Towards a world-sheet description of DFT

Erik Plauschinn

LMU Munich

Bad Honnef - 24.02.2016

This talk is based on ::

- T-duality revisited
- On T-duality transformations for the three-sphere [arXiv:1408.1715]
- and work in progress with I. Bakas \& D. Lüst

outline

1. motivation
2. t-duality
3. example

outline

1. motivation
2. t-duality
3. example
motivation :: dualities

Duality :: two different theories describe the same physics.

Duality :: two different theories describe the same physics.

They play an important role in understanding string theory.

Duality ::

Idea ::

Duality :: is a symmetry of the equations of motion.

Idea ::

Duality :: is a symmetry of the equations of motion.

Idea :: make duality into a symmetry of an action.

outline

1. motivation
2. t-duality
3. example

T-duality :: the physics of string theory compactified on two circles

$\Theta \frac{\alpha^{\prime}}{R}$
is indistinguishable.

Bouwknegt, Evslin, Mathai - 2003

Bouwknegt, Evslin, Mathai - 2003

Bouwknegt, Evslin, Mathai - 2003

Bouwknegt, Evslin, Mathai - 2003

```
doubled geometry
```


base manifold

Bouwknegt, Evslin, Mathai - 2003
doubled geometry symmetry
circle fibration
duality

Bouwknegt, Evslin, Mathai - 2003
doubled geometry symmetry
circle fibration
duality

Bouwknegt, Evslin, Mathai - 2003

The reduction

Main idea ::

1. Identify a global symmetry (circle) in the action.
2. Gauge this symmetry.
3. Integrate-out the gauge field.

Consider the following sigma-model action for the doubled geometry

$$
\mathcal{S}=-\frac{1}{4 \pi \alpha^{\prime}} \int_{\partial \Sigma}\left[G_{i j} d X^{i} \wedge \star d X^{j}+\alpha^{\prime} R \Phi \star 1\right]-\frac{i}{2 \pi \alpha^{\prime}} \int_{\Sigma} \frac{1}{3!} H_{i j k} d X^{i} \wedge d X^{j} \wedge d X^{k} .
$$

This action is invariant under global transformations $\delta_{\epsilon} X^{i}=\epsilon k^{i}(X)$ if

$$
\mathcal{L}_{k} G=0, \quad \iota_{k} H=d \mathrm{v}, \quad \mathcal{L}_{k} \Phi=0 .
$$

isometry (circle)
one-form v

The gauged action takes the following form

$$
\begin{aligned}
\widehat{\mathcal{S}}= & -\frac{1}{4 \pi \alpha^{\prime}} \int_{\partial \Sigma}\left[G_{i j}\left(d X^{i}+k^{i} A\right) \wedge \star\left(d X^{j}+k^{j} A\right)+2 i \vee \wedge A+\alpha^{\prime} R \Phi \star 1\right] \\
& -\frac{i}{2 \pi \alpha^{\prime}} \int_{\Sigma} \frac{1}{3!} H_{i j k} d X^{i} \wedge d X^{j} \wedge d X^{k} .
\end{aligned}
$$

This action is invariant under local symmetry transformations provided that

$$
\iota_{k} \mathrm{v}=k^{m} \mathrm{v}_{m}=0
$$

For the gauged and ungauged theories to be equivalent, impose the constraint

$$
0=F=d A
$$

The equation of motion for the gauge field has the solution

$$
|k|^{2} A=-k^{i} G_{i j} d X^{j}-i \star v .
$$

Integrating-out the gauge field results in an action specified by

$$
\check{G}=G-\frac{1}{|k|^{2}} \mathrm{k} \wedge \star \mathrm{k}+\frac{1}{|k|^{2}} \mathrm{v} \wedge \star \mathrm{v}, \quad \check{H}=H+d\left(\frac{1}{|k|^{2}} \mathrm{k} \wedge \mathrm{v}\right) .
$$

Note that k is a null-eigenvector for \check{G} and $\check{H}::$

$$
\begin{array}{|l|}
\hline \iota_{k} \check{G}=0 \\
\iota_{k} \check{H}=0
\end{array} \longrightarrow \quad \text { change of coordinates } \longrightarrow \quad \text { dimensions reduced }
$$

The equation of motion for the gauge field has the solution

$$
\begin{gathered}
\mathcal{T}^{i}{ }_{j}=\left(\begin{array}{c:c}
k^{1} & 0 \\
\hdashline k^{2} & \check{\mathcal{G}}_{i j}=\left(\mathcal{T}^{T} \check{G} \mathcal{T}\right)_{i j}=\left(\begin{array}{c:c}
0 & 0 \\
\hdashline \vdots & 1 \\
k^{D} &
\end{array}\right) \check{G}_{a b} \\
\vdots
\end{array}\right) \\
\check{\mathscr{H}}_{i j k}=\check{H}_{l m n} \mathcal{T}^{l}{ }_{i} \mathcal{T}^{m}{ }_{j} \mathcal{T}^{n}{ }_{k} \\
\check{\mathcal{H}}_{1 j k}=0
\end{gathered}
$$

