

4th Beam Telescopes and Test Beams Workshop LAL Orsay, February 3-5, 2016

KarTel Ljubljana telescope based on M26 sensors (E-TCT with high energy hadron beam)

Andrej Gorišek J. Stefan Institute, Ljubljana

KarTel

- Reference telescope developed in Ljubljana
- Sensors organized in 2 cages each holding:
 - # 3 M26 sensors in individual aluminum frames with alignment pins

- ■ Permanent installation in H6A on retractable table to move it out of acceptance

KarTel

- Mimosa 26 (MAPS) based beam telescope (similar to EUDET)
 - **#** 18.4um x 18.4um pixels
 - # 1152 x 576 pixels
 - # ~2cm x ~1cm active area
 - # Red-out window 115.2us
- # It is read out pixel columns in parallel, row by row.
- # The chip readout time is 115.2 μs
- # RD42/ATLAS BCM/DBM are the standard users of KarTel

Trigger and ROI selection

- # 2 scintillator detectors are used to trigger the telescope/ DUT readout
 - **♯** 2cm x 1cm scintillators

 - # Telescope outputs a trigger signal only when capable to take the event
- We use a ATLAS DBM type Si module for triggering only events with track inside a chosen region of interest ROI (based on FEI4 readout chip)
 - Used in ATLAS IBL (Pixel upgrade) and Diamond Beam Monitor (DBM)
 - # 336x80 channels of 250um x 50um
 - # 25 ns
 - **#** TOT readout
 - # Hitbus output (OR of all pixels in settable mask)

CERN SPS Test Beam Setup

- # H6A beam line of SPS North Hall
- # 120 GeV/c hadrons

CERN SPS Test Beam Setup

2 scintillator detectors for trigger

FEI4 Si module - ROI selection

Software - Judith

- **Judith** a new versatile software package for synchronized analysis of data
 - **#** Built-in KarTel reconstruction
- # Software suited to take data from heterogeneous detectors without a need for sophisticated trigger handshake
 - Software package capable of finding missed events in either data-stream thus synchronizing the data
- # Included:
 - # Clustering
 - **#** Alignment
 - **#** Simple tracking
- # Very efficient and low on CPU consumption

Kartel tracking performance

- # Track resolution at DUT of about 3um (alignment and final analysis under way)
- **♯** Comparable or better than laser focus size in current setups

E-TCT

- Conventional Transient Current Technique (TCT) method utilizes short laser pulses to inject free carriers just under the contacts of a Si detector
- Somewhat more recent Edge-TCT (or E-TCT) still uses short pulses of very narrow (well focused) laser beam incident to the edge of Si detector to generate free carriers. With a right setup the size of the laser at focus can get below 10um.
- We propose a complementary method to use very well collimated beam of charged hadrons in conjunction with a reference beam telescope to scan the volume of the detector under test (DUT)
- # Complementary method for Si detectors and probably the only feasible method for diamond detectors due to larger band gap

E-TCT with Beam

Setup - DUT

- # For the proof-of-principle we used a standard Si diode
 - # STM microelectronics Catania, W339
 - \sharp n-type, 15kOhm cm, $V_{fd}=18V$,
 - # 5mm x 5mm
 - # 300um thick
 - # At 80V (fully depleted)
- ★ Mounted on USB
 XY stage
 - **♯** For positioning

DUT Readout

Particulars[©] bias-T

for decoupling signal from bias voltage

♯ Particulars[©] wide band current amplifier

■ Pulses readout with PSI DRS4[©]evaluation board

■ 0.7 GSPS to 5 GSPS with 1024 sampling points

SPS H6A Beam

- # Very collimated beam
 - RMS of divergence in X and Y direction below 0.1 mrad
- # On average 10 tracks per event
 - DRS readout triggered by scintillators (i.e. the first track in MI26 frame)
 - **♯** Low efficiency for trigger
- **♯ Obvious improvement** − need to trigger DRS with FEI4 hitbus pulse

- Waveforms of single MIPs going trough Si diode were recorded
- # Signals were triggered by scintillator trigger
- # Average signal displayed for events with tracks inside the region of the Si diode

Average signals of events without a track inside the region of the Si diode

- **#** Amplitude distribution for:
 - # Inside the peak region (green)
 - # In the sideband

Distribution of all incidence points of tracks

Requiring there is a waveform with amplitude > 0.3mV in Si diode

Ratio

Zoom into Si diode regionDivided into 7 slices

Slices

Slice 1 (just under +contact) mostly signal from drift of the holes

...

♯ Slice 7 (just under -contact) mostly signal from electron drift

In all the time esignal is superimposed on h+ signal

KarTel in 2016

- #Use KarTel + Judith in CERN test-beams
 - **#** RD42, ATLAS BCM/DBM,...
- # Currently implemented DUTs (readout)
 - # FEI4, DRS, LeCroy oscilloscope
- **#** Planed additions?
 - # Alibava, VA
- # Possible measurements
 - # pCVD diamond diode with DRS4
 need better more precise timestamping
 - # pCVD diamond strip detector with Alibava (or VA readout)

Conclusions

- #We have shown that it is possible to execute a E-TCT measurement in hadron beam with a high precision beam telescope
- □ Complementary method to laser based E-TCT for Si
 detectors
- # Promising for measuring diamond detectors which are not accessible with low cost laser diodes due to larger band-gap

KarTel (E-TCTwB)