Freiburg Lectures 2016

Graduiertenkolleg "Mass and Symmetries after the Discovery of the Higgs Particle at the LHC"

Tracking and Tracking Detectors

Norbert Wermes University of Bonn

Outline

Lecture 1

Tracking

- momentum measurement
- vertex measurement
- influence of multiple scattering
- errors and what to do ...

Lectures 2 & 3 & 4

Tracking Detectors

- the signal and the noise
- spatial resolution with structured electrodes
- gaseous detectors
- semiconductor detectors
- pixel detectors ... status and future

Freiburg Lectures 2016

Graduiertenkolleg "Mass and Symmetries after the Discovery of the Higgs Particle at the LHC"

Lecture 4

Tracking Detectors (Pixels: Status and Future)

universität**bonn**

Silizium Labor Bonn

Norbert Wermes University of Bonn

universität**bonn**

Content Lecture 4

- Other semiconductor materials
- Hybrid Pixel Detectors
- What the Readout Chip has to do?
- From parts to modules (bump bonding)
- New sensor types 3D-Si, Diamond
- Noise in ionization detectors
 - Don't be afraid about noise theory!
 - When to care about noise?
 - Noise sources in a typical detector system
 - Calculating the noise of a detector (pixel/strip) system
- □ How to make things better?
 - Radiation hard sensors and electronics
- Monolithic Pixel Detectors
 - DEPFET Pixels
 - MAPS
 - Depleted CMOS Pixels (DMAPS)
- ❑ 4D Timing resolution with Silicon Detectors

Today's "state of the art" of running detectors

all based on "Hybrid Pixels"

Important: Readout Chips (ASICs)

Charge Sensitive (Pre)-Amplifiers

Functions in the cell (binary readout + "poor man's" analog)

- Integration of signal charge by charge sensitive amplifier
- Pulse shaping by feedback circuit with constant current feed back
- Hit detection by comparator
- ~5 bit analog information via "time over threshold"
- storage of address and time stamps in RAM at the periphery

N. Wermes, Freiburg Lectures 2016

L. Blanquart et al., NIM-A565:178-187, 2006

Requirements on the electronics performance

<

<

- small noise hit rate \rightarrow
- $\sigma_{\mathsf{noise}} \oplus \sigma_{\mathsf{threshold}}$
- time stamp

- low noise and small threshold dispersion
 - \sim 600 e⁻ @ a threshold of 3000 e⁻
- 20 ns after BX for all signal heights

Distribution of pixel cell thresholds

HL-LHC data rates

N. Wermes, Freiburg Lectures 2016

M. Garcia-Sciveres et al, Nucl.Instrum.Meth. A636 (2011) 155-159

IBM (130 nm)

•

1.1 mm

Hybrid Pixel assembly => called "hybridization"

Sensors

- n⁺ in n (oxygenated Si)
- wafer size (Ø 10 cm)
- ~200-250 µm thick

Electronics - Chip

- chip size limited by yield ~1-2.5 cm²
- wafer size (Ø 20 cm)

Hybridization

- PbSn or Indium bumps (wafer scale)
- IC wafers thinned after bumpin
- ,flip-chip' to mate the parts
- ~3000 bumps/chip, ~50000 bur

N. Wermes, Freiburg | ATLAS Modul, Foto:IZM, Berlin

IZM,Berlin

ATLAS Pixel Detector

- light weight "carbon-carbon" structures
- cooling (pumped C_3F_8 : boiling point = -25⁰)
- T < -6^{0} C to limit damage from irradiation

Noise

N. Wermes, Freiburg Lectures 2016

14

... with an additional filter amplifier (shaper) being the band width limiter

... with an additional filter amplifier (shaper) being the band width limiter

The typical S/N situation (... here ATLAS)

- Signal of a high energy particle \Rightarrow 19500 e⁻ \rightarrow 10000 e⁻ after irradiation Charge on more than 1 pixel => S/N > 30 \rightarrow S/N \sim 10
- Discriminator thresholds = 3500 e, ~40 e spread, ~170 e noise
- 99.8% data taking efficiency
- 95.9% of detector operational
- \Box ca. 10 µm x 100 µm resolution (track angle dependent)
- □ 12% dE/dx resolution

How to make things better?

