Wire-bonding

Ingo Bloch

With Videos at: https://docs.google.com/presentation/d/1f79BZayGPYJ8BG55YwJCzCPgNwr6h8Pjza7bVRgJcsw/edit?usp=sharing

A plan for content - let's see how far we get

Intro - the long version... feel free to pick an item and ask about it

- > Why bonds in the first place
 - What is the usual job of a bond
 - Connect what to what
 - Survive what
 - > HEP default is Aluminium Wedge wire bonding alternatives?
 - Gold ball about 5-10 times faster than Al-Wedge, but bond surfaces heated to
 - T>125°C
 - Bump bonding: Expensive expert operation, yield can be challenging, potentially requires redundant connections
 - > Will focus on Aluminium Wedge Bonding
 - > Ask: What is the best focus otherwise?
 - Rather focus only on how to wirebond?
 - Or add focus on features where bond-aware design/layout is essential?
- > Steps to bond single wires
 - > Most relevant parameters
 - Xy coordinate setting for both bond feet for each wire, Z height setting for both, Bond force, US power, "Slow" range before touchdown
 - Loop height, shape, height/length correction
 - > Most frequent bond failures
 - Lift off: Bad support, Contamination, Bad surface quality
 - Heel break: Bad support -> force too high, Bad surface, e.g. bonding in vicinity of old bond feet
 - Leaning wires / short circuits: Uneven surface, Torsion on wire in wire spool, contaminated wedge
- Steps for programs

Very brief, just define

- Source "chip", target "chip" wires connecting 2 chips
- Xy auto-adjust with pattern recognition
 - Height measurement at each chip
- Never do:
 - > Define reference pictures on surfaces that can change when bonding (e.g. avoid bond pads), such that one can re-adjust when need for re-bonding comes up

- Environment / Behaviour
 - Preparation for work item (cleaning, jigs, bond plan)
 - Behaviour / cleanliness
 - Consequences for failure to work cleanly
- Usual non-day-to-day items
 - > Change wire
 - Change tool/wedge
 - Calibate xy "Spider"
 - Infrastructure check
 - > clean!
- > Typical difficulties transition to Q&A
 - > Bond plan which wire goes where? Documentation!
 - > Avoid Contaminations action to reduce existing contamination
 - ASIC/die related
 - Design ASIC bond pads (size, placement)
 - Design connectivity layout: few bond head turns, similar length, first short than long...
 - Hybrid/Package related
 - Design target bond pads (size, etching, placement, surface quality,...)
 - SMD placement
 - connector placement
 - Fiducials
 - Mechanical support

Plan

Parts of the session

- brief intro to wire bonding
- > followed by discussion of wire bonding events

Intro

- > What is the usual job of a bond
 - Connect what to what
 - Survive what (next page)

HL-LHC ATLAS Upgrade ("Phase II")

ATLAS tracking detector Upgrade (only Si-strip part here)

- Current Si-strip detector (SCT) manages to
 - measure until ~600 fb⁻¹ are reached
 - differentiate pile-up up to ~<60> events
- Does not agree with HL-LHC parameters
- > Strip-tracker-Upgrade targets
 - Radiation hardness up to 3000 fb⁻¹ resp. 2*10¹⁵ neq/cm²
 - Granularity about 4x finer than current SCT
 - > Track-Trigger, less material, ...

> Wirebonds everywere :)

Wire-Bonding - Thermo-Mechanical Module

Bonding types: Aluminium wedge

- > HEP strip detector default is "Aluminium Wedge wire bonding"
 - > Just saw the video
 - > Uses a tungsten carbide wedge
 - > Usually using 25 (or 17) micrometer AISi (1%) wire
 - Press wire down (Bond-Force) and vibrate (ultrasonic power) to heat and weld to substrate
 - > Go to target, repeat, rip rest of wire off, done

Wedge bond length Wedge bond length
Ingo Bloch | 9th Terascale Detector Workshop - Lecture 6: Wire-bonding | 2016-04-07 | Page 6

