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Motivation: Cosmology on Landscapes 

To reconcile apparently fine tuned measured quantities (value of the CC etc.) and 
predict other observables (scalar spectral index, tensor to scalar ratio etc.) it is 
tempting to use statistical arguments, noting that:

- Multi-field models with complicated potentials are common in String Theory. Many 
different histories of the early universe are possible.

- Eternal inflation samples different histories.



Some Concerns 

Landscape in ST: plethora of metastable vacua – eternal inflation.
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Landscape in ST: plethora of metastable vacua – eternal inflation.

Caveat I: Vacua may not be long lived

- Resonant tunneling (Tye; Saranki
Shiu, Shlaer 07)

- Disorder (Podolsky et.al. 08)
- Giant Leaps (Brown, Dhalen, 10,11)
- Instabilities (Greene at.al.13)
- Classical unstable directions 

(D.Battefeld, T.B. 12)

Working hypothesis: 
eternal inflation is present (can check
In concrete setups, see e.g. Masoumi, 
Vilenkin 16 for axionic landscapes)
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Working hypothesis: 
Landscape idea + eternal inflation

Caveat II: Measure Problem

no mathematically rigorous way to 
make predictions in the multiverse
(dependence on choice of measure) 

See e.g. Schiffrin and Wald 12, 
Freivogel 11 for reviews.  

Approach:
Pragmatism: choose a sensible one
and try to make predictions, Guth 12, 
Vanchurin 15, …
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Working hypothesis: 
Landscape idea + eternal inflation

Caveat II: Measure Problem

no mathematically rigorous way to 
make predictions in the multiverse
(depend on choice of measure) 

See e.g. Schiffrin and Wald 12, and 
Freivogel 11 for recent reviews  

Approach:
Ignore it for the time being.

Caveat III: Potential on Landscape 
relevant for our universe is unknown

- Constructions of concrete toy-models 
(e.g. Denev-Douglas, Random N=1 
SUGRA, see i.e. Marsh, McAllister, 
Wrase 11; Pedro, Westphal 13, …)

- Use of random potentials (Easther, 
Aazami 05; Agarwal et.al.11; Frazer, 
Liddle 11; T.B., D.B., Schulz 12, …)

Approach: 
Phenomenology: pick framwork, use 
rand. potentials + rand. matrix theory.



Some Concerns

Landscape in ST: plethora of metastable vacua – eternal inflation.

Let’s assume that the basic idea is right.

To make any progress, we need to understand how to

- model concrete landscapes via random potentials

- efficiently sample different histories (numerically challenging for many fields 
even at the background level) and compute observables (work in progress, 
not this talk.)

- make analytic predictions (this talk): use e.g. random Matrix theory.

Caveat I: Vacua may not be long lived

Caveat II: Measure Problem

Caveat III: Potential on Landscape 
relevant for our universe is unknown



Some Known Results based on Random Matrix theory: 

Aazami, Easther 05

If Inflation takes place, it will most likely occur at a single saddle point.

If Inflation takes place, it is more likely to be of short duration.

Freivogel, Kleban, Rodriguez Martinez, Susskind 05;
Agarwal, Bean, McAllister, Xu 11; Schulz, D.B., T.B. 12;
Marsh, McAllister, Pajer, Wrase 13

Aazami, Easther 05;
Dean, Majumdar 06; Vivo, Majumdar, Bohigas 07;
Marsh, McAllister, Wrase 11; 
Chen, Shiu, Sumitomo, Tye 11

Super exponential suppression for non-diagonal Hessians with zero mean:
For large D, almost all critical points are saddle points. 



A concrete Landscape: Axions

- Common in String Theory.
- Potential protected by (softly broken) shift symmetry.
- Candidates for (multi-field) inflation: alignment effects (KNP mechanism,

natural inflation, N-flation, …).
- Dark matter candidates (wide range of possible masses).
- A simple landscape to try probabilistic arguments and/or anthropics.



Potential:

mixing matrix

decay constantstrength of 
source terms

A priori, we do not know the values of parameters.
Consider limit

Make educated guess about the distribution of parameters. 

Expect: Since the potential becomes random, universal features should become 
apparent. 

e.g.: T. Higaki, F. Takahashi 15



Question:

Given the relatively simple potential of multi-axion systems,
can we compute the distribution of vacua that are reached dynamically after fields

evolve on such a landscape?



