignored since only positive values of  $\mu_{lim}$  will solve the equations. The solutions to both integrals can be read off from the CL curves for a Gaussian.

and a useful link in case you have more time

www.desy.de/~sschmitt/LimitStatSchool2013

### before the end...

### GRADER TYPES



WWW.PHDCOMICS.COM

