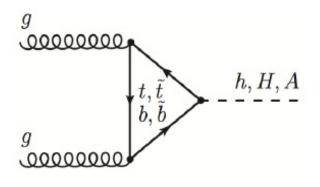
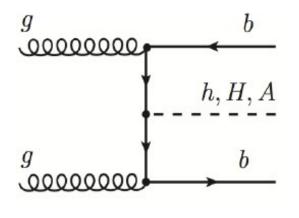


CMS Physics News : Run1 Searches for BSM Φ → ττ


Alexei Raspereza

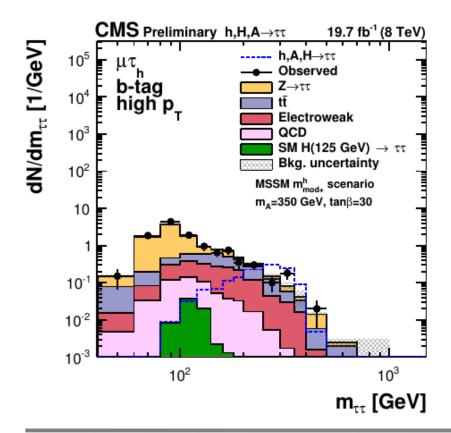

SFB B9 Meeting, Dec 14th 2015

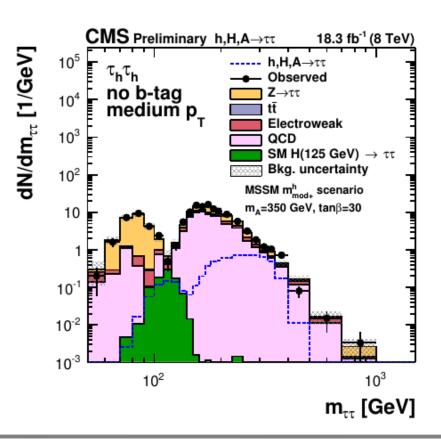
Recent public results

- Wrapping up analyses of Run 1 data: searches for BSM Higgs bosons decaying to tau leptons
- MSSM Φ → ττ search using new tau identification algorithm and event categorization based on hadronic tau p_T
 CMS PAS HIG-14-029
- search for heavy Higgs bosons in channels H \rightarrow hh \rightarrow (bb)($\tau\tau$) and A \rightarrow hZ \rightarrow ($\tau\tau$)($\ell\ell$) : HIG-14-034, arXiv:1510.01181, submitted to PLB
- search for low mass pseudoscalar produced in association with b quarks and decaying into tau pairs HIG-14-033, arXiv:1511.03610, submitted to PLB
- search for very light NMSSM Higgs bosons in H(125) \rightarrow 2 ϕ_1 \rightarrow 4 τ : HIG-14-019, arXiv:1510.06534, submitted to JHEP

