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Large field Inflation and axions

→ Slow-roll parameters: ε ∼ (V
′
/V )2 � 1, η ∼ V

′′
/V � 1,Mpl ≡ 1.

CMB Observables:

ns − 1 = 2η − 6ε ' 0.04
r = 16ε ≤ 0.08

→ Natural choice, ε . η ∼ 10−2, requires transplanckian field displacements
∆φ & 4(ε/10−2)1/2MPl .

Shift symmetry needed to ensure flatness over large range→ Axions with
large decay constants!

Axions with large periodicities are also important in the mechanism of
Cosmological Relaxation of EW scale (see Witkowski’s talk).

However, stringy implementations of Axion Inflation exhibits a certain degree
of tuning/complexity.

→ Why? [Rudelius/Montero,Uranga,Valenzuela/· · · ]
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The Weak Gravity Conjecture (WGC)
[Arkani-Hamed,Motl,Nicolis,Vafa’06]

→ Extremal (Q/M = 1) black holes should be allowed to decay.

The Electric WGC
Consider a U(1) gauge theory with coupling g coupled to gravity in 4d (MPl ≡ 1).
Then there exists an electrically charged particle of mass mel and charge q s.t.:

qg

mel
& 1

The conjecture can be generalised to any p-form gauge theory with coupling ep,d
in d dimensions coupled to p − 1-dimensional objects with tension Tp−1.

ep,dqM
d/2−1
d

Tp−1
& 1

→ The case p = 0 constrains/rules out models of Axion Inflation where a
transplanckian range arises in the field space of one or more axions [see
Arthur’s talk].
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Axion Monodromy [Silverstein,Westphal ’08/· · · ]

However, transplanckian ranges can also be obtained by introducing
monodromies to extend the compact field space of one axion.

These models are not affected by the WGC for axions.

→ Phenomenological definition:

V =
1
2
m2φ2︸ ︷︷ ︸

monodromy breaking shift symmetry

+ α cos(φ/f )

→ For α/(m2f 2) > 1, the potential exhibits local minima.

Φ

V

Recently, application of monodromy to relaxation models
[Ibanez,Montero,Uranga,Valenzuela ’15].
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Domain walls in monodromy potential

→ The presence of local minima separated by “wiggles” can be effectively
understood via a dual description:

?F4 ≡ φ.

The corresponding 3-form potential couples to 2-dimensional objects in 4d ⇒
Domain walls!

L =
1
e2F

2
4 +

∫
DW

A3.

F4 is quantized in units of e: F4 = ne, n ∈ Z.

Across the membrane, the flux changes by one unit: n→ n + 1.

The discretuum of points n corresponds to the values of the field φ in the
cosine wells: φ ∼ 2πnf .

Away from membranes, energy density: 1
2F

2
4 ∼ 1

2n
2e2 → 1

2m
2φ2, so

e = 2πmf .

→ see Arthur’s talk for Kaloper-Sorbo domain walls arising in axion monodromy
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Constraints on Axion Monodromy, pt. 1

Apply WGC for 3-form potential and domain walls.

→ WGC: TDW . e ⇒ α . m2.

Tension of the heaviest domain walls: TDW ∼
√
V∆Φ ∼

√
αf .

→ The WGC requires a small tension, which can be obtained by lowering the
height of the wiggles, i.e. α.

Crucial: this is precisely what is needed to have slow roll inflation!

⇒ No tension between WGC and slow-roll⇒no constraint from the electric
WGC!

Φ

V

→

Φ

V

→ see Ibanez, Montero, Uranga, Valenzuela ’15 for constraints on KS domain walls for
relaxion
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Magnetic WGC

The magnetic WGC
Weakly coupled gauge theories with cutoff Λ and magnetic monopole of charge

qm break down at a scale:

Λ .
g

qm
parametrically smaller than MPl ≡ 1!

The minimally charged magnetic monopole should not be a black hole, i.e.
Mmon ∼ Λ/e2 . MBH ∼ R ∼ Λ−1.

Strategy: generalise this statement to any (p + 1)-form gauge theory with
d − (p + 4) magnetic branes.

1 In analogy to the monopole, the tension of the brane is found by:

T ∼ (1/e2
p,d)

∫
F 2
p+2 ∼ Λp+1/e2

p,d

2 Impose:
Td−(p+4) . TBH ∼ Md−2

d Rp+1.
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Constraints on Monodromy Inflation, pt. 2

⇒ Specialise to domain walls in 4d , i.e. p = 2:

Λ . e1/3

→ Caveat: there are no (−2)-branes! Assume that the bound can be obtained
by “analytical continuation” in p, d .

