

9th Terascale Detector Workshop

Introduction on Timing

Background: CBM @ FAIR

N.Herrmann, l

Outline

History

Timing applications

Timing counter types

Plastic scintillator

MRPC counter

Diamond beam counter

Nobelprize in Physics 1954

"for the coincidence method and his discoveries made therewith"

Walter Bothe

born	1891	
died	1957	

1908 – 12	Study of Physics at the University of Berlin
1913 – 29	Physikalisch – Technische Reichsanstalt, Berlin
1929	Extraordinary Professor, Berlin
1930 – 32	Professor of Physics, Giessen
1933 – 57	Director of the Institute of Physics and Max Planck Institute for Medical Research, Heidelberg

First coincidence circuit

Abb.2. Erste Koinzidenzschaltung Bothes (1928). Von einer Freihandskizze in Bothes Protokollbuch abgezeichnet. EL: Einfadenelektrometer RES 044 (S = Schutzgitter, 004 = 4 Volt Heizspannung) W 406 (W = Niederfrequenzradioröhre für Widerstandskopplung) 406 = 4 Volt Heizspannung, 0,06 Amp Heizstrom)

Timing resolution: $\Delta t \approx 0.1$ ms

Timing applications in Nuclear and Particle Physics

Event definition

Particle Identification

Direction measurement Cosmic air showers, Cerenkov cone of charged particle in neutrino detectors

TOF – PET

T0 – measurements of particle beams

Spectroscopy in Neutron scattering

. . .

Particle identification (PID)

N.Herrmann, Uni Heidelberg

04/04/2016

Time – of – Flight Method

Tracking in magnetic field measures momentum.

Additional measurement of velocity allows determination of particle mass.

$$\beta = \frac{L}{ct}$$

$$p = mc\gamma\beta = \frac{mc\beta}{\sqrt{1-\beta^2}}$$

$$m^2 = \left(\frac{p}{c}\right)^2 \left(\frac{1}{\beta^2} - 1\right) = \left(\frac{p}{c}\right)^2 \left(\frac{c^2t^2}{L^2} - 1\right)$$

PID reach with TOF

Flight Time difference after a pathlength of 1 m

$$\Delta t = \frac{L}{c} \left(\sqrt{\frac{m_1^2 c^2}{p^2} + 1} - \sqrt{\frac{m_2^2 c^2}{p^2} + 1} \right)$$
$$\downarrow pc >> mc^2$$
$$\approx \frac{Lc}{2p^2} \left(m_1^2 - m_2^2 \right)$$

TOF system time resolution requirement:

 $\Delta t > k\sigma_t$ k > 3 - 4

(depends on relative abundance)

PID with TOF

A. Akindinov et al. (ALICE), EPJ Plus 128 (2013) 44

L ~ 1.2 m

TOF mass resolution

 $m^2 = p^2 \left(\frac{t^2}{L^2} - 1 \right)$ $\delta(m^{2}) = 2p\delta p \left(\frac{t^{2}}{L^{2}} - 1\right) + 2t\delta t \frac{p^{2}}{L^{2}} - 2\frac{\delta L}{L^{3}}p^{2}t^{2}$ $\underbrace{\frac{m^{2}}{m^{2}}}_{\text{use } \frac{p^{2}t^{2}}{L^{2}} = \frac{p^{2}}{\beta^{2}} = m^{2}\gamma^{2}}$ $= 2m^2 \frac{\delta p}{p} + 2m^2 \gamma^2 \frac{\delta t}{t} - 2m^2 \gamma^2 \frac{\delta L}{I}$ ↓ $\left(\frac{\sigma_m}{m}\right)^2 = 4m^2 \left(\left(\frac{\sigma_p}{p}\right)^2 + \gamma^4 \left(\left(\frac{\sigma_t}{t}\right)^2 + \left(\frac{\sigma_L}{L}\right)^2 \right) \right)$ $\frac{\sigma_p}{n} \approx 10^{-2}, \quad \frac{\sigma_t}{t} \approx 10^{-1}, \quad \frac{\sigma_L}{L} \approx 10^{-3}$

Typical values:

Here: c=1

04/04/2016

Neutrino detection

N.Herrmann, Uni Heidelberg

Direction Measurement

Timing application for photon detection

C.Degenhard, A.Thon, Physik Journal 6(2007)23

Spatial resolution:

$$\mathbf{X} = \frac{1}{2}c(t_1 - t_2)$$

$$\sigma_{\rm X} = \frac{1}{2} c \sigma_{\rm t}$$

Noise Equivalent Countrate (NEC)

