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Typical threshold of p;~20-25
GeV for inclusive muon trigger

-

Excellent performance with present conditions
Ap+/p; global 1% (10 GeV) - 10% (1 TeV), STA 10% (10 GeV) - 40% (1 TeV)

Chambers: No indications of aging at phase-2 conditions. GIF++ tests.

Upgrade: No plans to rebuild muon (large area gaseous) chambers. Upgrade

concentrates on additional detectors for weakly instrumented areas and
trigger & readout electronics.
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Challenges of the high n region (n>1.6)

* Redundancy: this 1s the muon system region with the
highest rates but the fewest muon layers.

* Ratfe: 1s increasing towards higher 1, where there 1s also
the worst momentum resolution .
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High lumi affects performance. Forward region |n[>2.0 especially challenging.
High rates = reduced resolution and longevity issues

pr mis-measurements and multiple scattering in iron yoke cause rate flattening



| : - CMS Muon Upgrades
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CMS GEM Extension

GAS ELECTRON MULTIPLIER (GEM)
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Technologies: double-layered triple-GEM Sta.tus: Prc_Jposed in TP
Being designed
Status: TDR approved. In

production, installation in LS2 6



Thin, metal-coated polymer foil
with high density of holes:

Typical geometry: -
0 um Kapton
70/um holes at 140 mm pitch 1
Triple GM -
S S Cascaded GEMs allow much
larger gains before discharge
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 GEM foil = key component, for amplification
e So far produced at CERN detector workshop.

* Detectors up to 30 x 30 cm? installed in several
experiments. = Principle works

Challenge in CMS = the size!! GE1/1 O(1qm), GE2/1 O(2qm)

Performed RED: e

Single mask technology for wet etching
* Dramatically reduces foil production costs and allows large sizes

e Performance same as that of double mask

Readout connector

o5 Embedded nut 6‘,»0

Foil stretching ik J
* Construction time reduced from §% \" e

week(s) to 2 hours/chamber N
/ Drifte\Iectrode
External scre:

Internal screws to " Gem attaching structure
adjust stretching (4 pieces defining gaps)
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18 GE2/1 superchambers, each spanning
10 or 20° in ¢ angle
i - }.

Not a single foil per chamber possible, rather 4-6 segments.
Foils from new producer(s) outside CERN detector workshop = quality control
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Forward region |1 |>1.6 relies entirely on existing CSC g = o= e
o 0.8 —
* Lower efficiency towards higher eta due to tighter ¥ |
cuts to compensate higher background T :
e Efficiency will reduce further with increasing PU 04 »
L 2060V1c<p'<100 GeVic
Multiple scattering in iron yoke flattens trigger 02 e .
rate = raising threshold cannot lower rate b bl T
2 15 41 05 0 05 1 1§ 2
Probe n
Combination of GE1/1 & ME1/1 = longer lever arm - use muon bending
angle in the high B-field at local trigger level to measure p; precisely
View from the top of the CMS down
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V5. present Double Gap RPC

| in barrel and endcaps

finil
— . craphite coaling

bakelite  High resistivity

p ~1-5x 101 Q cm
-——eadout strip
Signal in pick-up electrodes

[ ® < spacer

At higher rates larger voltage drop requires

Avalanche mode increased HV = noise increase
Q Amplification ~107 e- .
5 iy
High-rate capability ~10 kHz/ & og | :
cm? (ATLAS, CMS, LHCD) : i
ot current
Streamer mode oa |
Higher amplification N ‘ %;8 g
=L . 4 * /1500 Hz/om?
Limited rate capability o b Al
~10 Hz/cm? (ALICE, BaBar) 10 H 2 b H
HV (k') 13




2 Improving RPCs

At HL-LHC and in the very forward region even higher rates
Improvements possible by
1. Decrease electrode resistivity

— Reducing recovery time, proportional increase in rate capability

— New materials e.g. low-resistivity silicate glass (101° Qcm), various ceramics
(10%-10%* Qcm), low-resistivity high-pressure laminate (~0.5 - 1 x 10%° Qcm)

2. Decrease average charge deposition
— Shift part of amplification to high amplification electronics
— Reduced voltage drop on electrode plates
— Shorter period of inefficiency and reduced aging

3. Changing the detector configuration
— Change electrode thickness
— Change number of electrodes

Page 14



Modified standard double-gap config
with additional gap on both RPCs

* Four gaps of 1 mm each

* Same electrodes and FE as standard CMS
* Full efficiency reached for HV>11.4 kV

Multi-gap glass RPC

e With semi-conductive glass eff~90% for rates
up to 10 kHz/cm?

