Resilience

(aka Replica Manager, Next
Generation)

Albert L. Rossi

Fermi National Accelerator
Laboratory

dCache User Workshop Barcelona 12/04/2016

Current Replica Manager

= dCache Book, Chapter II. 6.

— https://www.dcache.org/manuals/Book-2.15/config/cf-
repman-fhs.shtml

@ replica service (Replica Manager) controls number of replicas of a file
on the pools.

@ for durability and availability in absence of tertiary file system:

e Uses p2p to guarantee number of replicas is at least the minimum (2 is default).

* |f more than maximum (default is 2) replicas exist, some of them will be deleted.

@ hybrid mode (one resilient pool group per manager instance, multiple
non-resilient groups)

Current Replica Manager

No significant modification since 2007.

— Maintains a rather heavyweight set of database tables (written before move
to Chimera).

Handles only NEARLINE files that are not allowed to be stored to tape by
using Ifs=precious settings on a pool (pre-dates RetentionPolicy/
AccesslLatency concepts).

— Intrinsically incorrect

— Ifs=precious is a legacy option

Limitations/brittleness:

— Allows for only one resilient pool group per instance.

To simulate the existence of different resilient groups, one has to run as many Replica
Managers as the pool groups one wants to make resilient.

— Replica range is fixed to min <= n <= max for all files in the group.

Re-evaluation

* Need to continue to provide replication at the
application level, and make use of it within a

larger set of QoS requirements.

* |t must be more configurable and flexible than

the current Manager.

Principal Requirements

1. No database to maintain or synchronize with the namespace.

2. Asingle service instance must be able to handle multiple sets
of resilience constraints.

3. Other than making them members of a resilient group, pools
should not require special configuration (e.g., setting
[fs=precious) or be prohibited from being backed by tertiary
storage (e.g., by requiring replicas to be written as precious).

These three requirements fundamentally distinguish the new
system from the old.

[

N

Additional New Requirements

Allow for the definition of resilience constraints on the basis of storage units.

Allow for partitioning of copies among pools based on pool characteristics.

— This is a generalization of the current feature allowing one to exclude multiple copies of the same
file from being placed on the same host.

Allow for dynamic redefinition of resilience specifications (i.e., without restart of the
service).

- Changes in the composition of pool groups or resilience constraints on a storage unit should, when
appropriate, trigger a rescan of the pools implicated in the changes. If the partitioning (2 above)
constraints change, this may trigger a redistribution of the files in the storage unit.

Handle broken/corrupt replicas by removing and recopying when possible.
Raise an alarm for fatal copy failures.
Raise an alarm when files having no currently available replicas are discovered.

Provide a rich set of admin commands for monitoring and diagnostics, as well as for ad
hoc operations to adjust replica state.

Retained Requirements

1. Fulfill resilience specifications for a given file by creating the necessary copies
or removing redundant ones. To this end, the following must be
implemented:

a.
b.

C.

d.

Handling of add cache location and clear cache location messages.
Handling of changes to pool status (enabled, read-only, offline, dead, etc.).
Periodic scans of the pools in resilient groups in order to maintain replica consistency.

Recovery of replica state if the service itself goes offline and then is restarted.

2. With respect to (1.b), this means that missing copies should be generated
when a pool goes offline, and extras may be eliminated when it comes back
online.

It should be possible, however, to block this behavior temporarily for a given resilient pool.

3. Provide for a best-effort retry of failed copies when the failure is not fatal.

Implementation Goals

1. (Loosely coupled) integration with other dCache services.
— Use broadcast of the PoolMonitor to track PoolManager state changes.

— Rely on the full-featured support for p2p provided by the migration module via an
independent migration task run in the resilience service itself.

— Rely on the namespace database (Chimera) via a namespace provider specific to the
resilience service.

2. lIsolation of resilience operations.
— A self-contained dCache cell/service.

— May run in the same domain as other services (provided adequate heap allocation), but can
be enabled and disabled without stopping and restarting the entire domain.

3. Should not affect the performance of other services, particularly
PnfsManager and PoolManager.

4. Scalability.
a) Should be capable of handling, in memory, millions of operations.

b) Asthe number of operations increases, performance should not degrade due to internal
factors (though it may be affected by such things as size of the database, size of the pools,
load and network).

> Benchmarked against an installation of ~100 pools with ~1M files each.

Implementation Goals (cont’d)

5. Fairness and anti-starvation.

— For a large system with scores of millions of files, a pool scan can queue up quite a
number of operations.

Balance work between handling of foreground (newly arriving files) and background (existing files from a pool
scan), but never allow the number of running jobs in either to go to 0 if that category is not empty.

