4th Beam Telescopes and Test Beams Workshop – Feb. 3 – 5 2016

DAONE Beam Test Facility and Performances Assessment of Large Pixels CMOS Sensors

Alejandro Pérez Pérez, J. Baudot, A. Besson, M. Goffe, M. Winter (IPHC – CNRS) E. Spiriti (LNF) P. La Rocca, F. Riggi (INFN - Catania) C. Bedda, I. Ravasenga (INFN - Torino)

Grateful Acknowledge to the BTF team

B. Buonomo, C. Di Giulio, L. Foggetta and P. Valente

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Outline

- Introduction to CMOS Pixel Sensors (CPS)
- The DAΦNE Beam Test Facility (BTF)

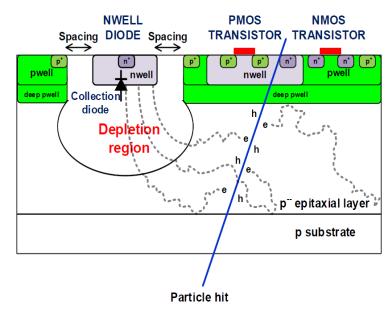
Larger Pixels Performances Assessment @ DAΦNE BTF: May – June 2015

- Motivations
- Telescope & DUT
- Experimental Set-up
- Data Analysis Results
- Simulation for interpretation

Summary and Outlook

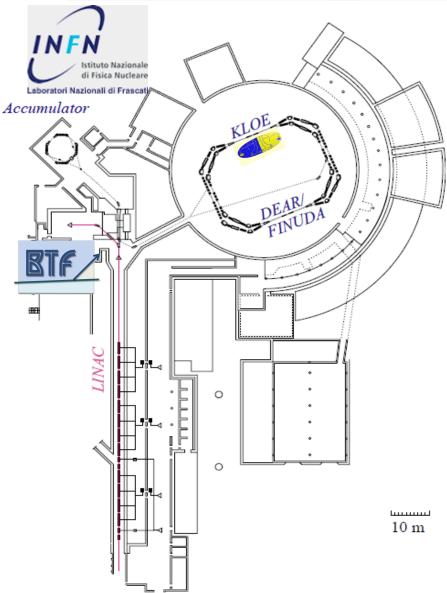
Introduction to CPS

Introduction to CPS


Assets of CPS

- Signal processing integrated on sensor substrate
 ⇒ downstream electronics & syst. Integration
- Standard fabrication process
 ⇒ low cost & easy prototyping, many vendors, …
- High granularity \Rightarrow excellent spatial resolution (O(µm))
- Signal generated in thin (10-40 μ m) epi-layer \Rightarrow usual thinning up to 50 μ m total thickness