* Time resolution better than 100 ps for multi-
gap configuration

Changing RPC configuration

Copper sheet

2mm-thick
HPL plate

190-pm-thick
polyester film

—— Strip panel

Graphite layer
1-mm thick
Gas sealing

edge spacers
along peripheries.

Page 15



Going Beyond |n|=2.4"7

. H—ZZ—4u : acceptance increase
Very forward region a place to 60%->94% if 1 =2.4—54.0

gain physics acceptance i Acceptancegam>
A

Based on tracker extension = extend muon ™

|
system and match to pixel stubs (eta coverage f\N one | Tﬂ%
limited by beam-pipe, services and calorimeter)
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Challenges for|n|>2.4
Nearly no B-field in muon system
* Highest background rates
~100 kHz/cm?
* Very high PU 140-200 - backgr.
* Space, integrated in forward
calorimeter
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Should provide muon tagging for rleiEs
2.4<|n|<3.0
No tracking possibility (weak B-field)
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Requirements:

e MEO as multi-layer detector to suppress an
neutron bkgr = 6 chambers per wedge

* Small area, low multiple scattering

Technologies:
* GEM detectors (TP baseline)
*  Fast timing micropattern (FTM) de

— Reduce single (mm) drift dis,‘_ ¥
many small gaps (250 um), each

ist own amplification stage
— At from 5-10 ns = 2-3 ns
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M5~ Time resolution measured with a
" small prototype in u/n testbeams

Measured with a first 20 cm? prototype, 250 um drift gaps.

Time resolution (ns)

Q@ = = N N O O & & 0
O o1 o u o v o v o u o

Gas mixture Ar/CO2 70/30. No CF4!!

Pre/jminary Scan in dl’lft fle'd
¢ Pion Beam
B Muon Beam

Both Layers powered

Signal pickup from drift electrode
Amplification Fields = 120 kV/cm
Gas Mixture = Ar/CO, 70/30

o, =2 ns
with 2. ~ 33 em™! (for a mip), v, ~ 8 cm/ps
Ll l 1 - l | I - L 11 [ Ll | l Ll 1 1 l ) I - - I Ll 1l I oLl

1 2 3 4 5 6 7 8 9
Drift field (kV/cm)

Standard O(2mm) MPGD would reach 5-10 ns
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Time resolution for different
values of applied drift field, for
constant amplification field

Not much affected by drift field

e \Very short drift of 250 um

* Nearly constant v, of Ar/CO2
between 2 and 10 kV/cm

Pions deposite bigger charge due
to showering
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Gas mixture is the active element in muon detectors = amplification, response
time, operational mode (avalanche, streamer)

Typical components for ,fast” gases are F-based
— Green house gas (GHG) to be faced out

Solution for today: Recirculation & recuperation.

In CMS used in RPC, CSC

Reduce leaks, closed loops, remove O,, H,0, not N,

Solution for future: find alternatives

E.g. HFO: Many are flammable or toxyc,
cannot be used in experiments.

E.g. add He: helps reducing HV working point
but more difficult to be leak-tight, streamer?
Much more R&D needed

GHG emission in Run1 [%)]
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Beatrice Mandelli, CERN
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Present: subsystem oriented, one TF
each. 4+4 tracks to GMT, selects four
best by comparison, and sends to GT.

CSC DT RPC
detector _ detector detector

A 4

PACT

Calo

A
Global Layer-2.

New: region-centric, each TF covers

assigned region. Dedicated TF for overlap.

Sorting and ghost suppression in GMT.
8 muons send to uGT. uTCA standard.

