Why do we upgrade ATLAS and CMS?

9th Terascale Detector Workshop, April 4th, 2016 Markus Klute Massachusetts Institute of Technology

Answers by ATLAS & CMS

Baseline upgrade detectors and physics program documented in

- ATLAS Letter of Intend [CERN-LHCC-2012-022]
- CMS Phase-II Technical Proposal [CERN-LHCC-2015-010]
- Additional public results
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFP

➡ Scope documents discuss

- Includes performance comparisons of <PU>=140 and 200
- Identify explicitly the benefits from extension of the tracker and muon coverage
- Document impact of reduced scope
- ATLAS [CERN-LHCC-2015-020], CMS [CERN-LHCC-2015-019]

HL-LHC Schedule

HL-LHC Schedule

LHC / HL-LHC projects provide increase in **energy** and **luminosity** (accuracy)

Experimental Challenges

- Detectors have to operate in extreme environment
- In 2025 the detectors will be running (radiated) for 15 years.
 Severe aging effects.

Experimental Challenges

- Luminosity comes at the cost of **pileup**. Mean number of interaction scales with instantaneous luminosity
- Can be mitigated by reducing the bunch spacing, hence 25ns running from 2015
- ➡ Expect:
 - <µ>≅140 at 5x10³⁴cm⁻²s⁻¹
 - $<\mu>\approx 200$ at $7x10^{34}$ cm⁻²s⁻¹
- ⇒ 2.5 3.5 increase wrt LHC design

Pileup Mitigation

➡ Tracking

- High granularity and thin active region to reduce hit occupancy
- Increase the number of tracking layers

➡ Calorimetry

- Fit pulse shapes to extract in-time energy deposition
- Upgrade readout electronics
- Combine in-time energy measurements with tracking information using particle flow techniques

➡ Precision timing

- Reduce in-time pileup using the time distribution of collisions within the same bunch crossing
- Interaction time of a bunch crossing has rms of ~160ps
- Current ATLAS and CMS calorimeter timing resolution insufficient for significant rejection of PU

➡ Pointing

 Reduce in-time pileup directional information for neutral particles

Luminous Region

HL-LHC Baseline

 $\sigma_{lum} = 5 cm r.m.s.$ $\sigma_{lum} = 160 ps r.m.s.$

Crab-Kissing

 $\sigma_{lum} = 7 cm r.m.s.$ $\sigma_{lum} = 100 ps r.m.s.$

S. Fartoukh

ATLAS Detector Upgrades

Trigger and Data-Flow system

- Introduction of level
 0/1 trigger
- Level 1 track trigger
- DAQ upgrade
- Muon trigger system
- All new inner tracking detector
- Calorimeter Electronics
- Enhancements to higheta regions

CMS Phase-II Upgrade Detector

• tracking @L1

Defining the HL-LHC Physics Program

- Higgs case at the start of the LHC was exceptional
 - something to built on, not the reference
- SM is self-consistent theory that can be extrapolated to exponentially higher energies
- ➡ Goal for the future LHC and HL-LHC program
 - Explore the energy frontier
- Precision measurements of SM parameters (including the Higgs boson)
- Sensitivity to rare SM & rare BSM processes
- Extension of discovery reach in high-mass region
- Determination of BSM parameter

Higgs Physics Program

- Combined measurement using LHC Run-1 dataset
 m_H = 125.09 ± 0.21 (stat.) ± 0.11 (syst) GeV
- Precision (0.2%) limited by statistical uncertainty
- Established that particle masses and couplings to the Higgs boson relate
- No additional Higgs bosons or BSM decays observed

Higgs Precision Physics

CMS Projection

Coupling precision 2-10 % factor ~2 improvement from HL-LHC

Key question is the evolution systematic uncertainty

Assumptions made on cross section uncertainties already superseded

Rare-decays

CMS Projection for precision of Higgs coupling measurement

$L (fb^{-1})$	κ_{γ}	κ _W	κ_Z	κ _g	κ _b	κ _t	κ_{τ}	$\kappa_{Z\gamma}$	κμ
300	[5,7]	[4,6]	[4,6]	[6,8]	[10,13]	[14,15]	[6,8]	[41,41]	[23,23]
3000	[2,5]	[2,5]	[2,4]	[3,5]	[4,7]	[7,10]	[2,5]	[10,12]	[8,8]

Snowmass Whitepaper for CMS - http://arxiv.org/abs/1307.7135

Rare Higgs Decays

\Rightarrow H \rightarrow µµ

- Ind generation fermion coupling
- e search for narrow resonance with huge DY background
- CMS: ~45% improvement in resolution wrt Phase-I aged PU = 140
- CMS: ~20% improvement in efficiency wrt Phase-I aged PU = 140
- results scale with square-root of improvements
- expect ~5% uncertainty second generation Higgs coupling

Very Rare Higgs Decays

Exciting prospects of the HL-LHC

- A process like di-Higgs production has not been observed in nature
- Gluon fusion cross section is only 40.2fb [NNLO] at 14 TeV
- Vector boson fusion cross section is 2fb
- Challenging measurement
- Destructive interference in gluon fusion

- Most interesting final states
 - bbγγ [320 expected events in 3ab-1]
 - $bb\tau\tau$ [9000 expected]
 - bbbb [40k expected (2k in VBF)]
 - bbWW [30000 exp. events]

Goal is to reach minimum sensitivity of 3σ for SM production and with that to BSM scenarios
15

Di-Higgs Searches

- Demonstrate Phase-II detector capabilities
 - b-tagging, photon, and tau-Id
 - case for the track trigger
- Sensitivity

Number of Events

• ~2σ per experiment

- additional channels (bbbb)
- improved pixel detector (btagging)
- improved resolutions (regression)
- analysis strategies

Supersymmetry

Motivation for SUSY has never been stronger

- discovery of the Higgs gives new urgency to find "natural" explanation for gauge hierarchy
- HL-LHC expands discovery reach or allows to investigate SUSY spectrum
- requires all capabilities of ATLAS & CMS

Supersymmetry

CMS explored five phenomenological models motivated by naturalness

- models vary nature of the LSP (bino-, higgsino-like), EWK-inos, and sleptons hierarchies
- STC (stau) and STOC) co-annihilation models satisfy dark matter constraints

Supersymmetry

Exploring SUSY model space

Explored:

- 9 different experimental signatures.
- 5 different types of SUSY models.