\longrightarrow dimensions reduced

The equation of motion for the gauge field has the solution

$$
|k|^{2} A=-k^{i} G_{i j} d X^{j}-i \star v .
$$

Integrating-out the gauge field results in an action specified by

$$
\check{G}=G-\frac{1}{|k|^{2}} \mathrm{k} \wedge \star \mathrm{k}+\frac{1}{|k|^{2}} \mathrm{v} \wedge \star \mathrm{v}, \quad \check{H}=H+d\left(\frac{1}{|k|^{2}} \mathrm{k} \wedge \mathrm{v}\right) .
$$

Note that k is a null-eigenvector for \check{G} and $\check{H}::$

$$
\begin{array}{|l|}
\hline \iota_{k} \check{G}=0 \\
\iota_{k} \check{H}=0
\end{array} \longrightarrow \quad \text { change of coordinates } \longrightarrow \quad \text { dimensions reduced }
$$

Summary ::

- through a gauging procedure on the world-sheet,
- the target-space dimensions can be reduced.

Constraints ::

- global symmetry

$$
\mathcal{L}_{k} G=0, \quad \iota_{k} H=d \vee, \quad \mathcal{L}_{k} \Phi=0,
$$

- gauging

$$
\iota_{k} \mathrm{~V}=0=\iota_{v} \mathrm{k},
$$

- vanishing F

$$
\mathcal{L}_{v} G=0, \quad \iota_{v} H=d \mathbf{k}, \quad \mathcal{L}_{v} \Phi=0 .
$$

Summary ::

- through a gauging procedure on the world-sheet,
- the target-space dimensions can be reduced.

Constraints ::

- global symmetry

$$
\mathcal{L}_{k} G=0, \quad \iota_{k} H=d \mathrm{v}, \quad \mathcal{L}_{k} \Phi=0,
$$

- gauging

$$
\iota_{k} \mathrm{~V}=0=\iota_{v} \mathrm{k},
$$

- vanishing F
$\mathcal{L}_{v} G=0, \quad \iota_{v} H=d \mathbf{k}, \quad \mathcal{L}_{v} \Phi=0$.

Outlook ::

- T-duality corresponds to interchanging $k \longleftrightarrow v$.

outline

1. motivation
2. t-duality
3. example

Consider the SU(2) WZW model (three-sphere with H-flux) ::

$$
\begin{array}{lr}
d s^{2}=R^{2}\left(\sin ^{2} \eta d \zeta_{1}^{2}+\cos ^{2} \eta d \zeta_{2}^{2}+d \eta^{2}\right), \\
H=2 R^{2} \sin \eta \cos \eta d \zeta_{1} \wedge d \zeta_{2} \wedge d \eta, & \zeta_{1,2} \in[0,2 \pi) \\
\Phi=\text { const. } & \eta \in[0, \pi / 2]
\end{array}
$$

This geometry has two directions of isometry.

The reduction constraints are satisfied by precisely two Killing vectors ::

$$
\text { choice } 1-k=\partial_{\zeta_{1}}
$$

$$
\breve{d s}^{2}=R^{2}\left(\cot ^{2} \eta d \zeta^{2}+d \eta^{2}\right)
$$

$$
\check{H}=0,
$$

$$
\check{\Phi}=\Phi-\log (\sin \eta),
$$

$$
\text { choice } 2-k=\partial_{\zeta_{2}}
$$

$$
\begin{aligned}
& \check{d s}^{2}=R^{2}\left(\tan ^{2} \eta d \zeta^{2}+d \eta^{2}\right), \\
& \check{H}=0 \\
& \check{\Phi}=\Phi-\log (\cos \eta) .
\end{aligned}
$$

The reduction constraints are satisfied by precisely two Killing vectors ::

$$
\text { choice } 1-k=\partial_{\zeta_{1}}
$$

$$
\begin{aligned}
& \check{d s}^{2}=R^{2}\left(\cot ^{2} \eta d \zeta^{2}+d \eta^{2}\right), \\
& \check{H}=0 \\
& \check{\Phi}=\Phi-\log (\sin \eta)
\end{aligned}
$$

$$
\text { choice } 2-k=\partial_{\zeta_{2}}
$$

$$
\begin{aligned}
& \check{d s}^{2}=R^{2}\left(\tan ^{2} \eta d \zeta^{2}+d \eta^{2}\right) \\
& \check{H}=0 \\
& \check{\Phi}=\Phi-\log (\cos \eta)
\end{aligned}
$$

The reduced theories are conformal, and T-dual to each other.

Summary ::

- the $\operatorname{SU}(2) \mathrm{WZW}$ model $(\mathrm{D}=3)$ allows for two reductions,
- leading to two conformal models in $D=2$,
- which are T-dual to each other.

Summary ::

- the SU(2) WZW model ($D=3$) allows for two reductions,
- leading to two conformal models in $D=2$,
- which are T-dual to each other.

More results ::

- generalization to multiple (non-abelian) gaugings,
- T-duality is a symmetry of the doubled theory,
- the Buscher rules are reproduced,
- results on conformality of reduced theories,
- WZW models with arbitrary group,
...

