

Bethe Center for Theoretical Physics

Higgs mass from SUST sector

Masaki Asano

(Bonn University)

Based on JHEP 1601(2016)066

MA, Y. Nakai, N. Yokozaki

Possibilities of Higgs mass from SUSY sector

TeV.SUSY (
$$m_{soft}^2 \sim F$$
)

$$W \supset \frac{B_{\mu}}{F} X H_d H_u \longrightarrow V \supset \left| \frac{B_{\mu}}{F} H_d H_u \right|^2$$

e.g., Brignole, Casas, Espinosa, Navarro '03; ...

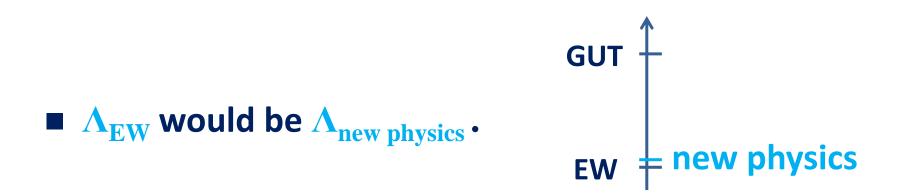
Hidden meson S of SUSY sector

$$W \supset \lambda_{\mathbf{S}} \ \mathbf{S} \ \mathbf{Hu} \ \mathbf{Hd} \ \longrightarrow \ V \supset \ |\lambda_{\mathbf{S}} \ \mathbf{Hu} \ \mathbf{Hd}|^2$$

S works like NMSSM singlet.

Higgs mass from SUSY sector

TeV.SUSY (
$$m_{soft}^2 \sim F$$
)


$$W \supset \frac{B_{\mu}}{F} X H_{d} H_{u} \longrightarrow V \supset \left| \frac{B_{\mu \iota}}{F} H_{d} H_{u} \right|^{2}$$
e.g., Brignole, Casas, Espinosa, Navarro '03; ...

Hidden meson S of SUSY sector

$$W \supset \lambda_{\mathbf{S}} \mathbf{S} \mathbf{Hu} \mathbf{Hd} \longrightarrow V \supset |\lambda_{\mathbf{S}} \mathbf{Hu} \mathbf{Hd}|^2$$

S works like NMSSM singlet.

motivation

Why no dangerous Flavor-Changing Neutral Current?

But, Gauge Mediation predicts heavy MSSM!!

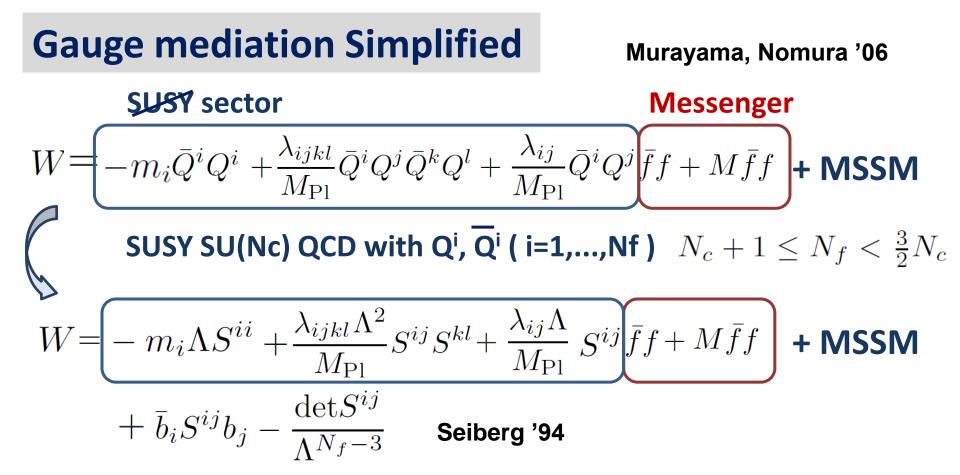
Small A term: $A_t ~ 0 ~ TeV$ $V \supset A_t ~ t_L ~ t_R ~ H_u$ \checkmark \checkmark Radiative correction to Higgs mass is small: $m_h = 125 ~ GeV \rightarrow > 5 ~ TeV ~ SUSY$, $\Leftrightarrow < 1 ~ TeV ~ m_{stop}$ is OK if $A_t ~ O(m_{stop})$