- sensors radiation hard
- (faster/better/lower power chips)
- avoid hybridization -> monolithic pixels

3D-Si sensors for the innermost pixel layer(s)

-> radiation tolerance -> Q still 50% @ 10¹⁶ cm⁻²

- good for inclined tracks
- slightly larger C_{in} (noise)
- \diamond now also in diamond, CdTe

- 3D sensors have been put to reality
- in ATLAS IBL for one year
- perform as well as planar pixels

PRO

CON

- complex signal processing already in pixel cells possible
 - zero suppression
 - temporary storage of hits during L1 latency
- \Box radiation hard to >10¹⁵ n_{eq}/cm²
- □ high rate capability (~MHz/mm²)
- \Box spatial resolution ~ 10 15 μ m

... but also

□ relatively large material budget: **~3% X**₀ per layer (1% X₀ @ ALICE)

- sensor + chip + flex kapton + passive components
- support, cooling (-10°C operation), services
- complex and laborious module production
 - bump-bonding / flip-chip
 - many production steps
 - expensive

CMOS Pixels

Use commercial CMOS technology mature (world market) cheap in comparison

Monolithic (i.e. one sensor/chip entity)

- avoids hybridization
- wafer scale processes
- large modules possible (employ stitching over reticules)

□ Small pixels (at least in principle)

o (25 x 25 μm²)

BUT

Industry does not care much about particle physics

- they use cheap low resistive substrate Si (not depletable) ... Q-coll by diffusion (slow)
- some (CMOS camera) technology have relatively thick epitaxial layer (~15 μm)
- ⇒ try to exploit special technology features to make detectors multiple wells, some (thin) depletion layer, backside contacts => optimize Q-coll.

Rate and Radiation Levels

Numbers for innermost layers (r ≈ 5cm,) -> scale by 1/10 for typical strip layers (r > 25 cm)

	STAR	Belle II	ALICE-LHC	ILC	LHC	HL-LHC-pp	
			heavy ion		рр	Outer	Inner
BX-time (ns)	110	2	20 000	350	25	25	25
Particle Rate (kHz/mm ²)	4	400	10	250	1 000	1 000	10 000
Φ (n _{eq} /cm ²)	few 10 ¹²	3 x 10 ¹²	> 10 ¹³	10 ¹²	2x10 ¹⁵	10 ¹⁵	2x10 ¹⁶
TID (Mrad) [*]	0.2	20	0.7	0.4	80	50	> 1000

*per (assumed) liftetime LHC, HL-LHC: 7 years ILC: 10 years

others: 5 years

much less material

high resolution

monolithic pixels

- large area strips
- hybrid pixels

- even larger area
- radhard sensors
- high rate R/O
- new type R&D

N. Wermes, 14th VCI Wien, 2/2016

NEW developments

DEPFET Pixels -> Belle II Monolithic Pixels -> STAR@RHIC, ALICE DMAPS (Depleted MAPS) -> LHC Upgrade?

DEPFET Pixels

How does a DEPFET work?

A charge q in the internal gate induces a mirror charge α q in the channel (α <1 due to stray capacitance). This mirror charge is compensated by a change of the gate voltage: $\Delta V = \alpha q / C = \alpha q / (C_{ox} W L)$ which in turn changes the transistor current I_d . FET in saturation:

$$I_{d} = \frac{W}{2L} \mu C_{ox} \left(V_{G} + \frac{\alpha q_{s}}{C_{ox} WL} - V_{th} \right)^{2}$$

 $\begin{array}{ll} I_d: \mbox{ source-drain current} \\ C_{ox}: \mbox{ sheet capacitance of gate oxide} \\ W,L: \mbox{ Gate width and length} \\ \mu: \mbox{ mobility (p-channel: holes)} \\ V_g: \mbox{ gate voltage} \\ V_{th}: \mbox{ threshold voltage} \end{array}$

Conversion factor:

q

$$g_{q} = \frac{dI_{d}}{dq_{s}} = \frac{\alpha\mu}{L^{2}} \left(V_{G} + \frac{\alpha q_{s}}{C_{ox}WL} - V_{th} \right) = \alpha \sqrt{2 \frac{I_{d}\mu}{L^{3}WC_{ox}}}$$
$$g_{m} : g_{q} = \alpha \frac{g_{m}}{WLC_{ox}} = \alpha \frac{g_{m}}{C}$$

How does a DEPFET work?