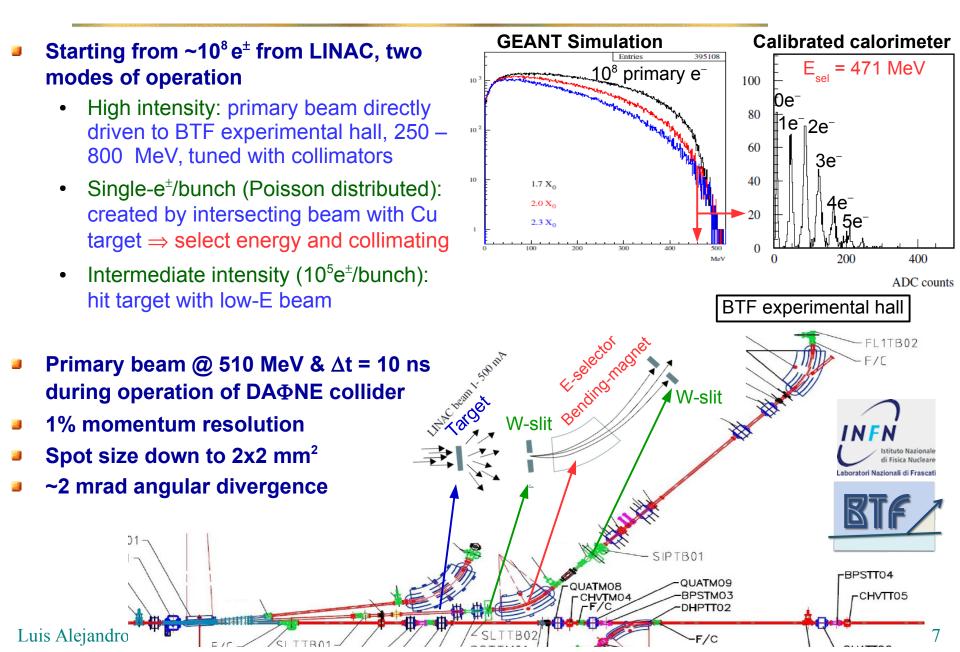
Several applications


- High resolution Telescope: EUDET-BT @ DESY (few GeV e⁻ beam) (Mimosa26 sensor)
 - ≻ 6 copies around the globe: DESY, CERN-SPS, SLAC (USA), TRIUMF (Canada), ...
- Hadron physics experiment: STAR-PXL @ RHIC (Mimosa28 sensor)
- Hadron-therapy database: FIRST (Mimosa26 sensor)
- Large area & high resolution Telescope: AIDA-BT (SALAT) (Mimosa28 sensor)
- Upgraded ALICE Inner Tracking System: 7 layers with full CPS (ongoing R&D)
- Machine Backgrounds @ Belle II (Beast2): Double-sided ladders (6 Mimosa26 sensors/side)

The DAΦNE BTF

DAONE BTF

DAΦNE LINAC main parameters

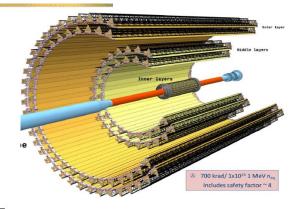

- Energy range: (50 800)/(50 550) MeV e⁻/e⁺
- Energy spread @ 510 MeV: 1%/2% e⁻/e⁺
- Macro bunch duration (Δt): 10 ns
- Repetition rate: 10 50 Hz
- Max. current: 500 (100) mA/bunch for $e^-(e^+)$
- Min. current: ~1 mA/bunch
 ⇒ ~6×10⁷ e[±]

 \Rightarrow Need strong reduction of number of primaries to reach the few particles range

Beam Test Facility (BTF)

- Transfer line optimized for producing e⁻/e⁺ beams in wide range of multiplicities, down to single-e[±]
- Operating since Nov. 2003

BTF: From 10⁷ to few e[±]

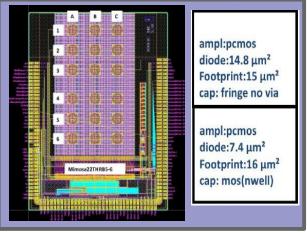


Beam Test @ BTF

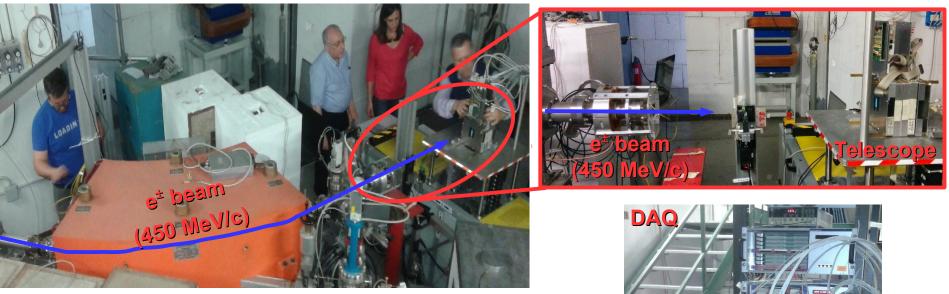
Beam Test @ BTF: Motivation

- Upgraded ITS entirely based on CPS
 - **Present detector:** 2xHPD/2xDrift-Si/2xSi-strips
 - Future detector: 7-layers with CPS (25-30k chips)
 - \Rightarrow 1st large tracker (~ 10 m²) using CPS
 - ITS-TDR approved on March 2014 (Pub. In J.Phys. G41 (2014) 087002)

New ALICE-ITS requirements


	σ_{sp}	$t_{r.o.}$	Dose	Fluency	T_{op}	Power	Active area
STAR-PXL	$<$ 4 μm	$<$ 200 μs	150 kRad	$3\cdot 10^{12} \mathrm{~n}_{eq}/\mathrm{cm}^2$	30-35°C	160 mW/cm^2	$0.15 \mathrm{~m}^2$
				1.7 \cdot 10 13 n _{eq} /cm 2		$<$ 300 mW/cm 2	
ITS-out	\lesssim 10 μm	\lesssim 30 μs	100 kRad	$1.10^{12} \mathrm{~n}_{eq}/\mathrm{cm}^2$	30°C	$<$ 100 mW/cm 2	\sim 10 m 2