Prefer the availability of at least two replicas; that is, promote to the head of the waiting list operations on
files with currently only one replica, and requeue the operation for any additional copies requested.

6. Allow for individual tuning.

— No different from what we do in general. Defaults have been derived from the
benchmark, but properties pertaining to concurrency, timeouts and work limits can be

adjusted as needed.

7. Find correct balance between reliability and performance.

— Recovery mechanisms (such as checkpointing) need not guarantee “losslessness”
when this means costly locking; this can be compensated by back-up mechanisms

(such as periodic verification done on the pools).

Basic Design

A simplified, high-level view

ResilienceMessageHandler

Read Only

Listens for PnfsAddCacheLocation,
PnfsClearCachelocation, and CorruptFile
messages; internal pool status updates are
also routed through this handler.

- ~.

/ Two kinds of information are requested of
the namespace: file attributes, and a list of
pnfsids with a given location.

L

PoolOperationHandler

NamespaceAccess

PnfsOperationHandler

Contains the logic for determining if a
pnfsid needs handling, and for selecting and
executing the necessary actions.

“Resilience Central”: the main locus for
tracking operations on files. Contains the
state and queueing logic for each pnfsid
which needs action.

Chimera DB

/ Pool Monitor

PoolManager broadcasts a PoolMonitor
refresh every 30 seconds. A change handler

Contains the logic for executing pool scans.

Scans are triggered on pool status changes,
periodically, and also by admin command.

compares new and old states of the monitor
to see if there are any updates to be made.

PoolOperationMap

Some map updates will also trigger scan

PnfsOperationMap

operations.

PoolinfoMap

For every resilient pool in the PoolinfoMap
an operation record is kept here; contains
the state and queueing logic for pool scans.

BackloggedMsgFile

saved to file when
message handling is
temporarily disabled

Checkpoint File

contents of the map
are written to a
checkpoint file
periodically

Information on pools, pool groups, storage
units, along with pool tags, pool cost and
current pool status, derived from the

_ PoolMonitor.

s,
S

/
P 9 -

Mostly Read

oo

Example 1: Handling of New File

PnfsAddCacheLocationMessage
(from Namespace)

messageArrived K n
(relay) getFileAttributes getPoolInfo y
ResilienceMessageHandler : PnfsOperationHandler PoollnfoMap
handleLocationUpdate y =
messageArrived I’ k 4 E refreshPoolInfo
[l refreshLoE:ations
J AU - 2 2 :
/ PoolMigrationCopyFinishedMessage 3 'E : NamespaceAccess
/ 2l 8| ® i needs
/ 8| -] : copies
U Q L :
= .
Target Pool Y -l :
g| H : (VOID)
S 1K |
N 2| o :
1 o \\ =i = H taskCompleted
1 %, 5 :
AN 2 :
1 ‘91}6 \\ :
: /)0% \\ > i E taskFailed
I Ry S ResilientFileTask | 3 fatally)
i '0/’2‘6 S run o
I %\9 \\ we® ot : H
S,) . et s H
: % Y (migration) Task taskFaileq :
1 H
§ |FaskCompiereq ————yp i
(copy) | - "Pleteq : TaskCompletionHandler
| o (relay) : H
1 0 i » :
1 & H = :
1 o H 2 :(relay) updateOperation
1 © i 7 .
: i %
: —> PnfsOperationMap
i Y “ 4
: E .9. (requeue) yes
I s ®
0 iy
Source Pool & @ 2 @
0 0
> >
o 0
§ 5 (retry) no ALARM
N

no

Example 2: Pool Status Change

updatePoolStatus

handlePoolStatusChange

ResilienceMessageHandler

PnfsOperationHandler

runRemove
A

(migration) Task

|

PoolOperationHandler

pool scan query

handleScan

.

NamespaceAccess

PoollnfoMap

handleInternalMessage

PoolManager broadcasts
a PoolMonitor refresh

every 30 seconds

PoollnfoChangeHandler

PoolScanTask
A

submit

update

4

messageArrived :
1
= = | Po] Monitor

PoolOperationMap

1)

2)

3)

Design Remarks: Concurrency

While multiple file operations run concurrently (default is 200),
operations are serialized against pnfsid (that is, only one
operation for a given file is running at a given time). Files
requiring more than one copy or remove have each done in
sequence.

Multiple pool scans can run concurrently, though there are
diminishing returns on performance if the number is set too high
(default is 5). When separate pool scans request operations on
the same pnfsid, the operation count is simply incremented for
that file. Since attribute information (including location) and pool
information is refreshed for each pass of the operation, the
operation will only run as many times as is necessary to fulfill the
resilience constraints for that file.