Different types of SUSY models lead to different patterns of discoveries in different final states after different amounts of data

, ,	Analysis	Analysis Luminosity			Model				
ζ.		(fb^{-1})	NM1	NM2	NM3	STC	STOC		
オ	all-hadronic (HT-MHT) search	300							
ט		3000							
5	all-hadronic (MT2) search	300							
		3000							
Ĕ	all-hadronic \tilde{b}_1 search	300							
		3000							
	1-lepton \tilde{t}_1 search	300							
ן מ		3000							
	monojet \tilde{t}_1 search	300							
Ĕ		3000							
	$m_{\ell^+\ell^-}$ kinematic edge	300							
ē		3000							
θΙ	multilepton + b-tag search	300							
ο		3000							
00	multilepton search	300							
		3000							
δl	ewkino WH search	300							
ਧ 🕇		3000							
Х		$< 3\sigma$ 3 $= 5\sigma$	> 5a						

HL-LHC measurements can be crucial to illuminate a Run 3 discovery, and thus answer fundamental questions about gauge hierarchy or dark matter

Electroweak SUSY Production

Chargino mass 5 model	σ discovery, simplified	300 fb ⁻¹	3000 fb ⁻¹
WZ (3l analysis)	[ATLAS]	Up to 560 GeV	Up to 820 GeV
WZ (3l analysis)	[CMS]	Up to 600 GeV	Up to 900 GeV
WH (3l analysis)	[ATLAS]	(<5ơ reach)	Up to 650 GeV
WH (bb analysis)	[ATLAS]	(<5ơ reach)	Up to 800 GeV
WH (bb analysis)	[CMS]	350-460 GeV	Up to 950 GeV

Vector boson scattering

Assess VBS sensitivity using same-sign WW and WZ

- utilizing unique event topology
- Iongitudinal scattering cross section
- e anomalous couplings
- SM-noH measurement (input to Higgs couplings)

Combined performance

3000 fb ⁻¹ , 14 TeV	Phase-I	Phase-II	Phase-I aged		
Higgsless 95% CL μ exclusion	0.14	0.14	0.20		
$V_L V_L$ scattering significance	2.50	2.75	2.14		
04					

B Physics

- → First $B_s \rightarrow \mu \mu$ observation
- Combined CMS and LHCb analysis
- Concluded a three decade long search
- → $B_{d,s}$ →µµ tracking resolution
- Measurement enabled by tracker upgrade with tracker trigger.

Exotica

Window to new physics beyond SUSY

- heavy gauge boson search and properties
- odark matter
- highly ionizing particle
- displaced vertices

ATLAS @14 TeV	Z' → ee SSM 95% CL limit	g _{KK} → t t RS 95% CL limit	Dark matter M* 5σ discovery
300 fb ⁻¹	6.5 TeV	4.3 TeV	2.2 TeV
3000 fb ⁻¹	7.8 TeV	6.7 TeV	2.6 TeV

Exotica

Di-lepton resonances - Z' properties

Di-photon excess at 750 GeV

Highlights of Run-II presented at Jamboree Dec 15th

- ATLAS and CMS updated studies for Moriond
- Local p-value: 3.4σ for CMS and for 3.9σ ATLAS
- Global p-value: 1.6σ for CMS and for 2.0σ ATLAS
- Cross section O(10fb)
- Huge excitement and avalanche of papers (~300 and counting)
- 2016 data will show whether or nor this is a sign of new physics
- HL-LHC dataset capable of shining a bright lamp on new physics processes

Conclusion

HL-LHC enables a 20+ years research program with large discovery potential

• ATLAS & CMS upgrades required to fully exploit the LHC

Physics case is based on the large dataset

- Precision measurements of SM parameters
- Determination of BSM parameter
- Sensitivity to rare SM & (weakly produced) BSM processes
- Extension of discovery reach in high-mass region
- Studied physics channels only scratch the surface of what's possible
- ➡ Goal: Exploring the energy frontier

Exploration and Discovery

1st ECFA HL-LHC workshop

➡ Summary

- Followed European Strategy and Snowmass
- Goal to define HL-LHC detectors and physics program
- Provide common approach and consistent presentation of physics goals, detector requirements, technology, accelerator interfaces, long shutdown constraints, and costing methods

➡ Links

• agenda, report

2nd ECFA HL-LHC workshop

D.Contordo | D.Buthon |

➡ Summary

- Followed CERN plan up to 2025 and P5 recommendations
- Improved understanding on all aspects of the HL-LHC project

➡ Links

- <u>agenda</u>
- <u>report</u>

HL-LHC Physics Workshop

May 11-13th 2015 at CERN

(reference for additional information)

Goals:

- detailed talk that provide basis for serious discussion
- stimulate theory community to think about what's possible
- stimulate experimental community to test ideas

Day 1: Higgs Day 2: BSM physics Day 3: Flavor and SM physics

http://indico.cern.ch/event/360104/