 $\frac{NEC_{TOF}}{NEC_{noTOF}} \approx \frac{D}{1.6 \cdot \sigma_x}$

with object size D

Timing techniques and counters

Generalities

Scintillators with PMT (SiPM) readout

Gas counters (MRPC)

Diamonds

Measurement of Arrival Time

Example: plastic slat counter TDC Disc PM Disc PM Disc TDC

- 1) Ionization by Bethe-Bloch, scintillation process with decay time $\tau \sim 2$ ns
- 2) Photon propagation, refractive index n = 1.58
- 3) Light conversion in photomultiplier with transient time spread
- 4) Discrimination for varying pulse heights (walk or slewing correction needed)
- 5) Digitization with clock synchronization

Note:

Timing resolution in single ended readout is limited by plastic size: $\sigma_t = L \cdot n/(c\sqrt{12})$ Double sided readout: $t - \frac{1}{t}(t + t) - L \cdot n/c$

$$t = \frac{1}{2} \left(t_1 + t_2 \right) - L \cdot n / c$$

Signal Generation in Plastic Scintillators

Organic scintillators (plastic, liquid) use a solvent + large concentration of primary fluor + smaller concentration of secondary fluor +

Fast energy transfer via non-radiative dipole-dipole interactions (Förster transfer).

- \rightarrow shift emission to longer wavelengths
- \rightarrow longer absorption length and better matching to photocathode efficiency

Stokes

OSS

Properties of Plastic Scintillators

Scintillator material	Density [g/cm³]	Refractive Index	Wavelength [nm] for max. emission	Decay time constant [ns]	Photons/MeV
NE102*	1.03	1.58	425	2.5	2.5 · 104
NE104*	104* 1.03		405	1.8	2.4 · 10 ⁴
NE110*	1.03	1.58	437	3.3	2.4 · 10 ⁴
NE111*	E111* 1.03		1.58 370		2.3·10 ⁴
BC400**	1.03	1.58	423	2.4	2.5 · 10 ²
BC428**	1.03	1.58	480	12.5	2.2 · 10 ⁴
BC443**	1.05	1.58	425	2.2	2.4 · 10 ⁴

* Nuclear Enterprises, U.K.

** Bicron Corporation, USA

Typical numbers:

Energy deposition of MIP in 1 cm plastic (Bethe – Bloch)

 $\Delta E \sim 1.7 \text{ MeV}$

 \Rightarrow ~ 50.000 photons

However, only directly propagating ones contain relevant timing information!

Light propagation in plastic slat / fibre

Light attenuation (absorption):

Example for $3 \times 2 \text{ cm}^2$

(bulk counter wrapped with Teflon tape to optimized light yield) Total internal reflection

$$\theta \ge \arcsin\frac{n_2}{n_1} = \arcsin\frac{1}{1.58} = 39.3^\circ$$

 $\frac{\Delta\Omega}{4\pi} = 18\% \qquad \text{best case, when surface is perfect}$ $N_{ph} = N_0 e^{-\frac{d}{\lambda}}$

Impact on light propagation on timing

Timing information is carried by the early photons. \rightarrow design systems with well defined propagation path length.

Photosensors

PMT

Micro channel plate (MCP)

Photon detection

Table 33.2: Representative characteristics of some photodetectors commonly used in particle physics. The time resolution of the devices listed here vary in the 10–2000 ps range.

Type	λ (nm)	$\epsilon_Q\epsilon_C$	Gain	Risetime (ns)	$\frac{\rm Area}{\rm (mm^2)}$	1-p.e noise (Hz)	HV (V)	Price (USD)
PMT^*	115 - 1700	0.15 - 0.25	$10^3 - 10^7$	0.7 - 10	$10^2 - 10^5$	$10 - 10^4$	500-3000	100 - 5000
MCP^*	100 - 650	0.01 - 0.10	$10^{3} - 10^{7}$	0.15 - 0.3	$10^2 - 10^4$	0.1 - 200	500 - 3500	10 - 6000
HPD^*	115 - 850	0.1 - 0.3	$10^{3} - 10^{4}$	7	$10^2 - 10^5$	$10 - 10^{3}$	${\sim}2 \times 10^4$	~ 600
GPM^{\ast}	115 - 500	0.15 - 0.3	$10^{3} - 10^{6}$	O(0.1)	O(10)	$10 - 10^3$	300 - 2000	O(10)
APD	300 - 1700	${\sim}0.7$	$10 - 10^8$	O(1)	$10 - 10^{3}$	$1 - 10^{3}$	400 - 1400	O(100)
PPD	320 - 900	0.15 - 0.3	$10^{5} - 10^{6}$	~ 1	1 - 10	$O(10^{6})$	30 - 60	O(100)
VLPC	500-600	~ 0.9	${\sim}5\times10^4$	~ 10	1	$O(10^4)$	${\sim}7$	~ 1