A charge q in the internal gate induces a mirror charge α q in the channel (α <1 due to stray capacitance). This mirror charge is compensated by a change of the gate voltage: $\Delta V = \alpha q / C = \alpha q / (C_{ox} W L)$ which in turn changes the transistor current I_d .

- Internal amplification $g_q \sim 500 \text{ pA/e}^-$
- Small intrinsic noise
- Sensitive off-state, no power consumption

DEPFET pixel array

- DEPFET pixel transistors arranged in a matrix
- row wise select -> column wise readout of transistor (drain) currents
- Gate and clear lines need a steering chip
- Long drain readout lines to keep material out of the acceptance region
- 100 ns per row
 20 µs per frame

BELLE II Pixel Detector

N. Wermes, 14th VCI Wien, 2/2016

CMOS Pixels (sometimes called MAPS)

skip?

From HYBRID to monolithic CMOS pixels

N. Wermes, 14th VCI Wien, 2/2016

TCAD simulations: resistivity – voltage – fill factor

Substrate: $10 \Omega cm - 2k\Omega cm$ Nwell: 1V - 20 VPwell: 0V

from Tomasz Hemperek

TCAD simulations: resistivity – voltage – fill factor

Substrate: 10 Ω cm – 2k Ω cm Nwell: 1V – 20 V Pwell: 0V

from Tomasz Hemperek

Fill Factor influence: here at $10^{15} n_{eq}/cm^2$

Electron Velocity

Charge_Collection

need all three!

PLUS

from: www.xfab.com

multiple nested wells

for
$$n_{eq} = 1 \times 10^{15} \text{ cm}^{-2}$$

Current DMAPS approaches

HR/HV - CMOS

I. Peric et al., NIM A582 (2007) 876-885 & NIM A765 (2014) 172-176
S. Mattiazzo, W. Snoeys et al., NIM A718 (2013) 288-291
M. Havranek, Hemperek, Krüger, NW et al. JINST 10 (2015) 02, P02013

- (D)MAPS like configuration but w/ depleted bulk
- small collection node
- long drift path

=> smaller C, more trapping

- deep n and deep p wells
- large collection node
- short drift path
- => larger C, less trapping

important: (number of) deep wells and detailed cell geometry

watch: capacitance between deep p- and n-wells

4D with LGADs? Low Gain Avalanche Detectors

New: How to obtain fast timing with Si detectors?

- □ How would one go about getting into the 10 ps range with (structured) Si detectors?
- □ => exploit "in-silicon" charge amplification

OR in "linear mode" fashion

-> Low Gain Avalanche Detectors

in "Geiger Mode" fashion (like in gas RPCs)

 σ_t governed by avalanche fluctuations

see e.g. W. Riegler, C. Lippmann, R. Veenhof NIM A 500 (2003) 144

 Image: see N. Cartiglia

 Job kW/cm
 p+ multiplication layer

 high res p⁻ substrate
 p++ electrode

 JO kW/cm
 Parallel 2

A. Seiden et al, Vertex2015, Proceedings

Towards 4D tracking ... Low-Gain Avalanche Detectors

□ Separate the "collection" of charge from the signal gain □ Figure of merit for σ_t is the "slew rate" dV/dt ≈ Signal/ τ_{rise}

Need: fast drift - large signals – low noise

- e- drift in sat. (E = 20 kV/cm, $v_D \approx 10^7$ cm/s) => HV
- collect electrons fast => thin
- get large signals => from amplified holes (!)
- small C, small i_{leak}, low noise => small electrodes
- broad-band (non-CSA) amplifier & e.g. CF discr.

Ultimate Goal: simultaneous space (~10µm) and <u>time resolution</u> (< 50 ps) -> pile-up k

Options for ATLAS (HighGranularityTimingDetector; Forward) and CMS-TOTEM (in Roman Pots)