Exploited production mechanisms

Exploited di-tau decay modes

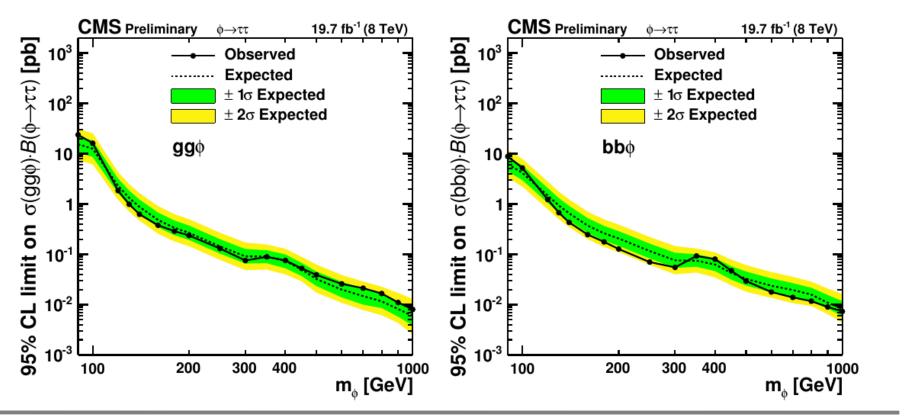

$$\mu \tau_{\rm h}, e \tau_{\rm h}, \tau_{\rm h} \tau_{\rm h}, e \mu, \mu \mu$$

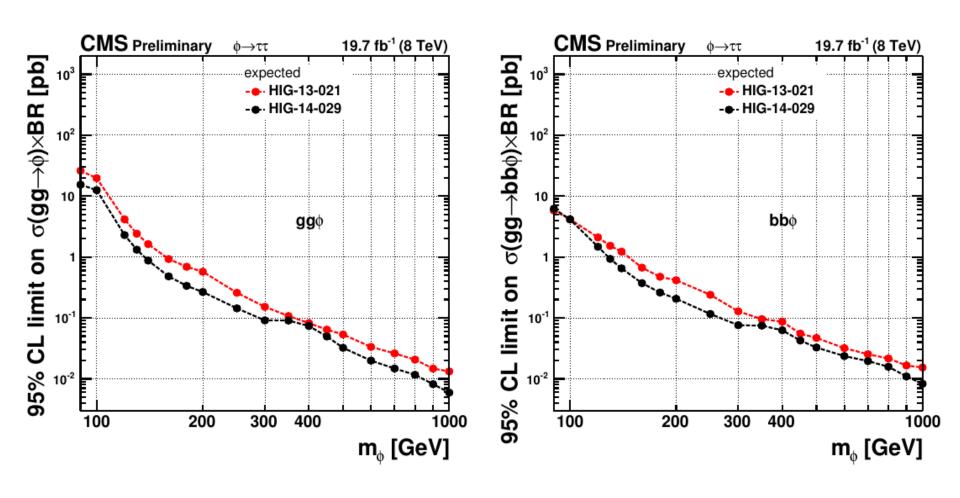

• new MVA based τ_h identification using lifetime information (track impact parameters, secondary vertex information) (TAU-15-001 PAS)

$$\gamma \beta c \tau \approx 1 - 10 \,\mathrm{mm}$$

- Event categorization
 - no b-jets ($p_{_{\rm T}} > 20$ GeV, $|\eta| < 2.4$)
 - \geq 1 b-jet (p_T > 20 GeV, |η| < 2.4) < 2 jets (p_T > 30 GeV, |η| < 4.5)
- Further event categorization in the $\mu \tau_{\rm h}, e \tau_{\rm h}$ channels based on tau p_T (trailing tau p_T in $\tau_{\rm h} \tau_{\rm h}$ channel)

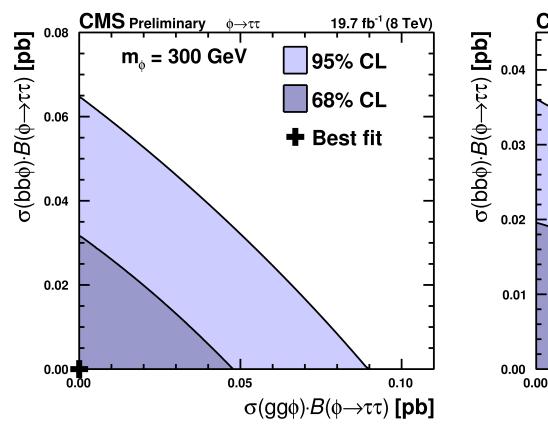
- Major backgrounds : Z → ττ, TTBar, W+Jets, QCD...
- Signal extracted using fully reconstructed di-tau mass distributions
 - in the $\mu\mu$ channel signal is extracted from the 2D distributions [m,,m]

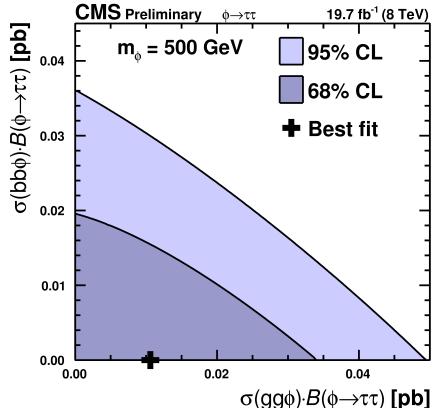



- No evidence of signal found
- Model independent result : constraints on signal production cross section times BR (search for narrow Φ → ττ resonance)