*These devices often come in multi-anode configurations. In such cases, area, noise, and price are to be considered on a "per readout-channel" basis.

Commercially available timing sensors (PMT, MCP) with suitable rise times (< 1 ns) are very expensive: ~ 1000 € / channel except for PPD (SiPM)

Solid State Photosensors: SiPM

N.Herrmann, Uni Heidelberg

 \bigcirc

04/04/2016

Timing Characteristics of SiPM

۲

•

< 500 ps

I<10μA

Pixel recovery time

~ C_{pixel}R_{pixel}=100 - 500ns

Low noise, high bandwidth electronics required

 $\sigma_{t} = \frac{\sigma_{noise}}{\frac{dS}{dt}} \approx \frac{t_{rise}}{S / N}$

Fast Geiger discharge development

with polysilicon resistor in each pixel

Discharge is quenched by current limiting

Plastic & SiPM

A. Stoykov et al., NIM A 695 (2012) 202

Achieved time resolution: as good as for PMT!

$$\sigma_t = 18 \, ps \, / \sqrt{E \, / 1 \, \mathrm{MeV}}$$

Electron TOF counter with Plastic & SiPM

P.W. Cattaneo et al. (MEGII), arXiv:1402.1404v2 [physics.ins-det]

Fig. 1. Test setup for measurements of the counter time resolution. RC denotes the reference counter. See the text for details.

Neutron TOF counter with Plastic & SiPM

T.P. Reinhardt et al. (R3B), NIM A816 (2016) 16

45390 Entries Std Dev 0.2492 1800 Integral 4,527e+04 1600 σ. 0.247 ± 0.001 1400 1200 1000 800 600 400 200 0 -2 0 2 $(t_7 + t_8)/2 - t_{pp}$ [ns]

SensL 6×6 mm², U_{OV}=3.0 V

Fig. 2. Photograph of the preamplifier board, complete with four $6 \times 6 \text{ mm}^2$ SiPMs. When in use, the SiPMs are separated from the board by a neoprene layer that is penetrated by the pin connectors of the SiPMs.

Fig. 1. NeuLAND bar. The left side shows the entire, 270 cm long NeuLAND bar. The right side shows the two tapered sides converting from 5×5 cm² square shape to d=2.5 cm circular shape.

Test beam results with 30 MeV e⁻ @ ELBE

Performance better than with PMT (although not all the area was covered with sensors)

Efficiency: 99 +/- 1 % Timing resolution: σ_t = 136 +/- 2 ps

Timing with Gas Counters

Problem:

"slow" drift of electrons from primary ionization to amplification region

 $v_{drift} \sim 10 \ \mu m/ns$

Concept: detect avalanches directly, large E-field in whole detector volume

Electron multiplication

Cloud chamber picture of electron avalanches in parallel plate counter

$$\frac{dn}{dx} = \underbrace{\left(\alpha - \eta\right)}_{\alpha_{eff}}\overline{n}$$

$$\frac{d\overline{p}}{dx} = \alpha \overline{n}$$

W. Legler, Z. Naturforschung 16a, 253 (1961)

- \bar{n} average electron number
- \bar{p} average positive ion number

 $\alpha~$ – Townsend coefficient

η – attachment coefficient
(electron can get attached
to an atom forming a negative ion)

$$\overline{n}(0) = 1,$$

$$\overline{n}(x) = e^{(\alpha - \eta)x}$$

 $\overline{p}(0) = 0$

04/04/2016

Multi-gap Resistive Plate Chamber

Avalanche growth

W. Riegler, C. Lippmann, R. Veenhof NIM A500 (2003) 144 IMONTE calculation: S. Biagi (CERN)

Operating point:

E=100 kV/cm

 α_{eff} = 100 / mm

Over a distance of 0.2 mm a single electron would generate $5 \cdot 10^8$ electrons (Q=80pC).