N. Wermes, 14th VCI Wien, 2/2016

<= CNM 8x8 mm²

300 µm thick, 11 pF

Further Reading

- G. Lutz, "Semiconductor Radiation Detectors", Springer Berlin-Heidelberg-New York, 1999.
- Rossi, Fischer, Rohe, Wermes,
 "Pixel Detectors: From Fundamentals to Applications",
 Springer Berlin-Heidelberg-New York, 2006, (ISBN 3-540-283324)
- ATLAS Pixel Detector, Technical Design Report, CERN/LHCC/98-13 (1998)
 CMS Tracker Technical Design Report, CERN/LHCC/98-6 (1998)
 ALICE Inner Tracker System, Technical Design Report, CERN/LHCC/99-12 (1999)
- N. Wermes, "Pixel Detectors for Charged Particles" Published in Nucl.Instrum.Meth. A604 (2009) 370-379, e-Print Archive: physics/0811.4577
- Kolanoski, H. and Wermes, N.
 Teilchendetektoren Grundlagen und Anwendungen, Spektrum-Verlag, (2016) in print

Grundlagen und Anwendungen

2 Springer Spektrum

BACKUP

N. Wermes, Freiburg Lectures 2016

41

Indium bumping process

Solder bumping & flip chip process

plating base (Cu)

barrier (Ti:W)

VO-pad (AI)

chip (Si)

wettable metallization (ep-Cu)

adhesion layer & diffusion

passivation (Si02, Si3N4, SiON)

Sensor

Flip-Chip

b)

Noise

N. Wermes, Freiburg Lectures 2016

44

Noise in ionisation detectors

When to care about noise ...

even if you are not interested in an energy measurement, remember ... thresholds

shot noise	white noise	current noise	
resistor noise	white hoise		
	switching noise	series noise Nyquist Noise	
flicker noise	popcorn noise		
Johnson Noise	parallel noise	kT/C noise	
1/f nois	RTS noise	Thermal noise	

 \rightarrow

 \rightarrow

three physical noise sources:

- number fluctuations of quanta
- velocity fluctuations of quanta

- 1. shot noise
 - 2. 1/f noise
 - 3. thermal noise

 $<i^2> = 2q <i>df$ $<i^2> = const. 1/f df$ $<i^2> = 4kT / R df$

where do they appear in a typical pixel detector readout chain ?

three physical noise sources:

number fluctuations of quanta \rightarrow 1. shot noise $\langle i^2 \rangle = 2q \langle i \rangle df$ 2. 1/f noise2. 1/f noise $\langle i^2 \rangle = const. 1/f df$ velocity fluctuations of quanta \rightarrow 3. thermal noise $\langle i^2 \rangle = 4kT / R df$

where do they appear in a typical pixel detector readout chain ?

three physical noise sources:

number fluctuations of quanta	\rightarrow	1. <mark>shot</mark> noise	<i²> = 2q <i> df</i></i²>
		2. 1/f noise	<i²> = const. 1/f df</i²>
velocity fluctuations of quanta	\rightarrow	3. thermal noise	<i²> = 4kT / R df</i²>

where do they appear in a typical pixel detector readout chain ?

ENC =

equivalent noise charge

noise output voltage (rms) signal output voltage for the input charge of 1e⁻

$$ENC_{tot}^2 = ENC_{shot}^2 + ENC_{therm}^2 + ENC_{1/f}^2$$

charge sensitive preamplifier only

$$ENC_{\text{shot}} = \sqrt{\frac{I_{\text{leak}}}{2q}}\tau_f \qquad = 56e^- \times \sqrt{\frac{I_{\text{leak}}}{nA}}\frac{\tau_f}{\mu s}$$
$$ENC_{\text{therm}} = \frac{C_f}{q}\sqrt{\langle v_{\text{therm}}^2 \rangle} = \sqrt{\frac{kT}{q}}\frac{2C_D}{3q}\frac{C_f}{C_{load}}} = 104e^- \times \sqrt{\frac{C_D}{100\,\text{fF}}}\frac{C_f}{C_{load}}$$
$$ENC_{1/\text{f}} \approx \frac{C_D}{q}\sqrt{\frac{K_f}{C_{ox}WL}}\sqrt{\ln\left(\tau_f\frac{g_m}{C_{load}}\frac{C_f}{C_D}\right)} = 9e^- \times \frac{C_D}{100\,\text{fF}} \text{(for NMOS trans.)}$$

W, L = width and length of trans. gate $K_f = 1/f$ noise coefficient C_{ox} = gate oxide capacitance C_f = feedback capacitance C_{load} = load capacitance C_D = detector capacitance τ_f = feedback time constant

reference Rossi, Fischer, Rohe, Wermes Pixel Detectors. Springer 2006

... with an additional filter amplifier (shaper) being the band width limiter

... with an additional filter amplifier (shaper) being the band width limiter