Steps:

1.Counting of all minima
- numerically (only viable for small n and D), 

T. Higaki, F. Takahashi 15
- analytic approximation of Probability Distribution Function (PDF) 

(application of random matrix theory (RMT), large n, D limit).
G. Wang, T. Battefeld 15

2. Incorporate effect of classical evolution, G. Wang, T. Battefeld 15
- numeric (only viable for small n and D),
- analytic: we will see that RMT is not sufficient!

3. Incorporate stability of vacua w.r.t. tunneling, A. Masoumi, A. Vilenkin 16
- numeric
- analytic (reliable analytic approximations are possible)



Conventions:

Mixing matrix: real valued, so we can set             without loss of generality, 
distributed over the interval 

Source terms: distributed over the unit interval, and rescaled such that 

Phases are chosen randomly.

Note: we varied the type of distributions: results become insensitive
in the large n, D limit.



Find Minima numerically:

Choose 5000 random initial values, and solve

until a minimum is found.

Observation: the PDF of dynamically reached minima differs considerably from
the one of all minima. Example:              ,  

Counting all. Dynamically reached. 



Goal: explain PDF of dynamically reached minima



Often used approach: 

Outline of the (tedious) computation:

1. Based the definition of the potential, compute the PDF of V and its first and 
second derivative.

2. Compute the number of critical points that are reached if a given potential 
distance is traversed.

3. Based on the PDF of the Hessian and RMT, compute the probability that a 
given critical point is a minimum.

4. compute PDF of minima.



1. PDF of V 

Take Gaussian distribution for       with mean and variance, 

The  PDF of V becomes approximately Gaussian, with

Note: ``a’’ controls the scatter among different sources. As long as a << 1, our final 
results are independent of it.



1. PDF of the gradient’s absolute magnitude

It obeys a chi^2-distribution:

, due to sum over random variables on unit interval, so 

The expectation value becomes

Note: the last expression is valid in the large n, D limit, but analytic expressions are
available for all values of n,D.



1. PDF of the Hessian: 

The Hessian at a given height has a deterministic component and a random one,

which is approximately Gaussian distributed. The Hessian has therefore a mean and 
variance of:  

where                                                           



1. Check: PDF of the Hessian

Compare diagonal and off-diagonal entries of the Hessian at
2000 random points (Histogram) with the analytic approximation (solid)



2. Number of critical points: 

Ansatz: potential difference to nearest critical point at a given random point:

Numerically, beta is insensitive to changes in n, D and of order one. With the PDF of 
the gradient, we get

So that the average number of critical points when traversing   becomes: 



3. Probability that a critical point is a minimum: 

The Hessian has a deterministic component give by the height of the potential. The
probability that all eigenvalues are positive can be approximated by (RMT)

For large n and D, this probability becomes

Probability that the 
largest eigenvalue is 

positive.

The usual result due to 
Wiegners semicircle law for a 

Gaussian random matrix.



4. Computing the Historgrams

The probability that no minimum is reached down to a given value of V, marginalized 
over initial values, becomes

Starting only at V=1 and working in the large n, D limit, yields

with

Note the exponential dependence on D.



4. Computing the Historgrams

Comparison to observed histograms shows large discrepancies, e.g: for
D=3 and n=125



Causes for discrepancies: 

- Two competing dynamical selection effects:

1. Minima in the vicinity of the trajectory act as local attractors.

2. Dynamical evolution tends to follow the steepest direction.

- Not all constraints are imposed (lower bound at V=0, gradient is zero at critical pt.)

- entries in the Hessian are correlated



Empirical Result: 

To bypass RMT, we measure 1/         directly, that is, the ratio of 

the average potential difference between encountered critical points to
the mean potential difference to the next minimum.

R is well fitted by:

and insensitive to changes 
in n and only logarithmically
dependent on D.



Error bars stem from average over
30 Histograms.

The mean of the Histograms 

Given this simple empirical result, we get for the mean of the peaks position in the 
Histrograms: 

One can also compute the width of the historgrams.



Summary 

The peaks position in the PDF of dynamically reached minima depends only
logarthmically on the number of fields: 

in contrast to the naïve expectation. A theoretical derivation is lacking so far.

Take home message: Counting all vacua is not sufficient for quantitative arguments.
RMT is not sufficient either.

Note: The PDF including dynamical selection effects needs to be multiplied with the
one describing the stability of vacua with respect to tunneling computed in
Masoumi, Vilenkin 16 to make quantitative predictions.
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