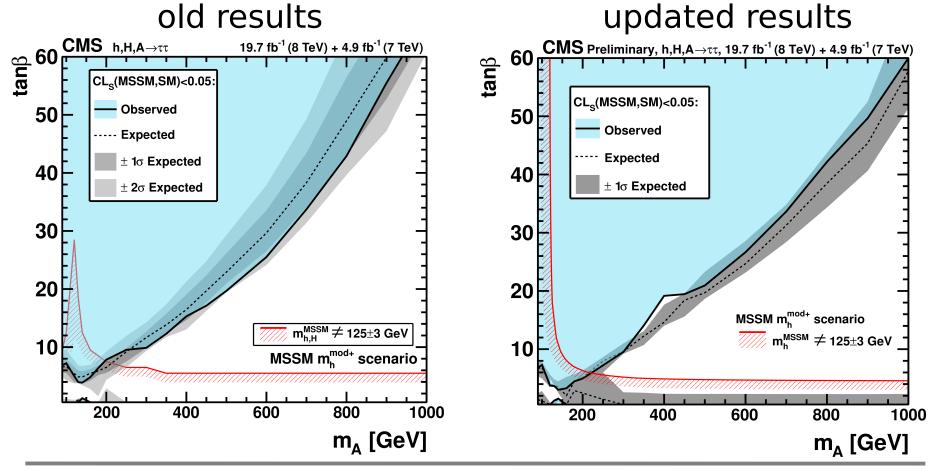
set limits on each process (other process is profiled)

$$q_{\mu} = -2 \ln \frac{\mathcal{L} \left(data | \mu \cdot s(\hat{\theta}_{\mu}) + h_{SM}(\hat{\theta}_{\mu}) + b(\hat{\theta}_{\mu}) \right)}{\mathcal{L} \left(data | \hat{\mu} \cdot s(\hat{\theta}) + h_{SM}(\hat{\theta}) + b(\hat{\theta}) \right)}$$


Improvement with respect to previous results

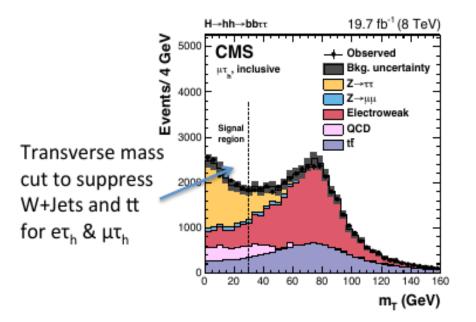


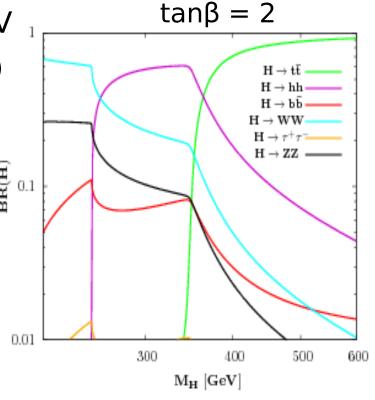
Model independent interpretation


Limits in 2D plane

$$\sigma(gg \to \phi)\mathcal{B}(\phi \to \tau\tau)$$
 vs. $\sigma(bb\phi)\mathcal{B}(\phi \to \tau\tau)$

- limits in (m_Δ,tanβ) plane
- m_h-mod+: post-discovery scenario accommodates h(125) state

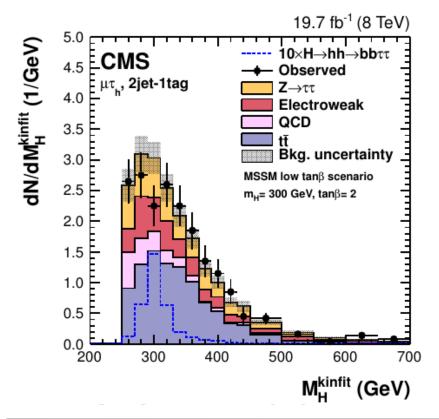

Search for H → h(125)h(125) → (bb)(ττ)