EI

g

p overlap = l
endcap region arre!

region | | region

@

S rtegent )

Global
Trigger
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Vs Impact of CMS Trigger Upgrade on
Muon Electronics

Concept of tracking
trigger impacts needed
latency and rate

Level 1 Latency from 3 ps |:> 10 ps
Level 1 Rate from 100 kHz

—=>

1 MHz

L1 rate needs replacement
of the DT on-chamber RO
and trigger electronics

, MB4
0 wheel 1
MB3

eel wheel 2

i MB2

MB1

<252

{5

Failure Rate

Another argument:
electronics is old, cannot
be rebuilt. Wear-out
failure may increase. High
power consumption.

Decreasing Constant Increasing
i Failure | Failure | Failure
Rate | Rate | Rate
| [
| [
| [
1 [
| Observed Failure |
““Infant Rate
.0. Mortnlity" 1 ]
'.. Failure | |
Constant (Random)
! Failures !
] 1
..... | 1
---- L., ]
Pt eenttntanecacecsnnnns Denansnnabasasarvis
; pressesnaaaans <
Time
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Present Minicrates

* Highly integrated and complex system. Many
boards with various ASICs for specific tasks.

* Trigger primitive generation performed inside
each chamber

* Filtered information sent to counting room

* Not guaranteed to survive HL-LHC
environment. Also higher trigger rates.

‘:;...:.:‘::m.» ‘:.j Trigaer -
\ ::J\L;_f/ segment finding, s
G angle Readout

- measurement=>  Time digitization

______singlechamber  Event matching
-~ trigger generation

Upgrade of DT on-chamber electronics

Phase-2 Minicrates (OBEDT)

« On-chamber electronics performs time
digitization of all chamber signals

- Digital information sent through optical link
to the counting room

« Complexity is brought into the counting
room

Radiation tolerant FPGAs GBT link for
which perform 1 ns time data
digitization (no filtering) forwarding

* Allows readout at 1 MHz Level-1 and
20 us latency

* Trigger primitive generation:
-maximum chamber resolution
-room for pt resolution increase

22



Summary

HL affects muon system performance. Forward region
|n|=2.0 especially challenging.

* Rates very high and increasing with n
* p; mis-measurements drives the trigger rate

Upgrade projects to improve performance

* With new GEM detectors in first station, p; will be
measured more precisely using bending angle.

* Further extension of muon coverage to |n|<3, in
conjunction with tracker extension. Allows physics
gain.

* Upgrade of on-chamber electronics to cope with
increased latency required by tracking trigger and
larger rates.

Challenging... looking forward to phase-2

23
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CMS

_Fast Timing Micropattern (FTM) Det.

. Goal: Improve time resolution

d 1s the distance of the closest cluster to the first foil and it

~ . : ; ,=AX E ¥
£ follows the distribution ¢”""/,. where / is the average number

f = of primary clusters generated by an ionising particle inside the
/’ _ gas per unit length

Example A~ 30 cm!, depends on Ion.potential of gas

drift volume

7 : v, 1s the drift velocity, that depends on the gas
/ mixture and the drift field applied.

‘ : , Typically ~10 - 50 cm/us depending on gas mixture

Time resolution: 0 = (ﬂvd)_l —> can reach 5 — 10 ns

Intrinsic time Resolution




M5 Fast Timing Micropattern (FTM) Det.

Goal: Improve time resolution

d 1s the distance of the closest cluster to the first foil and it

5 A é ; ,=AX : &
follows the distribution ¢/, where 4 is the average number

f = of primary clusters generated by an ionising particle inside the
/’ _ gas per unit length

Example A~ 30 cm!, depends on Ion.potential of gas

drift volume

7 . v, 1s the drift velocity, that depends on the gas
/ mixture and the drift field applied.

f Typically ~10 - 50 cm/us depending on gas mixture

Time resolution: 0 = (Avd)_l —> can reach 5 — 10 ns

Intrinsic time Resolution

Idea: Reduce d by dividing single drift region into many small
regions N with independent amplification stages