However: space charge effects! Raether limit: multiplication M < 10 8 , αx < 20

Stability of operation

Avalanche gain dependence automatically corrects potentials on the resistive plates – stable situation is "equal gains in all gas gaps"

Signal generation

W. Riegler, NIM A491, 258 (2002)

Mechanism: Induction

Ramo's theorem:

Assume perfectly conducting electrodes:

 $I(t) = Q\vec{E}(\vec{x}) \cdot \dot{\vec{x}}(t)$ $\vec{E}(\vec{x}) - \text{static electric field}$

with resistive elements;

$$I(t) = \frac{E_W \cdot v_{drift}}{V_W} e_0 N(t)$$

$$E_W - \text{weighting field}, V_W - \text{weighting potential}$$

$$\frac{E_W}{V_W} = \frac{\varepsilon_r}{2d + g\varepsilon_r}$$
from $\sum_{i=1}^{b} E_i d_i =$, with $\varepsilon_i E_i = \varepsilon_j E_j$ for neighbouring layers

N.Herrmann, Uni Heidelberg

electrons generate the signal

Intrinsic timing resolution

Timing determined by crossing a discriminator threshold

- sufficiently fast amplifier
- low threshold,
- $i(t) = Ae^{(\alpha \eta)vt} = A_{thr}$ no saturation effects

Probability to cross threshold at time t:

$$P(t) = (\alpha - \eta) vF((\alpha - \eta) vt)$$
$$F(x) = exp(x - exp(-x))$$

Time resolution of single gap:

$$\sigma_t = \frac{1.28}{(\alpha - \eta)\mathbf{v}}$$

Operating point: E=100 kV/cm $\alpha_{\rm eff}$ = 100 / mm = 200 µm/ns V => σ_t = 64 ps 04/04/2016

N.Herrmann, Uni Heidelberg

Efficiency

Induced charge has to pass threshold:

For single primary electron:

$$Q_{ind}(x) = \frac{E_W}{V_W} \frac{e_0}{\alpha - \eta} e^{(\alpha - \mu)(d - x)} - 1$$
$$\downarrow$$

$$\varepsilon = 1 - e^{-\left(1 - \frac{\eta}{\alpha}\right)\frac{d}{\lambda}} \left[1 + \frac{V_W}{E_W} \frac{\alpha - \eta}{e_0} Q_{thr}\right]^{\frac{1}{\alpha\lambda}}$$

(λ is average distance of primary clusters.)

- Single gap efficiency at operating point $\epsilon = 80 \%$
- \rightarrow multigap configuration needed.

Note: explicit dependence on α and η -> gas mixture

α (1/mm)

80 100 120 140 160 180 200

0.1

(a)

0

0

20

40 60

ALICE – TOF

Features: 10 gas gaps, each of 250 micron width, built in the form of strips, each with an active area of 120 x 7 cm², readout by 96 pads (each 2.5 x 3.5 cm²)

Timing depends on individual gap Efficiency depends on total gas gap (10x250 μ m) Signal rise time ~100 ps, pulse height ~ 5mV @ 100 Ω -> fast electronics: NINO chip

ALICE – TOF rate capability

Test of 220 micron 10 gap MRPC at GIF CERN

Effective voltage : voltage applied across stack - voltage drop (due to current drawn by MRPC)

Capability in excess of 1 kHz/cm² Excellent for resistive plate chamber

NOTE

glass resistivity $10^{13} \Omega$ cm in lab Small average total charge (2 pC)

Nucl. Instr.Meth. A 490 (2002) 58-70

ALICE – TOF in beam performance

Track matching efficiency

Time resolution from pions with 0.95 GeV/c

Performance differs from test beam results, ... not fully understood...

20 ps timing device

FOPI – MMRPC system

M. Kis et al. (FOPI), NIM A 646, 27 (2011)

Multistrip – Multigap – RPC

- 2003
5 – 2007
′ - 2011

Features:

8 gaps of 250 μm length: 90 cm pitch: 2.54 mm Impedance: 50 Ω 16 readout strips per counter single ended readout

Signal distributed on several strips

- \rightarrow high demands on preamplifier
- \rightarrow PADI chip development

FOPI-Resistive Plate Chambers (RPC)

1. full size prototype, Oct 2003

11.5

Voltage (kV)