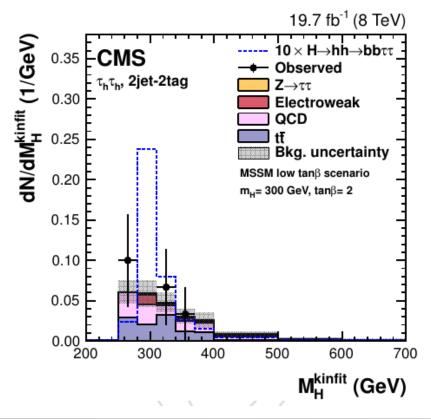

• 260 < m_H < 350 GeV , m_h = 125 GeV $_1$ (m_H > 350 GeV \Rightarrow H \rightarrow tt dominates)

probes low tanβ domain of MSSM

• uses inclusive selection devised for the MSSM $\Phi \to \tau \tau$ analysis

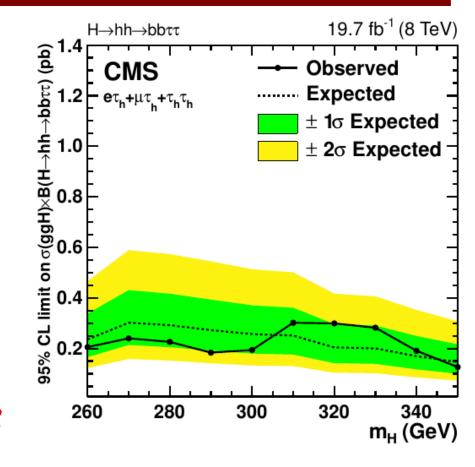
- $\mu \tau_{\rm h}, e \tau_{\rm h}, \tau_{\rm h} \tau_{\rm h}$





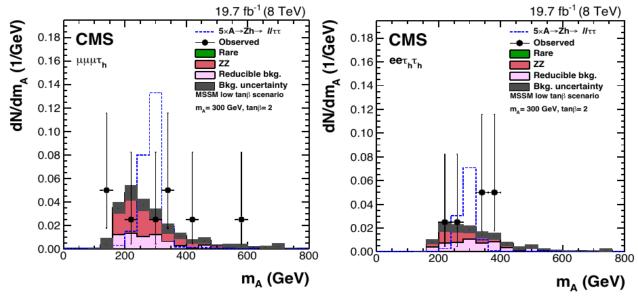
- Require 2 jets in the event
- Event categorization based on number of b-tagged jets
 - **0-tag:** background dominated
 - 1&2-tag: share signal with 2-tag most sensitive

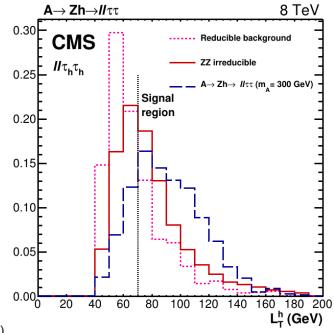
Search for $H \rightarrow h(125)h(125) \rightarrow (bb)(\tau\tau)$


- Apply mass cut in a window around 125 GeV in m_{bb} and $m_{\tau\tau}$
- Extract signal from the fit to the 4-body mass
 - reconstructed using kinematic fit (developed by CMS UHH group)

Search for H → h(125)h(125) → (bb)(ττ)

- No signal is observed
- Interpretation with focus on MSSM/2HDM
- Both model independent and model dependent results provided
 - Constraints on $\sigma \times \mathcal{B}$

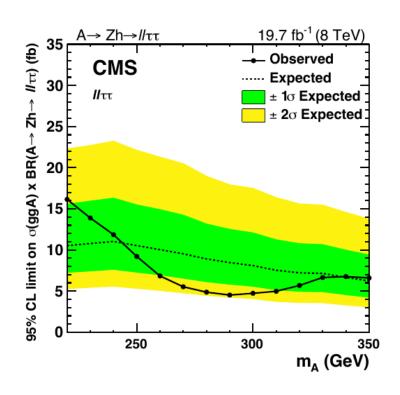

• Model dependent results in combination with $A \rightarrow Zh(125) \rightarrow (\ell\ell)(\tau\tau)$ search (see next slides)


Search for A \rightarrow Zh(125) \rightarrow ($\ell\ell$)($\tau\tau$)

- select Z → ee/μμ events
- select tau-pair : $e\mu, \mu\tau_{\rm h}, e\tau_{\rm h}, \tau_{\rm h}\tau_{\rm h}$
- apply cut

$$L_{\rm T}^{\rm h} = p_{\rm T}^{\tau_1, {\rm vis}} + p_{\rm T}^{\tau_2, {\rm vis}} > 70 \,{\rm GeV}$$