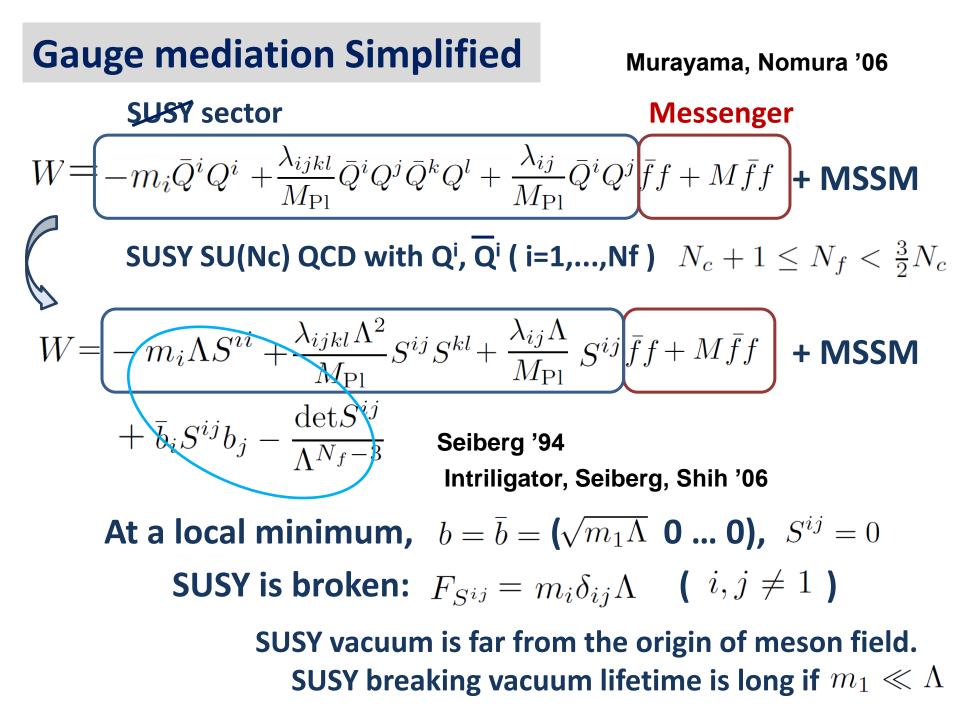
Motivation

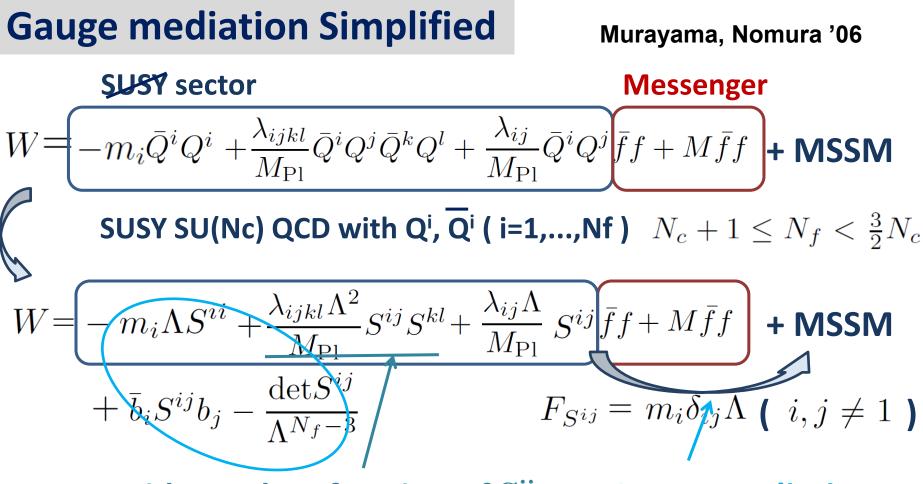
In this talk, we show a gauge mediation scenario with lighter SUSY particles by Hidden meson S (in SUSY sector)

$$W \supset \lambda_{\mathbf{S}} \mathbf{S} \mathbf{H} \mathbf{u} \mathbf{H} \mathbf{d} \longrightarrow \Delta \mathbf{m}_{\mathbf{h}} \sim \lambda_{S}^{2} v^{2} (\sin 2\beta)^{2}$$

• λ_s can be large: The perturbativity should keep only to the (low) confinement scale.