Bonding types: Alternatives

- > HEP strip detector default is "Aluminium Wedge wire bonding"
 - > Alternatives?
 - Sold ball bonding: about 5-10 times faster than Al-Wedge, but bond surfaces have to be heated to T>125°C

Bonding types: Alternatives

- > HEP strip detector default is "Aluminium Wedge wire bonding"
 - > Alternatives?
 - > Bump bonding
 - Expensive expert operation with yield issues
 - Potentially requires redundant connections
 - Good for limited area, high density (e.g. pixel detector)
 - > Not ideal and too expensive for large area strip detector

> Will focus on Aluminium Wedge Bonding

Bond steps for a "single wire"

- > Steps to bond single wires
 - > Set parameters (main ones...):
 - Xy coordinate setting for both bond feet for each Wire
 - Z height setting for both
 - Bond force
 - US power
 - "Slow" range before Touchdown
 - Loop height, shape, height/length
 Correction
 - Bond
 - Check

Bond failure modes

> When checking, one mostly discovers all is fine (ideally >99.9% of the time)

- > If bond failure, most frequent bond failures are
 - Lift off of one of the bond feet. Possible causes:
 - > Bad mechanical support
 - > Contamination of pads or wire
 - > Bad surface quality
 - Heel break in one of the wires.
 Possible causes:
 - > Bad support -> force too high
 - > Bad surface, e.g. bonding in vicinity of old bond feet
 - Leaning wires / short circuits.
 Possible causes:
 - > Uneven surface
 - > Torsion on wire in wire spool
 - > Clogged or contaminated wedge

Bond programs - beyond single wire

> Video-impression of a running program:

Ingo Bloch | 9th Terascale Detector Workshop - Lecture 6: Wire-bonding | 2016-04-07 | Page 11

Bond programs - beyond single wire

- > Steps for programming
 - > Very brief
 - Source "chip", target "chip", wires connecting 2 chips
 - Xy auto-adjust with pattern recognition
 - Height measurement will take place at each chip's first wire
 - If long and short wires close by: bond short wires first
 - Never do:
 - Define reference pictures on surfaces that can change when bonding (e.g. avoid bond pads), such that one can readjust when need for re-bonding comes up

Behaviour in Bond-labs - a few items

- > Prepare environment and work cleanly and carefully
 - > Preparation for work item (cleaning, jigs, bond plan)
 - > Behaviour / cleanliness
 - Many things have to be learned "on the job"
 - > Move slowly, dress in cleanroom gear, don't touch bare skin...
 - > Appreciate the delicacy of wire bonds
 - Learn to manipulate at micrometer scale
 - failure to work cleanly
 leads e.g. to contamination
 - Either "only" a few missing wires
 - Possibly "rotting wires"
 once bonded object is
 subjected to high
 humidity (ATLAS IBL)

Humans are producers of particles

Depending on the activity, a person releases between 100.000 an 30 Mio particles!

Particles smaller than 0.5 µm per min

Implications of HACCP for cleaning enterprises Module 4 - Cleanroom cleaning

Transition to Q&A... List of possible items to talk on about

- > Usual non-day-to-day items
 - > Change wire
 - > Change tool/wedge
 - > Calibate xy "Spider"
 - > Infrastructure check
 - > clean!
- > Typical difficulties could be used as transition for Q&A
 - > Bond plan produce, use, iterate, improve
 - > Contaminations
 - > Bond-aware design: ASIC/die related
 - bond pads (size, placement)
 - few bond head turns?
 - > Bond-aware design: Hybrid/Package related
 - bond pads (size, etching, placement, surface quality,...)
 - Obstacle placement (SMDs, connectors,...)
 - Fiducials
 - Mechanical support of bond areas

Some pics

Ingo Bloch | 9th Terascale Detector Workshop - Lecture 6: Wire-bonding | 2016-04-07 | Page 15

Some pics

Ingo Bloch | 9th Terascale Detector Workshop - Lecture 6: Wire-bonding | 2016-04-07 | Page 16

Some pics

Wire-Bonding - Prototype Module