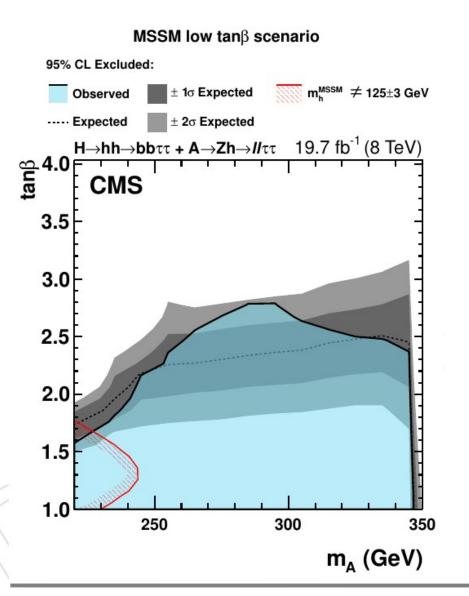
- reconstruct 4-body mass (m_A)
 - tau momenta from CA

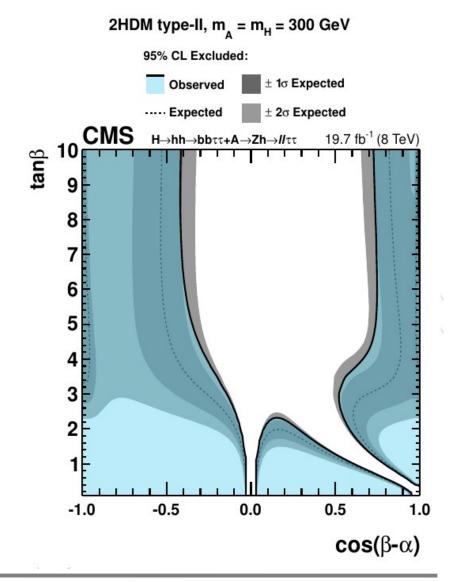


→ Combine 8 different channels and fit m_A for signal extraction

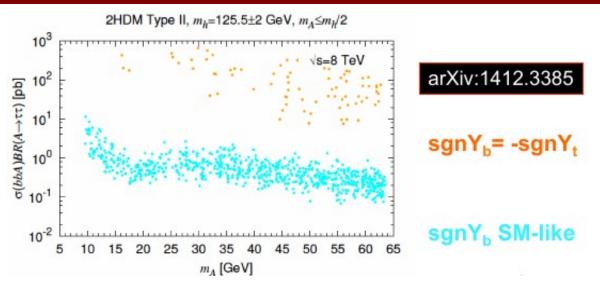
Search for A \rightarrow Zh(125) \rightarrow ($\ell\ell$)($\tau\tau$)

- No significant excess in data
- both model independent and model dependent results provided
- Constraints on $\sigma \times \mathcal{B}$ for the process $gg \to A \to Zh \to \ell\ell\tau\tau$

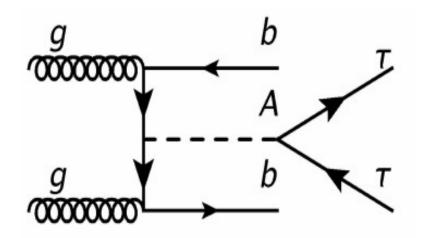

 Model dependent results in low tanβ scenario and type II 2HDM scenario in combination with the H → h(125)h(125) → (bb)(ττ) analysis (next slide)



Excludes to a cross-section times branching ratio of ~10fb.