An explanation of the various queueing parameters is given in the
resilience.properties file, should further tuning be necessary.
(The defaults are already set so that workers do not block waiting
for a database connection.)

How to Activate Resilience

 The resilience service can be run out of the box. All
that is required is to include it in some domain.

e Resilience communicates directly with chimera, so
chimera.db.host should also be set explicitly if

resilience is not running on the same host as the
database.

[someDomain/resilience]

chimera.db.host=host-where-chimera-runs

Memory Requirements

 While it is possible to run resilience in the same
domain as other services, memory requirements for
resilience handling are fairly substantial.

e We recommend at least 8GB of JVM heap be
allocated, but a safer setting is 16GB. Be sure to
allow enough memory for the entire domain.

e If feasible, it is recommended to give resilience its
own domain.

Resilience Semantics

 A'resilient' file is one whose AccessLatency is
ONLINE and whose storage unit defines the number
of required copies as > 1 (the default).

* Note that RetentionPolicy is not limited to
REPLICA here (that is, one may have CUSTODIAL files
which are also given permanent on-disk copies).

* To be resilient, a file must also reside on a pool
belonging to a resilient pool group.

Setting Up Resilience

To have a fully functioning resilient system, one
must do the following:

Define one or more resilient pool groups.

2. Define one or more storage units with resilience
constraints set (and linked to a resilient group or
groups).

3. Create the directories with the necessary tags.

Defining A Resilient Pool Group

To make a pool group resilient, simply add the '-resilient' flag in
poolmanager.conf.

pPsu create pgroup resilient-group -resilient

Once a pool group is defined as resilient, it will become "visible" to
the resilience service.

— A pool may belong to only one resilient group (though it can belong to any
number of non-resilient groups as well).

— When the resilience service selects a location for an additional copy, it does so
from within the resilient pool group of the file's source location.

— Be careful when redefining a pool group by removing its resilient flag. (Note
that this is not possible through the admin interface; it requires by-hand
modification and reloading of the poolmanager. conf file. This is a safety
precaution.) Doing so will make all files on all pools in that group no longer
considered resilient replicas (but remember they are indefinitely "pinned" or
sticky, and thus not susceptible to garbage collection).

dCache User Workshop Barcelona 12/04/2016

Defining A Resilient Storage Unit

There are two attributes for a storage unit which pertain to resilience.

1. required defines the number of copies files of this unit should receive.

onlyOneCopyPer refers to pool tags; a comma-delimited list of tag names indicates that

copies must be partitioned among pools such that each replica has a distinct value for each

of the tags in question. To make sure the replicas get placed on different hosts, for

instance, one would include the 'hostname' tag in the layout configuration for each pool in

the group, and set this attribute to 'hostname':

psu create unit -store test:resilientl@osm

psu set storage unit test:resilientl@osm -required=2 -onlyOneCopyPer=hostname

dCache User Workshop Barcelona 12/04/2016

Configuration Example

The normal process of linking pools, pool groups and units continues to apply.
Thus, to demonstrate the setup for a single resilient pool, pool group and storage
unit:

psu
psu
psu
psu

psu

psu
psu

psu

psu

create unit -store test:resilientl@osm
set storage unit test:resilientl@osm -required=2 -onlyOneCopyPer=hostname

create ugroup resilientl-units
addto ugroup resilientl-units test:resilientl@osm

create pool resilientl-pooll

create pgroup resilientl-pools -resilient
addto pgroup resilientl-pools resilientl-pooll

create link resilientl-link resilientl-units ..

add link resilientl-link resilientl-pools

Setting the Directory Tags

The tags to be set in the directories whose files should be
treated as resilient, to follow the above configuration,
would minimally be:

. (tag) (AccessLatency) :ONLINE

. (tag) (sGroup) :resilientl

dCache User Workshop

Barcelona 12/04/2016

Pool Sharing

It is possible to share pools between a resilient group and a group
backed by HSM. The files can be mixed, and the HSM files will not
be replicated. Example

hsmunit:

/ﬁlel: written to directory with
tags CUSTODIAL NEARLINE hsmunit

hsmgrp /
Pool 1A || Pool 2A | Pool 3A
. J
Pool 1B || Pool 2B | Pool 3B
k resgrp

/ resunit, req = 2:

/ file2: written to directory with
) tags REPLICA ONLINE resunit

Because the resilience service checks the AccessLatency attribute, if
the file is NEARLINE it is ignored. This pertains to pool scans as well.

Thus 1A, 2A and 3A can have both replicas and cached copies.