12

12.5

13

10

10.5

11

High voltage: Length: Pitch: 250-300 μm ~3kV/gap 90 cm 2.54 mm

N.Herrmann, Uni Heidelberg

Walk (slewing) correction

N.Herrmann, Uni Heidelberg

04/04/2016

FOPI multi-strip response

M. Kis et al. (FOPI), NIM A 646, 27 (2011)

Number of coincident strips

RMS of cluster times

Total charge of cluster

MMRPC timing resolution from RPC-RPC coincidences

RPC against start

$$\sigma_t$$
 = 82 ps

RPC – RPC coincidences

$$σ_{\Delta t}$$
 = 94.9 ps
↓
 $σ_{RPC}$ = 67.1 ps

(calibration AD-C-F)

N.Herrmann, Uni Heidelberg

CBM – TOF Readout Electronics

T0 – Beam Counters

Physical Property at 300 K	Diamond	Silicon
band gap [eV]	5.45	1.12
Electron mobility [cm ² /Vs]	2200	1500
Hole mobility [cm ² /Vs]	1600	600
Breakdown field [V/m]	107	3x10 ⁵
Resistivity [Ω cm]	>1013	2.3x10 ⁵
Dielectric constant ϵ_r	5.7	11.9
Thermal conductivity [W/cm K]	20	1.27
Lattice constant [Å]	3.57	5.43
Energy to remove an atom from the lattice [eV]	80	28
Energy to create an e-h pair [eV]	13	3.6

Favorable material parameter

- mechanical hardness
- high thermal conductivity
- Insensitive for visible light
 - No cooling needed
 - No p-n junction needed
 - Fast signal rise time
 - Radiation hardness

Single-crystal CVD diamond plate, max. size: 5×5 mm2, d=50,100,200,300µm Polycrystalline CVD diamond plate, max. size: 50×50 mm2, d=50,100,200,300mm

Fig. 13. The pcDD set used in a 181 Ta beam of 1 A GeV (left). The time difference spectrum measured between two identical detectors (right). The time resolution is 22 ps.

M. Ciobanu et al.,

IEEE Transactions of Nuclear Science, 58 (2011) 203

Key issue: fast electronics

$$\sigma_{t} = \frac{\sigma_{noise}}{\frac{dS}{dt}} \approx \frac{t_{rise}}{S / N}$$

Conclusions

Development of particle / photon counters for timing applications is a very active field.

- enabled by fast large bandwidth electronics.
- approaches large scale 50 ps systems.
- 10 20 ps achievable for small counters.

N.Herrmann, Uni Heidelberg

Timing Photon Counters

Need: fast scintillator

Table 33.4: Properties of several inorganic crystals. Most of the notation is defined inSec. 6 of this *Review*.

Parameter	: ρ	MP	X_0^*	R_M^*	dE^*/dx	λ_I^*	$\tau_{\rm decay}$	λ_{\max}	$n^{lat}$	Relative	Hygro-	d(LY)/dT
Units:	g/cm^3	³ °C	cm	cm	MeV/cm	cm	ns	nm		output	scopic:	$\%/^{\circ}C^{\ddagger}$
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	245	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF_2	4.89	1280	2.03	3.10	6.5	30.7	650^{s}	300^{s}	1.50	36^{s}	no	-1.9^{s}
							0.9^{f}	220^{f}		4.1^{f}		0.1^{f}
$\operatorname{CsI}(\operatorname{Tl})$	4.51	621	1.86	3.57	5.6	39.3	1220	550	1.79	165	slight	0.4
$\operatorname{CsI}(\operatorname{Na})$	4.51	621	1.86	3.57	5.6	39.3	690	420	1.84	88	yes	0.4
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	30^{s}	310	1.95	3.6^{s}	slight	-1.4
							6^{f}			1.1^{f}		
$PbWO_4$	8.30	1123	0.89	2.00	10.1	20.7	30^{s}	425^{s}	2.20	0.3^{s}	no	-2.5
							10^{f}	420^{f}		0.077^{f}		
$\mathrm{LSO(Ce)}$	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	85	no	-0.2
PbF_2	7.77	824	0.93	2.21	9.4	21.0	-	-	- (Cherenkov	v no	_
${\rm CeF}_3$	6.16	1460	1.70	2.41	8.42	23.2	30	340	1.62	7.3	no	0
LaBr ₃ (Ce)	5.29	783	1.88	2.85	6.90	30.4	20	356	1.9	180	yes	0.2
CeBr ₃	5.23	722	1.96	2.97	6.65	31.5	17	371	1.9	165	yes	-0.1