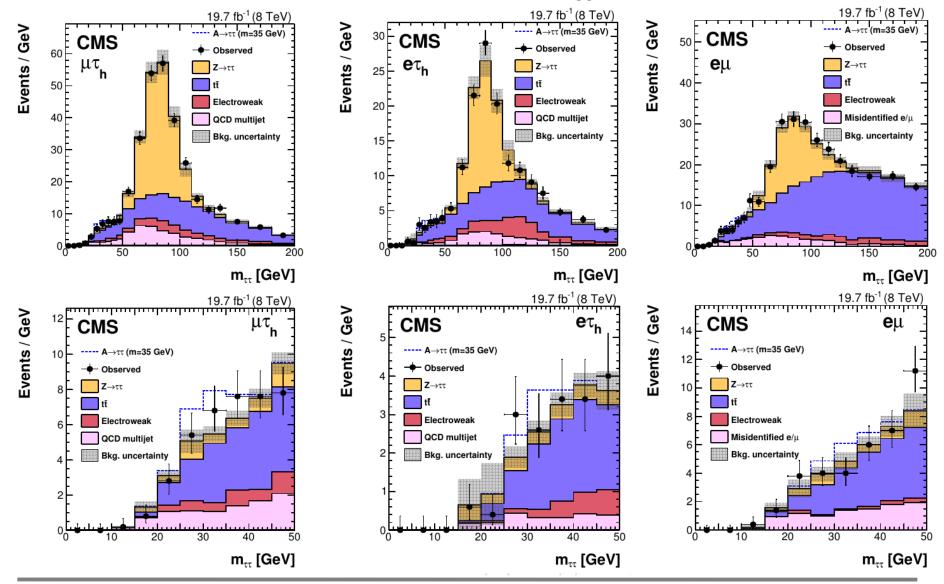

$H \rightarrow h(125)h(125) \rightarrow bb(\tau\tau)$ and $A \rightarrow Zh(125) \rightarrow (\ell\ell)(\tau\tau)$

Combination of the two searches performed in two models

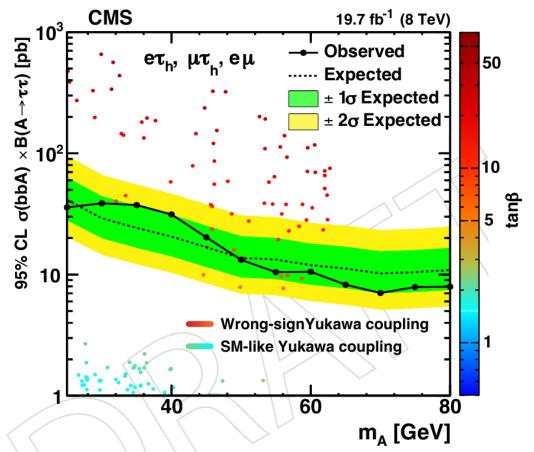


Low mass pseudoscalar decaying to $\tau\tau$

- parameter scan within 2HDM of type II
 - experimental constraints from LEP, Tevatron and LHC are incorporated; light CP even state h is identified with H(125)
- models exist with light A state and large σ(bbA)xBR(A→ττ) (up to 100 pb)
- cyan points : sign(Y_b) = sign(Y_t)
 - $sin(\beta-\alpha)\approx 1$, $cos(\beta-\alpha)>0$
- orange points : sign(Y_b) = -sign(Y_t)
 - $\sin(\beta \pm \alpha) \approx 1$, $\cos(\beta \alpha) < 0$


Search for low mass A boson decaying to ττ

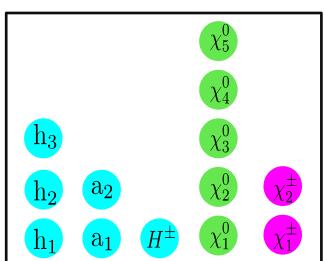
- mass range covered : $m_A = 25 80 \text{ GeV}$
- di-tau decay channels exploited : $e\mu$, $\mu\tau_{\rm h}$, $e\tau_{\rm h}$
- search targets b-associated production
 - require at least one b-tagged jet $(p_T > 20 \text{ GeV}, |\eta| < 2.4)$
- soft leptons → low p_T cuts (just a little above trigger thresholds)
 - $\tau_h \tau_h$ mode is excluded because of high trigger thresholds on tau p_T (very low acceptance)


Search for low mass A boson decaying to ττ

Signal extracted from m_{tt} distributions

Search for low mass A boson decaying to ττ

- No signal found
- Upper limits on $\sigma(b\bar{b}A) \times \mathcal{B}(A \to \tau\tau)$



 Search excludes nearly all scenarios with wrong sign Y_n of the SM-like h(125) state

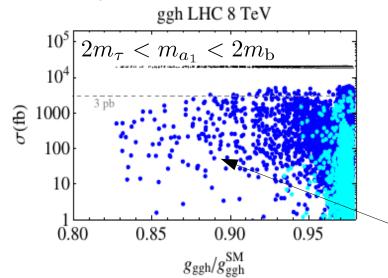
NMSSM

- MSSM scenarios with $m_{h,A} < m_z$ are excluded by experimental data from LEP , Tevatron and LHC
- SUSY scenarios are possible, relaxing this constraint
- NMSSM : additional singlet superfield ${\cal S}$
 - no gauge interactions
 - interacts with itself and Higgs doublets
- 3 new states : one scalar + one pseudoscalar + one neutralino
- solves μ-problem of MSSM

$$\lambda \hat{S} \hat{H}_u \hat{H}_d \to \mu_{eff} = \lambda \langle S \rangle$$