Large-pixel prototype (MIMOSA-22THRb)

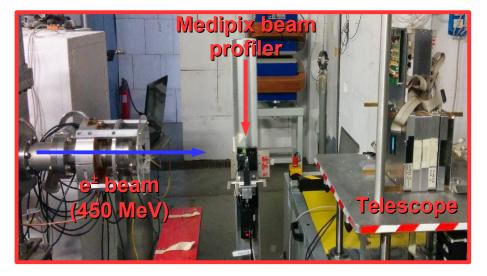

- Two slightly different large pixels
 - > $36x62.5 \ \mu\text{m}^2$ and $39x50.8 \ \mu\text{m}^2$ (staggered layout)
- Pads over pixel array (3ML used for in-pixel circuitry)
- Double-row r.o. with no-sparsification $(t_{r.o.} \sim 5 \,\mu s)$
- Fabricated with 18 μ m thick high- ρ epi-layer
- **BUT:** only < 10 mm², 4k pixels & no sparsification
- Validation of large pixel detection performances

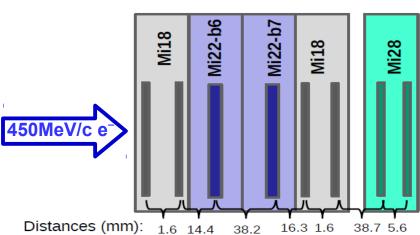
Luis Alejandro Pérez Pérez, Beam Telescopes & Test Beams Workshop, Feb. 5th 2016

Mi22-THRB6: 36×62.5µm²

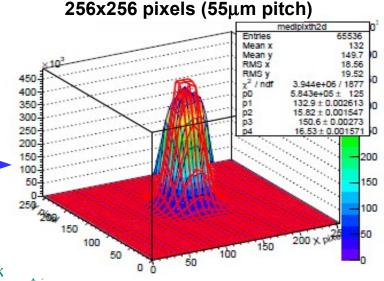
Beam Test @ BTF: Experimental Set-up

Beam test period


- May 25th June 1st 2015
- Partnership
 - Strasbourg,
 - Frascati,
 - Catania,
 - Torino

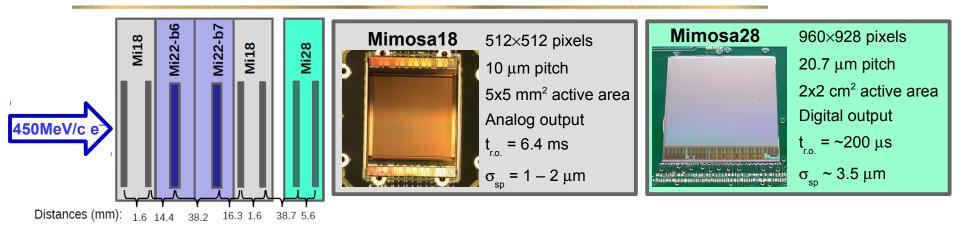

Luis Alejandro Pérez Pérez, Beam Telescopes &

Beam Test @ BTF: Experimental Set-up



Running conditions

- Beam energy (E_{sel}): 450 MeV
 - \Rightarrow 10 20 e⁻/bunch
- Average spills rate: 25 Hz
- $\Delta t = 10 \text{ ns} \Rightarrow \text{Beam trigger sent to DAQ}$
- Beam spot size: ~ 1.7×1.8 mm²
- Hall temperature: 20°C
 - \Rightarrow 25 30°C @ sensors


Luis Alejandro Pérez Pérez, Beam Telescopes & Test Beams Work

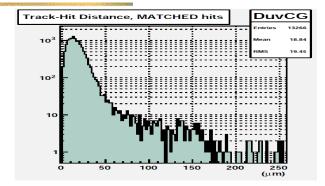
Medipix beam profiler

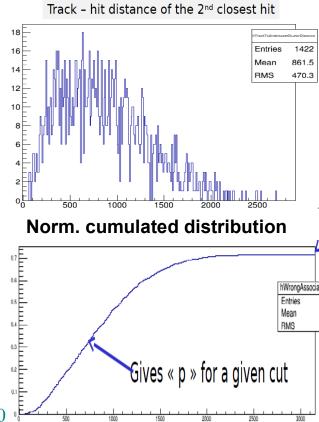
11

BTF @ LNF: Telescope & DUT

Telescope & DUT Set-up (all sensors thinned up to 50 μm)