Scan get the soft mass (because S is also in SUSY sector)


In usual NMSSM extension, SUSY hardly mediates to the Singlet (because it's a SM singlet), which makes it difficult to achieve the correct EWSB.



At first, we introduce a known scenario of dynamical SUSY & gauge mediation

$$W = -m_i \bar{Q}^i Q^i + \frac{\lambda_{ijkl}}{M_{\rm Pl}} \bar{Q}^i Q^j \bar{Q}^k Q^l + \frac{\lambda_{ij}}{M_{\rm Pl}} \bar{Q}^i Q^j \bar{f} f + M \bar{f} f + \mathbf{MSSM}$$

SUSY SU(Nc) QCD with Qⁱ, \overline{Q}^i (i=1,...,Nf) $N_c + 1 \le N_f < \frac{3}{2}N_c$

Avoid massless fermion of S^{ij} Gauge Mediation

Our model

Composite NMSSM in Gauge mediation

MA, Nakai, Yokozaki '15

In hidden sector, we consider fields charged also the SM gauge. $W = m_{ij} \bar{Q}^{i} Q^{j}$ $\sum_{I=1}^{N_{f}} m_{I} Q_{I} \bar{Q}_{I} + m_{\Psi} \Psi_{5} \bar{\Psi}_{5}$ $D m_{\Psi} \Psi_{u} \bar{\Psi}_{d}$ SU(Nc)_H $SU(Nc)_{H} \times [SU(2) \times U(1)]_{SM}$

It can interact with MSSM Higgs.

$$+ \left[\lambda_u H_u \bar{\Psi}_d Q_{N_f} + \lambda_d H_d \Psi_u \bar{Q}_{N_f} \right]$$

 $m_{\Psi} > m_1 > m_2 > \dots > m_{N_f-1} \gg m_{N_f}$

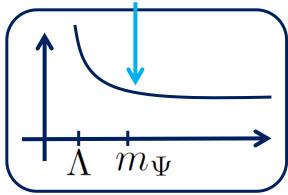
At first, we integrate out Ψ u,d

Composite NMSSM in Gauge mediation

After integrating out Ψu,d

1. A new higher dim. operator appears

$$-\frac{\lambda_u \lambda_d}{m_\Psi} Q_{N_f} \bar{Q}_{N_f} H_u H_d$$


2. The confinement occurs

Dynamical SUSY occurs.

MA, Nakai,

Yokozaki '15

• One light meson appears in low energy.

$$Q_{N_f}\bar{Q}_{N_f} \to \Lambda S$$

MA, Nakai, Yokozaki '15

Superpotential

$$W \supset m_{N_f} Q_{N_f} \bar{Q}_{N_f} + \frac{1}{M_0} Q_{N_f} \bar{Q}_{N_f} Q_{N_f} \bar{Q}_{N_f} - \frac{\lambda_u \lambda_d}{m_\Psi} Q_{N_f} \bar{Q}_{N_f} H_u H_d$$

$$\bigvee Q_{N_f} \bar{Q}_{N_f} \rightarrow \Lambda S$$

$$W \supset \xi_F S + \frac{1}{2} \mu' S^2 + \frac{\lambda_S S H_u H_d}{M_s}$$

S³ term is negligible because It's provided from higher dimensinal operator $(Q_{N_f}\bar{Q}_f)^3$ **Composite NMSSM in Gauge mediation**

Soft breaking term

Usual gauge mediation contributions

$$m_{
m soft} \sim \frac{g^2}{16\pi^2} \frac{F}{M}$$

For such a light meson (small), 2-loopreorrection
 can be important.
 Giveon, Katz, Komargodski '08

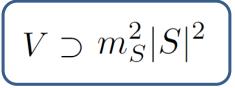
 $W_{\rm ISS} \supset \eta \, b_I S_{IJ} \bar{b}_J$

MA, Nakai,

Yokozaki '15

$$V \supset m_S^2 |S|^2 \sim \eta^6 F / (16\pi^2)^2 |S|^2$$

 $F \sim (100 \text{ TeV})^2$, favours low scale SUSY.