- light a₁ (h₁) state with large singlet component
- → reduced couplings to gauge and fermion fields
 - inaccessible through conventional production modes
 - can be searched via $H(125) \rightarrow a_1 a_1 (h_1 h_1)$

Search for very light NMSSM Higgs bosons


$$h_2(h_1) \rightarrow 2\phi_1 \xrightarrow{\sigma} 4\tau$$

Possible models

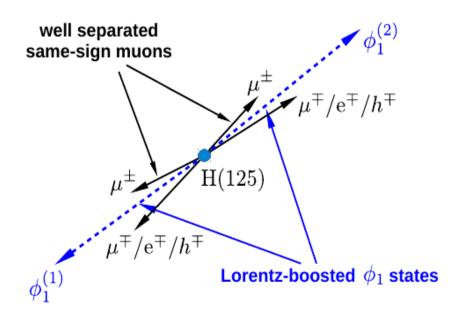
- H(125)= h_2 , H(125) → h_1h_1
- $H(125)=h_2$, H(125) → a_1a_1
- $H(125)=h_1$, H(125) → a_1a_1

NMSSM scan (D. Barducci,

A. Belyaev, S. Moretti)

Probed mass range : $[2m_{_{\rm p}}, 2m_{_{\rm h}}]$

- Blue/Cyan:
 h₁/h₂ SM Higgs boson
- Black/Gray: $\sigma(pp \rightarrow h_{1/2}^{SM}X)$

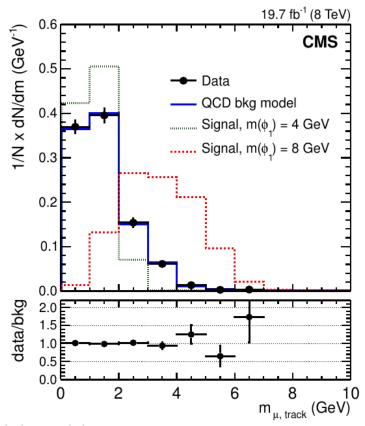

$$\sigma(gg \to h_{1,2}) \times BR(h_{1,2} \to a_1 \to 4\tau)$$

Signal Topology

- $H(125) \rightarrow 2\phi_1 \rightarrow 4\tau (2m_{\tau} < m_{\phi 1} < 2m_b)$
- considered production mechanism
 gg → H(125)
- considered decays of light ϕ_1 state

$$\phi_1 \rightarrow \tau_{\mu} + \tau_{1-prong}$$

 require two SS muons (μ[±]μ[±]) well separated in (η,φ) → suppression of QCD, EWK and top pair backgrounds



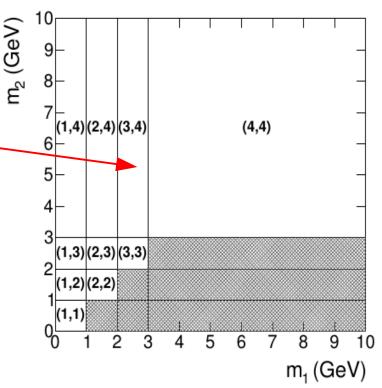
- $\rightarrow m_{H(125)} \gg m_{\phi 1} \rightarrow boosted \phi_1$
 - collimated products in $\phi_1 \rightarrow \tau \tau$ decays
 - small opening angle between muon and track from 1-prong tau (both muon and track coming from the same φ_1)

Selected sample and Signal Extraction

- Final selected sample is dominated by QCD events
- Signal is extracted from 2D distribution of m_1 vs. m_2 (invariant masses of muon-track pairs coming from decays of two ϕ_1 bosons)