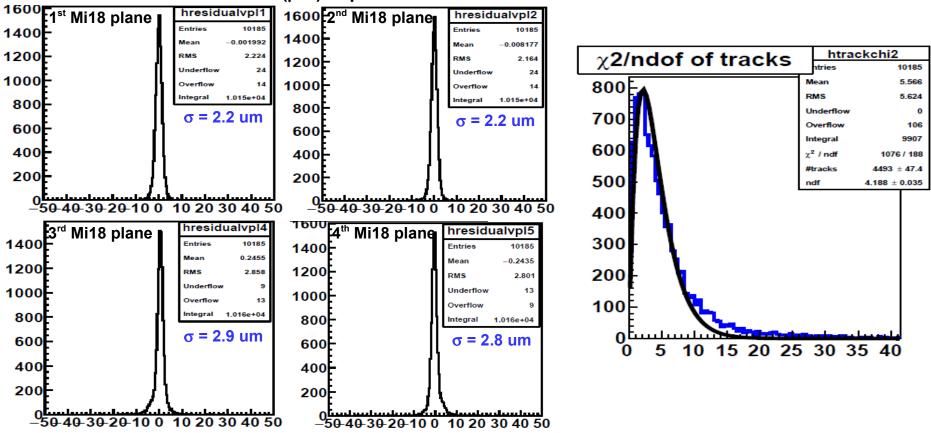
- Reference planes (Telescope): 2 station of 2 Mi18 & 1 station of 2 Mi28
- DUTs (Mimosa22-THRb): 2 DUTs in-between the Mi18 stations but only one is readout ⇒ the other sensor only contributes to multiple scattering (MS)
- DAQ (developed by E. Spiriti)
 - > Beam trigger sent to all modules ($\Delta t = 10 \text{ ns}$)
 - \Rightarrow synchronization granted for very different t_{ro} (5 µs, 200 µs & 6.4 ms)
 - > DAQ rate ~3 Hz, beam efficiency ~ 100 % & tracks/acquisition = 2 20
- Data collected
 - \succ ~630k triggers with beam ⇒ ~800k rec. tracks for performances assessment


Data Analysis


Analysis strategy & Efficiency correction

Analysis framework: TAF (iphc.cnrs.fr/TAF)

Analysis strategy

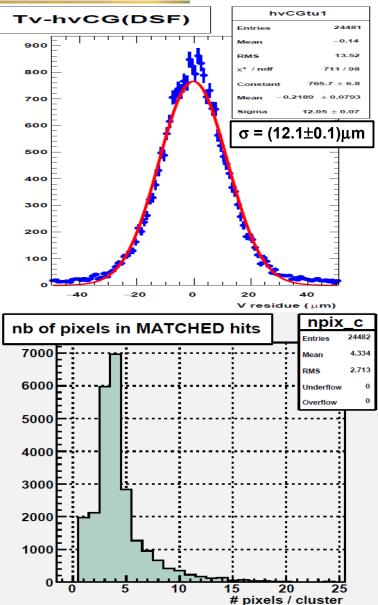

- Reconstruct tracks in telescope and extrapolate @ DUT
- Associate track to DUT hits within some track-hit distance
- Evaluate DUT $\boldsymbol{\epsilon}_{_{\text{det}}}$ and $\boldsymbol{\sigma}_{_{\text{sp}}}$
- Efficiency Correction: $\varepsilon_{det}^{corr} = (\varepsilon_{det}^{raw} p)/(1 p)$
 - Due to MS some track-hit distances seems quite large (few 100 μm)
 - Enlarging the track-hit distance cut has 2 consequences for non-efficient events
 - → Increases probability (**p**) to get a fake hit
 - Increases probability (p) to associate a real hit from another track
 - Correction method
 - Use efficient events to get the distribution of the 2nd closest hit to the track
 - Use normalized cumulated distribution to estimate p

Telescope Alignment

Biased Track Residues (μm): 4 points tracks

- Sub-micron alignment precision of the reference planes
- χ^2 track fitting not including MS contributions \Rightarrow bias of χ^2 /nof distribution
- Still good enough tracks for DUT performances assessment

Measurements on Mimosa22-THRb sensors (DUT)