Phenomenology

Composite NMSSM

$$W \supset \xi_F S + \frac{1}{2}\mu' S^2 + \lambda_S S H_u H_d$$

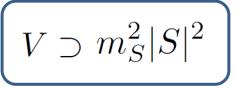
$$\mu_{\rm eff} \equiv \lambda_S v_S$$

Soft breaking term

+ usual gauge mediation

Higgs mass

$$M_{\rm H}^2 = \begin{pmatrix} M_{\rm H11}^2 & M_{\rm H12}^2 & M_{\rm H13}^2 \\ & M_{\rm H22}^2 & M_{\rm H23}^2 \\ & & M_{\rm H33}^2 \end{pmatrix}$$

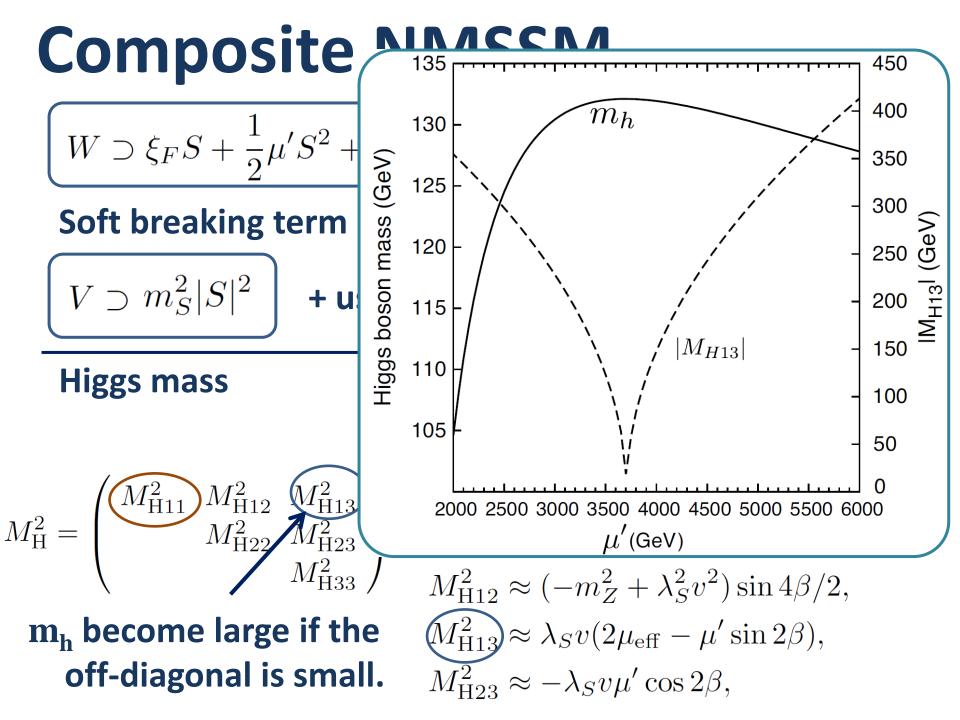

$$\begin{split} M_{\rm H11}^2 &\approx m_Z^2 (\cos 2\beta)^2 + \lambda_S^2 v^2 (\sin 2\beta)^2, \\ M_{\rm H22}^2 &\approx 2(\mu_{\rm eff}\mu' + \lambda_S\xi_F) / \sin 2\beta \\ &+ \left(m_Z^2 - \lambda_S^2 v^2\right) (\sin 2\beta)^2, \\ M_{\rm H33}^2 &\approx \mu' (-\lambda_S\xi_F + \lambda_S^2 v^2 \sin \beta/2) / \mu_{\rm eff}, \\ M_{\rm H12}^2 &\approx (-m_Z^2 + \lambda_S^2 v^2) \sin 4\beta/2, \\ M_{\rm H13}^2 &\approx \lambda_S v (2\mu_{\rm eff} - \mu' \sin 2\beta), \\ M_{\rm H23}^2 &\approx -\lambda_S v \mu' \cos 2\beta, \end{split}$$

