

Latest results with the KWISP force sensor at CAST

G. Cantatore - University and INFN Trieste

CAST Collaboration KWISP Working Group: G. Cantatore, H. Fischer, A. Gardikiotis, D. H. Hoffmann, M. Karuza, Y. Semertzidis, I. Tsagris, K. Zioutas

Summary

- CAST and its new physics program
- KWISP detection principle
- First search for solar Chamelons at CAST with KWISP
- More to come...

CAST at CERN

- 21 institutes, 48 authors, 12 countries...
- Probing the mysteries of the Universe since 2003 !!!

http://cast.web.cern.ch/CAST/CAST.php

The new CAST physics program

- CAST has terminated its solar axion search program at the end of 2015
 - while analysis of the latest vacuum data is still in progress, CAST is still a benchmark reference for axion searches
- A new physics program for CAST has been approved by CERN (*)
- CAST expands its horizons from Dark Matter to Dark Energy with three new research lines
 - solar Chameleon searches with KWISP (direct coupling to matter)
 - solar Chameleon searches with InGrid (two-photon coupling)
 - relic axion searches with CAPP@CAST

(*) see G. Cantatore, L. Miceli, K. Zioutas, "Search for solar chameleons and relic axions with CAST", CERN-SPSC-2015-021

Chameleon searches at CAST

- Chameleons are a type of scalar WISPs having an effective mass dependent on the local energy density. Solar Chameleons are Primakoff-produced inside the magnetic field of the Sun and then stream to Earth
- Two couplings, two detection possibilities:
 - inverse Primakoff conversion inside a magnetic field \implies photon coupling β_Y
 - force exerted at grazing incidence on a surface \implies direct coupling to matter β_m
- Photon channel: InGrid low-threshold photon detector
- Matter channel: KWISP (Kinetic WISP detection) opto-mechanical force sensor
 - first force-sensor prototype built and absolutely calibrated at INFN Trieste
 - KWISP-type sensors tested at CERN and used for the first ever direct matter-coupling based search

The InGrid based X-ray detector

 $2\,\mu m$ Mylar entrance window

Detection of photons down to 277 eV (Carbon K_{α} line) possible

Timepix ASIC combined with integrated Micromegas stage (InGrid)

InGrid based X-ray detector

The KWISP principle

The Sun emits a stream of Primakoff-produced Chameleons

High-sensitivity optical techniques detect tiny membrane displacements due to the Chameleon wind force

An ultra-thin taut membrane flexes as a sail under the Chameleon wind

Curious? See January-February 2016 CERN Courier http://cerncourier.com/cws/article/cern/63705

KWISP at CAST

Chameleon ___chopper

The Chameleon chopper

- Why does one need a chopper?
 - the sensor detects *relative* displacements, thus a *static* displacement is not seen
 - a time dependence must then be introduced in the membrane excitation
- Modulating the amplitude of something you cannot even see... the Chamelon chopper!
 - rests on the principle of grazing-angle reflection of Chameleons (see http://arxiv.org/ abs/1201.0079)
 - key element: no detection is possible without

On-beam assembly

- The KWISP vacuum chamber is coupled to the CAST beamline with xyz movements and the membrane is aligned in the focal plane of the XRT
- The internal optics assembly is modular: it can accommodate different optical setups
- The vacuum system is turbo pumped, reaching residual pressure in the 10⁻⁶ mbar range

KWISP gallery I

KWISP gallery II

KWISP gallery III

KWISP seen by Chameleons ...

5x5 mm² Si₃N₄, 100 nr thick membrane at 5° incidence angle

KWISP bird's eye view

Chameleon chopper slow motion

KWISP on-beam initial optics setup

- Michelson-type interferometer setup
 - equivalent to singlepass FP
 - realtively low sensitivity, but high stability
 - 5x5 mm², 100 nm thick membrane in one interferometer arm, PZT-moveable mirror in the other arm for calibration

Interferometer calibration (example)

- In response to externally-actuated mirror movement, the interferometer output shifts from "dark" fringe to "light" fringe
- the measured difference in voltage corresponds to a displacement of $\lambda/2$ $(\lambda = 532 \text{ nm})$

• in this example

LeCroy "Light" fringe interferometer output "Dark" fringe -50.8 ms Trigger 200 mV/d PZT mirror movement 840.0 492

$$C = \frac{532 \text{ nm}}{2 \cdot 1.23 \text{ V}} = 216 \text{ nm/V}$$

262 m

Measurement procedure

- Interference fringes in the sensor output beam are detected by a photodiode (PD): fringe shifts follow membrane movements.
- Information on membrane displacements as a function of time is encoded in the PD output voltage
- The Chameleon chopper provides both a reference frequency and a trigger signal for data acquisition
- A Chameleon signature should appear as a peak at the chopper frequency in the PD signal power spectrum
- The chopper also allows for
 - extended integration time (separate time records are taken in phase)
 - signal ID as a function of the chopper angular position (in case of positive signature)