Measurements vs discriminator Threshold

- Detection efficiency (ϵ_{det}) vs fake rate
- σ_{sp} associated with binary encoding of large pixels
- Rad. tolerance (30°C): $150kRad \oplus 1.5 \times 10^{12}n_{ec}/cm^2$

Example for one threshold measurement

- Discriminator threshold = 4.0mV (~7.3 × noise)
- Good DUT alignment w.r.t telescope
- 24k tracks @ DUT
- $\epsilon_{det} = (99.99 \pm 0.01) \%$
- $\sigma_{residue} = (12.1 \pm 0.1) \, \mu m$
- Average cluster pixel multiplicity ~ 4.3
- In order to obtain DUT's σ_{sp} need to evaluate telescope pointing resolution (σ_{Tel})

⇒ Simulation

BTF Simulation: Strategy

Motivation: σ_{Tel} **(Bignificant MS)**

Several simulation tools implemented in TAF

- Toy simulation: 2 configurations
 - > Gaussian MS modelled with the formula $\theta_{rms}^{proj} = \sqrt{\langle \theta^2 \rangle} = \frac{13.6 MeV}{\beta c p} z \sqrt{\frac{x}{X_0}} [1 + 0.038 \ln(x/X_0)]$

$$\mathbf{p} \mathbf{c} \mathbf{p} \quad \forall \mathbf{X}_0$$

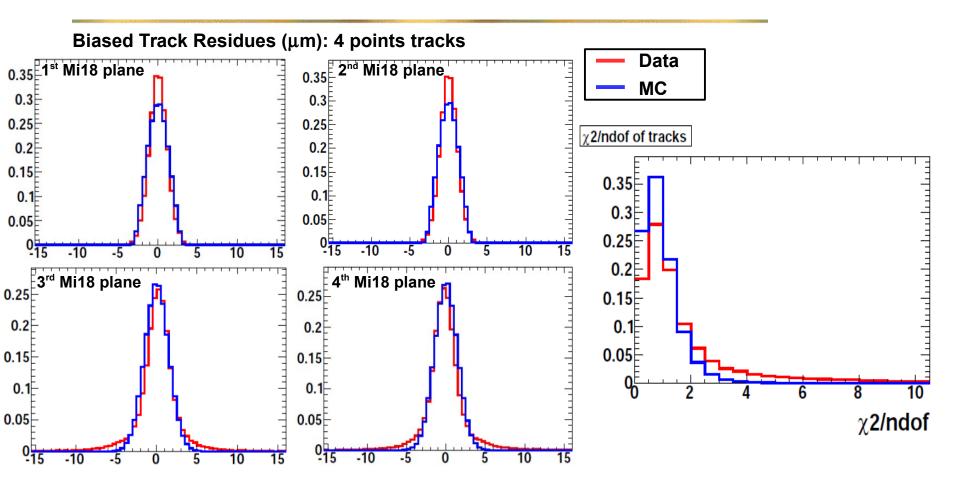
- Include non-Gaussian tails of MS as described in PRD Vol89, Number 6, March 15, 1953
- **GEANT4-based simulation** (in principle more realistic MS model)

Simulation principle

- Set a geometry description of the experimental environment
- Generate tracks with a given angular dispersion (set by user)
- Transport tracks through geometry to get intersections with Telescope & DUT planes
- Gaussian smearing of the intersection position applied according to plane σ_{sn}

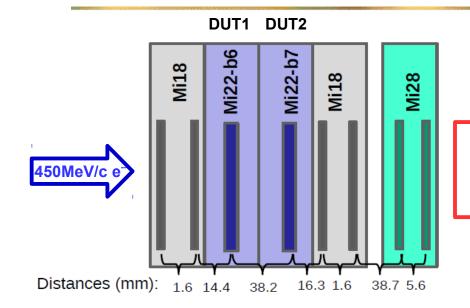

 \Rightarrow Hit generation

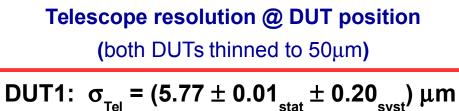
The list of generated hits are then passed to the analysis framework