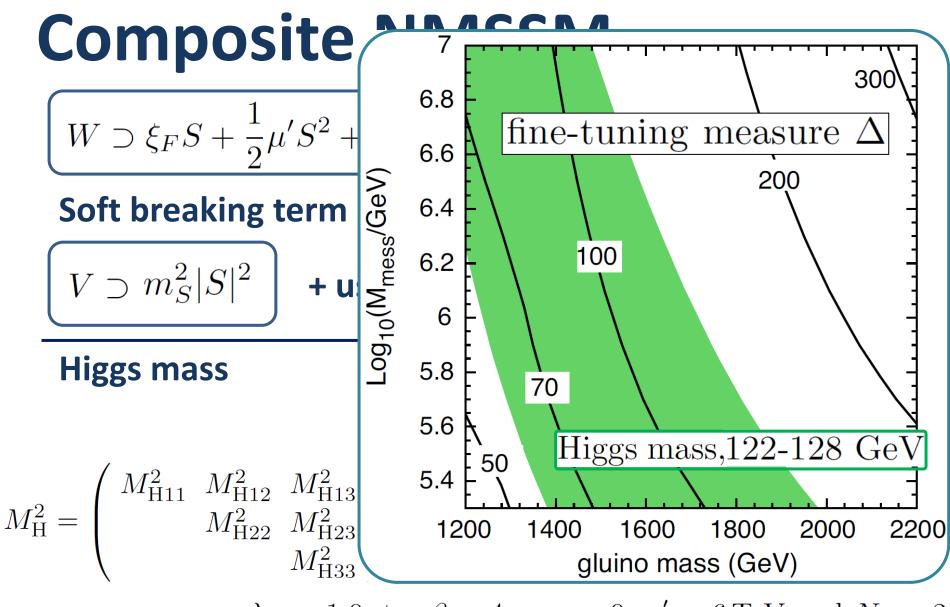
Composite NMSSM

$$W \supset \xi_F S + \frac{1}{2}\mu' S^2 + \lambda_S S H_u H_d$$

$$\mu_{\rm eff} \equiv \lambda_S v_S$$

Soft breaking term

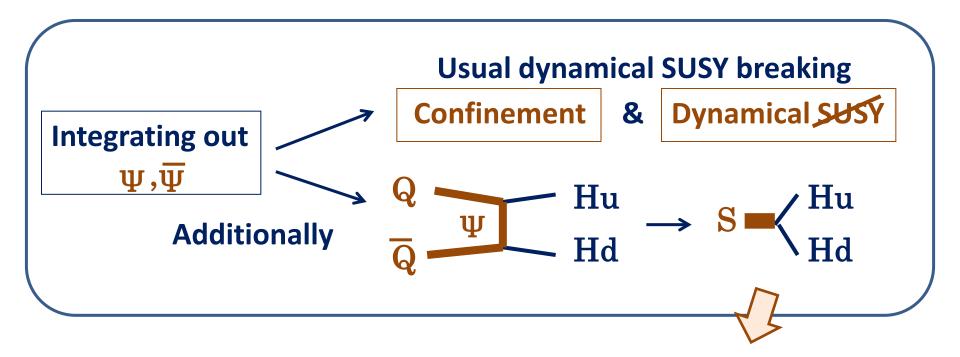



+ usual gauge mediation

Higgs mass

$$M_{\rm H}^2 = \begin{pmatrix} M_{\rm H11}^2 & M_{\rm H12}^2 & M_{\rm H13}^2 \\ M_{\rm H22}^2 & M_{\rm H23}^2 \\ & & M_{\rm H33}^2 \end{pmatrix}$$

$$\begin{split} \underbrace{M_{\mathrm{H11}}^2}_{\mathrm{H22}} &\approx m_Z^2 (\cos 2\beta)^2 + \underbrace{\lambda_S^2 v^2 (\sin 2\beta)^2}_{S} \\ M_{\mathrm{H22}}^2 &\approx 2(\mu_{\mathrm{eff}} \mu' + \lambda_S \xi_F) / \sin 2\beta \\ &+ \left(m_Z^2 - \lambda_S^2 v^2 \right) (\sin 2\beta)^2, \\ M_{\mathrm{H33}}^2 &\approx \mu' (-\lambda_S \xi_F + \lambda_S^2 v^2 \sin \beta/2) / \mu_{\mathrm{eff}}, \\ M_{\mathrm{H12}}^2 &\approx (-m_Z^2 + \lambda_S^2 v^2) \sin 4\beta/2, \\ \underbrace{M_{\mathrm{H12}}^2}_{\mathrm{H13}} &\approx \lambda_S v (2\mu_{\mathrm{eff}} - \mu' \sin 2\beta), \\ M_{\mathrm{H23}}^2 &\approx -\lambda_S v \mu' \cos 2\beta, \end{split}$$


 $\lambda_S = 1.0, \tan \beta = 4, \ \mu_{\text{eff}} > 0, \ \mu' = 6 \text{ TeV} \text{ and } N_5 = 2$

 $\mu_{\rm eff} \equiv \lambda_S v_S$

A hidden meson \overline{S} =QQ can be a singlet in NMSSM.