April 2016 KWISP solar run at CAST

- First run ever with a force sensor looking for solar Chameleons
- Morning sun-trackings 21-28 April 2016
 - preliminary phase (2 days, DAQ with spectrum analyzer)
 - full DAQ phase with automated LabView based data daking and optimized optics
- Data taking strategy
 - time domain data acquired in 100 s-long time records
 - both the interferometer output signal and the trigger signal are acquired
 - a calibration signal is briefly injected at the beginning of each time record to obtain instantaneous senistivity
 - data are taken continuously both during sun-tracking and off-tracking
- April 2016 run summary statistics
 - 7 days of running
 - 9000 s of sun-tracking data (90 time records)
 - 121400 s of background data (1214 time records)

Data samples from KWISP April 2016 run

• Full data analysis is in progress

- single-record spectra are inspected for peaks at the chopper frequency taking into account variations due to the CAST magnet angular position
- spectra are then combined and vector averaged to lower stochastic backgtound
- background data spectra are inspected for spurious peak due to possbile noise sources

Upcoming steps in 2016

• Detector upgrade

- upgrade IR laser temperature control
- Fabry-Perot optics
- redesign on-beam chamber
 - larger volume
 - vibration isolation
 - provisions for cryogenic cooling
- implement homodyne detection technique
- procure new mirrors and membranes

DAQ upgrade

- optimize analog FP locking, move to digital locking
- adapt DAQ program to upgraded sensor
- Chopper upgrade
 - use high-RPM DC motors salvaged from discarded laser printers (suggestion by M. Karuza)
 - chopping rotors built from commercial low-cost optical flats
- Goal: be ready for a possible data taking window in December 2016
- G. Cantatore "Patras 2016" Jeju, Korea, 20/6/2016

Key KWISP technologies

- Enabling technologies
 - Opto-mechanical force sensing with nano-membrane
 - Double resonator concept: membrane Q and FP finesse
 - Chameleon chopper: flux modulation and phase-locking for unique particle detection and identification
 - Sun-tracking and X-ray telescope
- Upgrading technologies
 - direct homodyne detection
 - membrane customisation
 - Chameleon concentrator and recycler
 - membrane cooling

Direct homodyne detection

- The laser beam is split into two beams:
 - a local oscillator beam
 - a sensing beam passing through sensor and carrying the signal information
- The two beams are then combined again before detection and sent to a two-input balanced photodetector
- This approach rejects the common mode noise from
 - laser amplitude fluctuations
 - frequency-locking feedback loop
 - electronic noise in detection

(*) from P. Piergentili, "Optical cooling of a mechanical micro-oscillator revealed by homodyne detection", Tesi di Laurea Magistrale, Univ. di Camerino (2013)

Concentrator and "bucatini"-recycler concepts

from discussions with K. Zioutas

(*) best if prepared "all'amatriciana"

Membrane customisation

- Membrane design is flexible and can be highly customised during the production stage at a relatively low cost
- Key parameters
 - resonant frequency
 - mechanical quality factor "Q"
 - equivalent spring constant

- Already working on custom prototypes with exerted b
 - the company producing membranes (Norcada inc.)
 - a CERN group expert in thin-layer coatings

lifferent heights to probe several distances

 Au coating thickness can be modulated to adjust the magnitude of the test mass

Membrane cooling

- Cooling the membrane down to an as low as possible equivalent temperature brings the sensitivity to the ultimate limit
- Cooling takes place in two stages
 - cryogenic cooling: the physical temeprature of the membrane is lowered by standard means, such as contact with a cold finger
 - optical cooling: energy is transferred from thermally excited phonons in the membrane to photons in a laser beam (*)

Optical cooling can lower the equivalent temperature by a factor of 1000

• the mK range is accessible starting from LHe cryo-cooling at 4 K

(*) see for instance M. Karuza et al., New Journal of Physics, 14(9) (2012)

Conclusions

- KWISP completed the first ever solar tracking run searching for solar Chameleons with a force sensor
 - week-long run done with a stable, but reduced-sensitivity setup
 - analysis is in progress
- We move now towards a second generation sensor
 - optimized detector design optimized to adequately counter noise in the CAST experimental hall
 - better designed mechanics and vacuum enclosure
 - upgraded laser and optical components
 - homodyne detection technique

 CAST took a small step in DE energy territory... perhaps giant leap is just around the corner!

Thank you!

Suggestions for further reading

S. Baum, G. Cantatore, D.H.H. Hoffmann, M. Karuza, Y.K. Semertzidis, A. Upadhye, K. Zioutas, Physics Letters B 739, 167–173 (2014) on detecting solar Chameleons with an opto-mechanical force sensor

G. Cantatore, M. Karuza and K. Zioutas, Cern Courier January-February 2016 for a general introduction to the CAST physics program

M. Karuza, G. Cantatore, A. Gardikiotis, D.H.H. Hoffmann, Y.K. Semertzidis, K. Zioutas, Physics of the Dark Universe, 12 (2016) 100-104 on the performance and calibration of the KWISP force sensor