Cached Files on Resilient Pools

On resilient pools, any such cached copies are assumed to be
from files with AccessLatency NEARLINE. Any ONLINE file
which is written to a resilient pool will have the sticky bit
owned by ‘system’ forced there as well.

» How could a cached copy of an ONLINE file without a system sticky bit
arrive at a resilient pool?

p2p

— either an ad hoc p2p via an admin command (don’t do it!)

— orreplication across links

» Resilience guards against leaving this file cached by forcing its sticky bit, because
otherwise this would complicate and render less efficient the counting

procedure used to determine if a replica needs additional copies or not.

dCache User Workshop Barcelona 12/04/2016

Recommended Best Practice

1. Rebalancing should rarely be necessary on resilient
pools, but if you should decide to rebalance a
resilient pool group, be sure to disable resilience.
One can do this on a pool-by-pool basis, or by globally
disabling resilience:

\s poolname[,poolname ..] pool suppress resilience on
OR

\s Resilience disable strict

2. Hot replication should be turned off on resilient
pools.

dCache User Workshop Barcelona 12/04/2016

Resilience Home

On the host where resilience is running, you will see several files
in the resilience home directory (/var/lib/dcache/resilience by
default)

— pnfs-operation-map
— pnfs-backlogged-messages
— pnfs-operation-statistics

— pnfs-operation-statistics-task-{datetime}

— {poolname}-inaccessible-files

Checkpointing & Message Backlog

pnfs-operation-map

is a checkpointed image of the main operation table. By default, this
snapshot is written (in simple text format) every minute. It is a
heuristic for immediately reprocessing incomplete operations in case
of a domain crash and restart. Note that it is an approximation, so not
all file operations in progress at that time may have actually been
saved. The fallback for this is that the periodic pool scan should
eventually detect any missing replicas not captured at restart/reload.

pnfs-backlogged-messages

It is possible to enable and disable message handling temporarily
inside resilience. There is also a short delay at startup which may also
accumulate a backlog. Messages which arrive during this period are
written out to this file, which is then read back in and deleted during
(re)initialization.

Inaccessible Files

{poolname}-inaccessible-files

When files subject to replication are discovered to have no
currently available copies (all its locations are not readable), its
pnfsid is written to this file. This action is also associated with an
alarm, but no attempt to rectify the situation is made (that is left
to the administrator for the moment).

dCache User Workshop Barcelona 12/04/2016

Statistics

— pnfs-operation-statistics

— pnfs-operation-statistics-task-{datetime}

One can optionally turn on the recording of statistical data. Two
kinds of files are produced. The first is a general overview of
performance with respect to pnfs messages and operations. The
second are detailed, task-by-task records and timings which are
logged to a file which rolls over every hour.

S B

10.
11.
12.
13.

14.

15.
16.
17.

Actions Available via Admin Command

Enable and disable resilience message handling.

Enable and disable all of resilience without having to stop the domain.

Print to a file (in /var/lib/dcache/resilience) the pnfsids and their replica counts for a given pool.
Run a job to adjust a given pnfsid (i.e., make required copies or remove unnecessary ones).

Reset properties controlling the internal handlers and maps (such as sweep intervals, grace periods,
etc.).

List the current pnfs operations, filtered by attributes or state; or just output the count for the given
filter.

List pool information derived from the pool monitor.

List pool operations, filtered by attributes or state.

Cancel pnfs operations using a filter similar to the list filter.

Cancel pool operations using a filter similar to the list filter.

Initiate forced scans of one or more pools.

Set the status of a pool operation to exclude or include it from scanning.

Display diagnostic information, including number of messages received, number of operations
completed or failed, and their rates.

Display detailed transfer information by pool and type (copy/remove), with the pool as source and
target.

Enable or disable the collection of statistics to files in resilience home.
Display the contents of the diagnostic history file.

List the most recent pnfsid operations which have completed and are now no longer active (a 'history'
buffer). Do the same for the most recent terminally failed operations.

The new resilience service will be
included in golden release 2.16.

The old Replica Manager will be
deprecated, but still available.

Feedback is welcome,
especially from those of you
who make use of this feature

in production.

dCache User Workshop Barcelona 12/04/2016
Script for Demonstrating Admin Commands (1)

ACTION TEXT

\c Resilience Connect to the resilience service (using its exported well-known cell name).

The commands specific to resilience are: counts, diag, diag history, disable, enable,
\h pnfs cancel, pnfs list, pool group info, pool cancel, pool info, pool list, pool scan

diag, or diagnostics, prints out information about the system such as uptime, last

sweep times of pnfs operations, checkpointing, and cumulative totals for messages and

actions. The rates associated with these are sampled based on the checkpointing
diag interval.

adding a regular expression argument will display a detailed list of transfers by pool.
diag .* The sizes represent the total bytes received as target.
diag dmsdcal? regex is greedy with no delimiters
diag dmsdcal7-1% this applies to all the commands that take regex arguments

) . diag history displays the operations statistics file; statistics collection is disabled by
diag history default

diag history -enable We will turn it on to show the output during our small test.