Campla	Number of exemps
Sample	Number of events
Data	873
Expected background events	
QCD multijet	820 ± 320
tŧ	1.2 ± 0.2
Electroweak	5.0 ± 4.7
Signal acceptance $\mathcal{A}(gg \to H(125) \to \phi_1\phi_1 \to 4\tau)$	
$m_{\phi_1} = 4 \text{GeV}$	$(5.38 \pm 0.23) \times 10^{-4}$
$m_{\phi_1} = 5 \text{GeV}$	$(4.36 \pm 0.21) imes 10^{-4}$
$m_{\phi_1} = 6 \text{GeV}$	$(4.00 \pm 0.23) \times 10^{-4}$
$m_{\phi_1} = 7 \text{GeV}$	$(4.04 \pm 0.20) imes 10^{-4}$
$m_{\phi_1} = 8 \text{GeV}$	$(3.13 \pm 0.18) \times 10^{-4}$
Expected signal events for $(\sigma B)_{\text{sig}} = 5 \text{ pb}$	
$m_{\phi_1} = 4 \text{GeV}$	53.0 ± 2.3
$m_{\phi_1} = 5 \text{GeV}$	43.0 ± 2.0
$m_{\phi_1} = 6 \text{GeV}$	39.5 ± 2.0
$m_{\phi_1} = 7 \text{GeV}$	39.9 ± 2.0
$m_{\phi_1} = 8 \text{GeV}$	30.8 ± 1.8

 QCD background shape is estimated in sideband, where one of the muon-track pairs is non-isolated

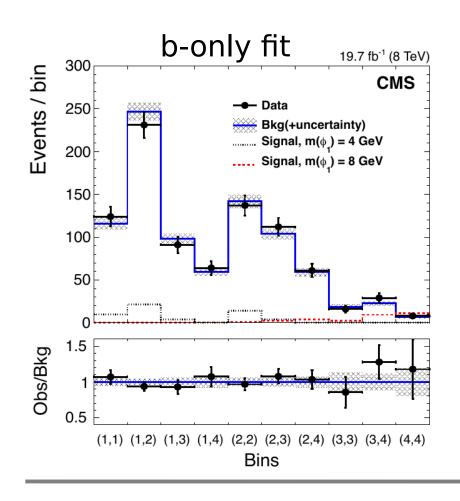

QCD Background Model

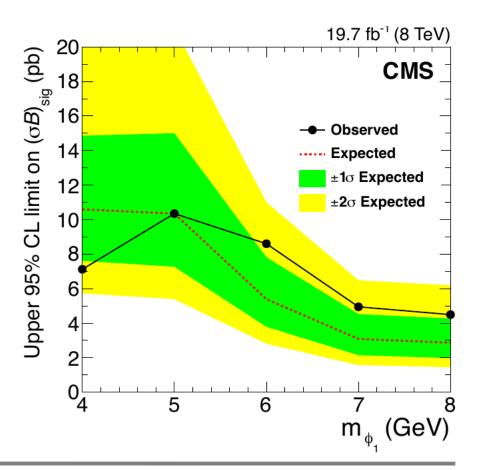
Constructing 2D distribution

- The µ-trk pair with higher mass labelled "2"
- binning of 2D distribution used in the analysis
- only non-hatched bins are filled

QCD background normalization unconstrained prior to ML fit QCD shape is modeled as

$$f_{2D}(i,j) = C(i,j) (f_{1D}(i)f_{1D}(j))^{\text{sym}}$$




- $f_{2D}(i,j)$ content of bin (i,j) of normalized 2D distribution
 - $f_{1D}(i)\,$ content of bin i of normalized 1D distribution (see previous slide)
 - C(i,j) mass correlation coefficients, determined in the background control region where muon-track pairs are non-isolated (consistent with unity)

$$(f_{1D}(i)f_{1D}(j))^{\text{sym}} = f_{1D}(i)f_{1D}(j) + f_{1D}(j)f_{1D}(i), \text{ if } i \neq j$$

= $f_{1D}(i)f_{1D}(j), \text{ if } i = j$

Search for $H(125) \rightarrow 2\phi_1 \rightarrow 4\tau$: Results

- Signal extracted with maximum likelihood fit of the 2D [m₁,m₂] distribution
 - QCD background and signal normalizations are varied freely in fits
- Data are well described by background-only model ightarrow set limits on $\sigma imes \mathcal{B}$

Summary

- CMS is finalizing Run1 Higgs analyses
- Many new results on BSM Higgs searches in decays to tau leptons have been made public recently
- Unfortunately no additional Higgs states have been found so far
 - constraints on model parameters reinforced
- Focus is shifted to the analysis of Run2 data
 - further investigation of the H(125) state properties
 - continued hunt for additional Higgs states predicted in theories beyond the SM