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Towards a world-sheet description of DFT



based on ...

◾ T-duality revisited

This talk is based on ::

[arXiv:1310.4194]

◾ On T-duality transformations for the three-sphere [arXiv:1408.1715]

◾ and work in progress with I. Bakas & D. Lüst [arXiv:1602.xxxxx]
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Duality ::     two different theories describe the same physics. 



motivation :: dualities

Type IIB

Type IIA

Het            SO(32)

Het             E8 ⇥ E8

T T

SS

Type I

M-theory

They play an important role in understanding string theory. 

Duality ::     two different theories describe the same physics. 
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motivation :: main idea

is a symmetry of the equations of motion.Duality ::

Idea :: make duality into a symmetry of an action.
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t-duality :: generalities

the physics of string theory compactified on two circles

is indistinguishable.

↵0

R
R

T-duality ::
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t-duality :: reduction via gauging

The reduction

can be realized via a gauging procedure.

doubled geometry

physical geometry

Main idea :: 1. Identify a global symmetry (circle) in the action. 

2. Gauge this symmetry. 

3. Integrate-out the gauge field.



t-duality :: reduction — step I

Consider the following sigma-model action for the doubled geometry

S = � 1

4⇡↵0

Z

@⌃

h
Gij dX

i ^ ?dXj + ↵0R� ? 1
i
� i

2⇡↵0

Z

⌃

1
3! Hijk dX

i ^ dXj ^ dXk .

LkG = 0 , ◆kH = dv , Lk� = 0 .

This action is invariant under global transformations                         if�✏X
i = ✏ki(X)

isometry (circle) one-form v



t-duality :: reduction — step II

The gauged action takes the following form

bS =� 1

4⇡↵0

Z

@⌃

h
Gij(dX

i + kiA) ^ ?(dXj + kjA) + 2iv ^A+ ↵0R� ? 1
i

� i

2⇡↵0

Z

⌃

1
3! Hijk dX

i ^ dXj ^ dXk .

For the gauged and ungauged theories to be equivalent, impose the constraint

0 = F = dA .

Hull, Spence - 1989 & 1991

◆kv = kmvm = 0 .

This action is invariant under local symmetry transformations provided that



t-duality :: reduction — step III

The equation of motion for the gauge field has the solution

|k|2A = �kiGij dX
j � i ? v .

Integrating-out the gauge field results in an action specified by

Ǧ = G� 1

|k|2 k ^ ?k+
1

|k|2 v ^ ?v , Ȟ = H + d

✓
1

|k|2 k ^ v

◆
.

Note that     is a null-eigenvector for      and      ::Ǧ Ȟk

change of coordinates dimensions reduced
◆kǦ = 0

◆kȞ = 0
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Ǧ = G� 1

|k|2 k ^ ?k+
1

|k|2 v ^ ?v , Ȟ = H + d

✓
1

|k|2 k ^ v

◆
.

Note that     is a null-eigenvector for      and      ::Ǧ Ȟk

change of coordinates dimensions reduced
◆kǦ = 0

◆kȞ = 0

Moreover, it turns out that k is also a Killing vector for Ǧ (and similarly for Ȟ),
that is

LkǦ = 0 , LkȞ = 0 . (2.17)

Given that k is a null-vector, we can perform a change of coordinates. Assuming
without loss of generality that k1 is non-zero, we transform the matrix Ǧ as

Ǧij =
�
T T Ǧ T

�
ij
=

0

BB@

0 0

0 Ǧab

1

CCA (2.18)

T i
j =

0

BBBB@

k1 0

k2

... 1

kD

1

CCCCA
(2.19)

In the transformed matrix Ǧij all entries along the i, j = 1 direction vanish, and
we therefore arrive at the expression

Ǧij =

0

BB@

0 0

0 Ǧab

1

CCA , (2.20)

where a, b = 2, . . . , D. Turning to the field strength Ȟ and employing the matrix
T i

j, we transform Ȟ as follows

Ȟijk = ȞlmnT l
iT m

jT n
k (2.21)

Similarly to the transformed metric Ǧij, we again find that all components of Ȟ
along the i = 1 direction vanish, that is

Ȟ1jk = 0 (2.22)

From (2.20) and (2.22) we can conclude that in the action (2.12) the forms corre-
sponding to the i = 1 direction have dropped out.
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T i

j, we transform Ȟ as follows

Ȟijk = ȞlmnT l
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Summary :: ◾ through a gauging procedure on the world-sheet, 
◾ the target-space dimensions can be reduced.

Constraints ::

◾ gauging ◆kv = 0 = ◆vk ,

◾ vanishing F LvG = 0 , ◆vH = dk , Lv� = 0 .

◾ global symmetry LkG = 0 , ◆kH = dv , Lk� = 0 ,



t-duality :: summary

Summary :: ◾ through a gauging procedure on the world-sheet, 
◾ the target-space dimensions can be reduced.

Constraints ::

◾ gauging ◆kv = 0 = ◆vk ,

◾ vanishing F LvG = 0 , ◆vH = dk , Lv� = 0 .

◾ global symmetry LkG = 0 , ◆kH = dv , Lk� = 0 ,

Outlook :: ◾ T-duality corresponds to interchanging               . k  ! v
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example :: su(2) wzw

Consider the SU(2) WZW model (three-sphere with H-flux) ::

H = 2R2
sin ⌘ cos ⌘ d⇣1 ^ d⇣2 ^ d⌘ ,

ds2 = R2
⇣
sin

2⌘ d⇣21 + cos

2⌘ d⇣22 + d⌘2
⌘
,

� = const.

⇣1,2 2 [0, 2⇡) ,

⌘ 2 [0,⇡/2] .

This geometry has two directions of isometry.

⌘ = 0 ⌘ = ⇡/2



example :: reduced theories

The reduction constraints are satisfied by precisely two Killing vectors ::

choice 1 — k = @⇣1 k = @⇣2choice 2 — 

Ȟ = 0 ,

ˇds
2
= R2

�
cot

2⌘ d⇣2 + d⌘2
�
,

ˇ

� = �� log(sin ⌘) ,

Ȟ = 0 ,

ďs
2
= R2

�
tan2⌘ d⇣2 + d⌘2

�
,

ˇ

� = �� log(cos ⌘) .

0.0 0.5 1.0 1.5

2

4

6

8

10
cot

2 ⌘

⌘ 0.0 0.5 1.0 1.5

2

4

6

8

10 tan2 ⌘

⌘



example :: reduced theories

The reduction constraints are satisfied by precisely two Killing vectors ::

choice 1 — k = @⇣1 k = @⇣2choice 2 — 

Ȟ = 0 ,

ˇds
2
= R2

�
cot

2⌘ d⇣2 + d⌘2
�
,

ˇ

� = �� log(sin ⌘) ,

Ȟ = 0 ,

ďs
2
= R2

�
tan2⌘ d⇣2 + d⌘2

�
,

ˇ

� = �� log(cos ⌘) .

The reduced theories are conformal, and T-dual to each other.



summary & more results

Summary :: ◾ the SU(2) WZW model (D=3) allows for two reductions, 
◾ leading to two conformal models in D=2, 
◾ which are T-dual to each other.



summary & more results

More results :: ◾ generalization to multiple (non-abelian) gaugings, 
◾ T-duality is a symmetry of the doubled theory, 
◾ the Buscher rules are reproduced, 
◾ results on conformality of reduced theories, 
◾ WZW models with arbitrary group, 
◾ …

Summary :: ◾ the SU(2) WZW model (D=3) allows for two reductions, 
◾ leading to two conformal models in D=2, 
◾ which are T-dual to each other.