Pool Monitor information is reparsed into structures useful to the resilience service.
Basic pool information can be seen
pool info using this command

pool info dmsdcal? (which also takes a regular expression argument)

pool 1s For each resilient pool, resilience stores an operation marker; Is displays these.
This command, along with pool cancel and pool scan, accepts a number of attribute
\h pool 1s filters

We are going to use the -state filter (WAITING, RUNNING) to check up on a pool
operation momentarily

By way of demonstration, we will now do the following:
- disable a pool

- examine the results

- re-enable the pool before its scan completes

- examine the results

for lack of time, | will not show here the behavior of resilience when the pool down
scan completes (to wit: a down pool is scanned only once, and will not be rescanned
automatically until it comes back on line)

dCache User Workshop Barcelona 12/04/2016
Script for Demonstrating Admin Commands (2)

Before we do this, let's have a look at the pool scan settings.

pool ctrl info This command controls various timeout and queueing properties.

We won't demonstrate all of these. What | want to focus on is the grace period.

These exist because it may be desirable not to take immediate action when a pool goes
down or comes back on line.

(There is also a way to disable resilience handling on a pool by using a pool command,
which | will show shortly.)

As you can see, both down and restart have a large delay (1 DAY). Let's set these to 10
seconds.
pool ctrl reset -down=10 -unit=SECONDS
pool ctrl reset -restart=10 -unit=SECONDS
pool ctrl info Now we can observe the action taken when a pool goes down.

\s dmsdcal7-1.1 pool disable -strict Let us issue a disable command to a pool.

e (sdcall-l.1 note it is in the WAITING state

note also that the pool sweep period is set to 3 minutes. Rather than waiting for the next
sweep, let's interrupt the sweeper

and make it run immediately.

now we can see the operation is running. We can also see the total number of files it
pool 1s dmsdcal7-1.1 needs to handle and the percentage done.

pool ctrl run

If you wish to examine (or cancel) individual file operations, use the pnfs version of the
pnfs 1s pool commands we have seen

these also have filtering attributes

If you just want to see a count of operations, with or without filter values, append a $ for
the number of operations, and an '@’ for the counts broken down by pool or origin. Note
that count >= operations, because some pnfsids may require the operation to be

pnfs 1ls $@ -state=RUNNING repeated.

pnfs 1ls $@ -state=WAITING

We can also see operations which have recently completed. (The buffer size is 5000 by
history default)

history errors If there are errors, these can be viewed apart

dCache User Workshop

\s dmsdcal7-1.1 pool

pnfs 1ls

history

pool 1ls dmsdcal77-1.1
pool ctrl run

pool 1ls dmsdcal77-1.1

history
\s dmsdcalé-1.1 pool
\s dmsdcal6é-1.1 pool

pool 1ls dmsdcalé6-1.1
\s dmsdcal6é-1.1 pool

pool 1ls dmsdcalé6-1.1
\s dmsdcal6é-1.1 pool
pool 1ls dmsdcalé6-1.1

pool cancel dmsdcal6-

diag history

Barcelona 12/04/2016

Script for Demonstrating Admin Commands (3)

enable

suppress resilience on
disable -strict

suppress resilience off

enable

1.1 -includeChildren

pool group info -showUnits -verify

Now let us re-enable the pool

Notice there are no more operations
History shows they have been canceled.
The pool operation has been restarted fresh. Let's force a run

Now we should begin seeing remove operations, since there were extra copies created
by the pool down which are no longer necessary

We can suppress resilience on a pool. This flag is part of the setup; doing save will make
it survive a pool restart.

If we then disable the pool,

the status of the pool is inactive, and the job state is IDLE, since no action is taken.
turning off suppression will immediately notify resilience

and the pool operation will go to waiting, as usual, to process the pool as DOWN
or as enabled

let's cancel it. The include children flag here is not strictly necessary, as the operation
has not begun to run, but the flag indicates that any unfinished file operations should
also be canceled.

here we can see the operation statistics recorded since we enabled this
(to see the detailed task-by-task statistics, you must log on and examine the file in /var/
lib/dcache/resilience)

One last command I'd like to mention is pool group info

This provides a way to see which storage units are linked to a resilient group, and to
check that the pools in the group are sufficient to meet the requirements for all those

units