Higgs mass from SUSY sector

	$SU(N)_H$	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	
$\overline{Q_I \ (I=1,\cdots,N_f)}$	Ν	1	1	0	
$\bar{Q}_I \ (I=1,\cdots,N_f)$	$ar{\mathbf{N}}$	1	1	0	
Φ_c	1	3	1	-1/3 W	$I = \lambda_u H_u \bar{\Psi}_d Q_{N_f} + \lambda_d H_d \Psi_u \bar{Q}_{N_f} + \sum m_I Q_I \bar{Q}_I$
$\bar{\Phi}_c$	1	$\overline{3}$	1	1/3	$\frac{1}{I}$
Φ_l	1	1	2	1/2	$+\sum_{n \in V} p (\bar{Q}_{n} + \sum_{n \in V} (p^{A}V \Phi^{A} \bar{\Phi}^{A} + p^{A}V \Phi^{A} \bar{\Phi}^{A})$
$ar{\Phi}_l$	1	1	2	-1/2	$+\sum_{ij}\eta_{ij}X_mQ_i\bar{Q}_j + \sum_A \Big(\eta_c^A Y_m\Phi_c^A\bar{\Phi}_c^A + \eta_l^A Y_m\Phi_l^A\bar{\Phi}_l^A\Big)$
f	Ν	3	1	-1/3	(A - A)
$ar{f}$	$ar{\mathbf{N}}$	$\overline{3}$	1	1/3	$+ M_c \Phi_c^A \bar{\Phi}_c^A + M_l \Phi_l^A \bar{\Phi}_l^A \Big)$
Ψ_u	Ν	1	2	1/2	$+ m_{\Psi}\Psi_u\bar{\Psi}_d + m_f f\bar{f} + M_{XY}X_mY_m + M_YY_m^2/2 ,$
$ar{\Psi}_d$	$ar{\mathbf{N}}$	1	2	-1/2	$+ m \psi \star u \star d + m f J J + m X Y \Lambda m m + m Y m / 2 ,$
X_m, Y_m	1	1	1	0	

	Q_{N_f}	\bar{Q}_{N_f}	Q_p	$ar{Q}_q$	X_1	X_2	X_3	X_m	Y_m	$(H_u \bar{\Psi}_d)$	$(H_d\Psi_u)$	$(\Phi_{l,c}\bar{\Phi}_{l,c})$
U(1)	-4/5	-1/5	-1/5	0	1	4/5	2/5	1/5	-1/15	4/5	1/5	1/15
	M_1	M_2	M_3	M_{XY}	m_{N_f}	m_p	M_Y	$M_{l,c}$				
U(1)	-2	-8/5	-4/5	-2/15	1	1/5	2/15	-1/15				

$$\frac{m_Z^2}{2} \approx -\mu_{\text{eff}}^2 + \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta}{\tan^2 \beta - 1},$$

$$\sin 2\beta \approx \frac{2(\mu_{\text{eff}} \mu' + \lambda_S \xi_F)}{m_{H_u}^2 + m_{H_d}^2 + 2\mu_{\text{eff}}^2 + \lambda_S^2 v^2},$$

$$\mu_{\text{eff}} \approx -\frac{\lambda_S \mu'}{2} \frac{2\xi_F - \lambda_S v^2 \sin 2\beta}{m_S^2 + \mu'^2 + \lambda_S^2 v^2},$$

$$\begin{pmatrix} h_1' \\ h_2' \\ h_3' \end{pmatrix} = \begin{pmatrix} \cos \beta & -\sin \beta & 0 \\ \sin \beta & \cos \beta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} h_d \\ h_u \\ s_R \end{pmatrix}$$

$$\Delta = \max\left\{ \left| \frac{\partial \ln v}{\partial \ln |a|} \right| \right\}, \left(a \in \frac{\text{fundamental mass}}{\text{parameters}} \right)$$

where $a = \xi_F, \mu', \Lambda_{\text{mess}}, |m_S^2|$ in our case. $(d \ln |\xi_F|, d \ln |\Lambda_{\text{mess}}|$ and $d \ln |m_S^2|$ correspond to $d \ln |m_{N_f}|, d \ln |\bar{m}|$ and $d \ln |m_2|$, respectively.)