Update on Chess1 laser scan

Luigi Vigani11

Front TCT

- Performed on almost all the kind of APA on DB11 Chess1
- Infrared laser
- Absorber on laser and power DAC to 69%
 - Still no calibration done yet
- Laser focus kept from last time

Global map

x and y axes in µm, z axis in V

Original design: the position inside the laser is rotated 90deg and flipped wrt this view

Note: there are wires passing over APA4 and APA3

Single APAs

APA2

APA4

APA3

(laser power higher)

APA5

(laser power higher)

Single APAs

APA6

APA7

APA8

Edge TCT

- Another daughterboard, DB20, borrowed from Jens (thanks!)
- Edge TCT on APA8
 - Warning: not all pixels are on the edge (see global scan)
 - Manual inspection of APA8:

Ch	Ch	Ch
35	36	37
Ch	Ch	Ch
38	39	40
Ch	Ch	Ch
41	42	43

- Channels 35 and 38 inspected now
- Chip DACs as default
- 75V bias
- Laser power to 75% without absorber

Edge TCT scan

-254.8

-255 29260

29280

29300

29320

0.01

0.008

29360

29340

X position [microns]

Edge TCT scan corrected

Correction by $sin(\alpha) = 0.022$ $\alpha = 1.26$ deg (very small)

Non uniform structure could be binning problem...

Depletion region seems of about 20 to 30 μ m. Need some analysis on risetime to check eventual diffusion!

Conclusion

- Front TCT scan understood in its basics
- Edge TCT currently under development

TO DO

- Investigate rise-time
- Calibrate laser
- Investigate different biases

Back-up: binning problem