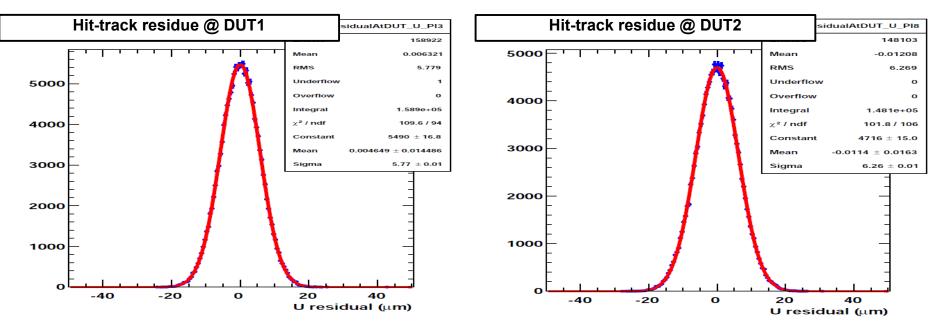

\Rightarrow use same pattern recognition and track-fitting algorithms as in regular analysis

BTF Simulation: Visualization

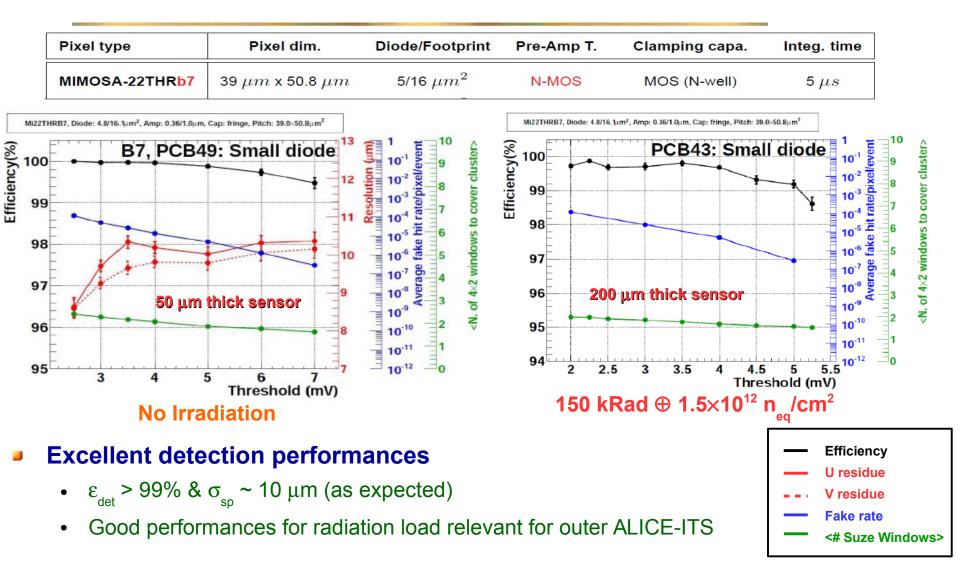
- **Beam:** e^- with p = 450 MeV/c
- Dotted/Solid-line: generated/reconstructed tracks




BTF Simulation: Data/MC comparison


- Quite good agreement between Data and Simulation
- Small disagreement due to: geometry model + DAQ synchronization effects
- Assign 0.2 μ m systematic error on σ_{Tel} from previous test with DUT of know σ_{Sp}

BTF Simulation: σ_{Tel} @ DUT position



DUT2:
$$\sigma_{Tel} = (6.26 \pm 0.01_{stat} \pm 0.20_{syst}) \, \mu m$$

Main MIMOSA-22THRb detection performances

Validation of large pixel design for the outer layers of the ALICE-ITS!

Summary and Outlook

Summary and Outlook

DAPNE BTF provides an environment for testing particle detectors

- Small bunch duration ($\Delta t = 10 \text{ ns}$) \Rightarrow synchronization and possible timing measurements
- Wide range of particle multiplicities: up to single-particle

Testing of position sensitive detectors @ BTF

- Low-energy particle beam (~ 500 MeV e^{\pm}) \Rightarrow significant MS effects
- Need high-precision & low material beam telescope ⇒ Mimosa CMOS sensors
- Able to measure MIP detection efficiency: even for relatively thick sensors (~200 μm)
- Spatial resolution: only possible for thin and relatively high $\sigma_{_{SD}}$ ($\gtrsim 10 \ \mu m$) sensors
- Allowed validation of large pixel CMOS sensors adapted for outer layers of new ALICE-ITS

Outlook

- Geometry: as compact as possible to reduce MS (smaller lever arm from sensor to sensor)
- DAQ readout speed: up to spill rate \Rightarrow increase statistics
- Mimosa28-based Telescope ⇒ foreseen to become part of available on-site equipment

Back up Slides