When the avalanche grows in Ot = (/1 Vq N D ) -1
one drift-amplification stage.
the signal is induced on the —> can reach 0(2 I’IS)
u top and bottom readouts.
The first prototype of Fast Timing Micropattern (FTM) detector
exploits this principle using two 250 um-thick drift gaps, each coupled
with an amplification region composed by a fully resistive WELL.

v~ L 26
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FTM - First Prototype

Drift volume 250 um thick,
with planarity ensured by
coverlay pillars

—->

Transversal view
FR4 support (3.2 mm)

Drift
Cu electrode . pe . .
i I I i Each amplification region
Coverlay™® pillars . . .
Laver 1oy o0 Restive conting < based on pair of polyimide
R-WELL 1 50 um kapton foils stacked due to
G1 bot Resistive kapton I . f . d d b
Coverlay pillars electrostatic force induced by
G2top —> resstivecoating= — polarization of the foils
R—WEL% 50 um kapton
Layer 2 G2 bot Resistive kapton
Cu electrode The first foil, perforated with inverted truncated-

FR4 support (3.2 mm) x
cone-shaped holes (bases 100 pm and 70 pum,

pitch 140 pm), i1s a 50 pm thick Apical KANECA,

The detector is composed by two independent drift-
amplification stages (Layer 1 & 2 in the picture above).

Reference:arXuiv:1503.05330v1
European Patent Application 14200153.6
M. Maggi, A. Sharma, R. De Oliveira

> coated with diamond-like carbon (DLC)

technique, to reach up to 800 MO0 resistivity.
The second foil is 25 pm thick XC Dupont
Kapton, with a resistivity of 2 MQ/o.

Active area ~20 cm?
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‘Challenge: Performance

CMS Phase-2 Slmulatnon Prehmmary

L L [ T T A SN B 7]

g 30£L1 Selections (L1 muon candidate p _>20 GeV/c): i: -2
=, [ —— CSC 22 stubs (anywhere) -
% 25% CSC 22 stubs {one in 1.55<| n|<2.1) -

High lumi affects muon system performance. | — GEM:CSCineqratedtiggerwith =2stubs 13
. o o o 20— : . =
Forward region |n|>2.0 especially challenging. g Er e e +* 3
. . 2 = 11 i
* Rates up to kHz/cm? and growing with n ’5[ .- i -
- = * cm. s. 5 A i ;1;
* Reduced resolution and longevity issues ’°:‘g ' w | ]
* Exceeds capabilities of existing electronics (T iy o E
E LT N il r*"'"’m | | :

bl Prertveds ol |

*  p; mis-measurements and multiple 1 12 14 16 18 2 22 24 1
scattering in iron yoke cause rate flattening

CMS Phase 2 Slmulauon Prehmmary

N 1041_' - L1 qule Mu (2012 conhquranom +ME1/1a unqanq:ng _
5 { EEE GEM+CSC integrated trigger with >3 stubs '
° 10°F 3
Focus on maximizing the potential of large ® ]
— 1 "; -
datasets to be collected at HL-LHC -3 . ‘
=

* Maintain current performance (1, p;)

-

* Seek acceptance gains where possible b S
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p; cut [GeV]
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<L>=5x103%*
cm2s1

2 X lumi

,é ! LSI t{f ;n .Ii_g\all lurmi Lsz ~14 TeV Phase 1 Phase 2 3000 fb-1
2012 tzm 3 IEm 4 zo-lql zoﬂl zoﬂlm zoﬂl zoqu 173 2022 ltzozs
LS1: De.ztec'tor LS2: Anticipated LS3: HL
consolidation phase-2 upgrades upgrades
Install originally _ Installation of GE1/1 Muon trigger: Additiona.l
planned [ 1R Combined CSC+GEM detectors in forward region

of all 4 stations
Rapidity extension of tracker,
calo, muon to |n|~4

ME4/2 + li
RE4/2

trigger

Partially move DT electronics
from detector to cavern and
redesign in uTCA technology.

6
Station 1

Redesign of DT on-chamber

. I .
Upgrade MEl/l electronics. electronics
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