In our setup, e = 2πmf .

Inflation requires H ∼ V 1/2 . Λ.

Λ . e1/3 ⇒ φ . m−2/3(2πf )1/3

For large f ∼ O(1) and m ∼ 10−5, φ . 103.

→ Mild bound, which does not affect monodromy, unless f � 1.

Take home

1 Electric WGC does not constrain monodromy inflation
[see also Ibanez, Montero,Uranga,Valenzuela ’15].

2 Magnetic WGC limits the field range, but does not forbid phenomenological
realisations.
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How does ST fulfil the WGC?

1 All objects (or the lightest) satisfy T . e: not clear whether this is the case.

2 According to the magnetic WGC, the cutoff of the EFT is lowered →
potentially dangerous objects are removed from the spectrum of the EFT!

→ EFT is valid up to KK-scale: MKK ∼ 1/R.

Tension of a q-dimensional object descending from a p-brane in 10D:
Tq ∼ Mp+1

s Rp−q/gs .

Tq/M
q+1
KK ∼ Mp+1

s Rp+1/gs .

⇒ As R increases the object disappears from the low energy theory!

As a consequence, the electric WGC is automatically satisfied!

→ Take home: the magnetic WGC as the more fundamental constraint from a
ST point of view, therefore we assume that it is valid for any p-form.
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Problems with domain walls

General form of the WGC from extremality argument in d-dimensions:

γp,dT
2
p ≤ e2

p,dq
2Md−2

d

→ γp,d = 0 for axions (p = 0) and strings (p = d − 2). For domain walls
(p = d − 1) the inequality cannot be solved.

→ Strategy for axions [Picture taken from Gary Shiu’s talk at StringPheno 2015].
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The WGC as a geometric constraint

Idea: in string compactifications, the WGC translates into a constraint on
the geometry of a chosen CY X
Our strategy:

1 Start with p-branes in 10D, compactify on p-cycle Σ of a CY X to get
particles and gauge fields.

→ Known WGC translates into the condition:

V
1/2
X |qΣ|
VΣ

& 1,

where |qΣ| is the norm of the harmonic form related to Σ using the metric on
X , VX ,VΣ are volumes.

2 Consider q-branes in 10D, compactify on same p-cycle Σ.

→ Charge-to-tension ratio is the same up to O(1) prefactor that can be explicitly
computed.

3 Apply previously found constraint on the geometry to get the WGC for q − p
dim. objects in 4d .

→ No need of string dualities! (see Brown,Cottrell,Shiu,Soler/Ibanez, Montero,
Uranga, Valenzuela ’15)
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Summary and conclusions

1 Phenomenology:

Models of axion monodromy (inflation/relaxation) exhibit low energy
“wiggles”, which correspond to 4d domain walls.

The WGC can be applied to these domain walls:
Electric WGC: no constraints.

Magnetic WGC: bound on the maximal field range→ not dangerous for
phenomenology (unless f � 1!).

2 String compactifications:

In many cases, ST satisfies the WGC by lowering the cutoff of the EFT, i.e.
the Kaluza-Klein scale.

Therefore, the magnetic WGC should be seen as the more fundamental
constraint.

In this framework, the WGC can be formulated purely as a geometric
constraint on the sizes of CY cycles.

→ WGC can be extended to any p-dim object without need of string dualities!

Many thanks!
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Application to Axion Inflation

1 For 0-form gauge fields, i.e. axions:

Laxions ∼ f 2
∫

(∂φ)2 + Sinst , (1)

so the gauge coupling is 1/f and the tension is Sinst.

⇒ WGC for axions:
f . 1/S . 1, (2)

because S > 1 in a calculable regime.

Simplest model: single field natural inflation with f > 1 is ruled out!

Models with two or more axions with subplanckian decay constants are also
constrained.

Monodromy models are not constrained, because they have a single axion
with subplanckian decay constant.
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WGC as a geometric constraint

w i basis of Hp(X ,Z).

qki =

∫
Σk

w i =

∫
X

w i ∧ wk , (3)

Kij ≡
∫
X

wi ∧ ?wj . (4)

|qσ|2 ≡ K ijqΣ
i q

Σ
j (5)
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