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ummary

® CAST and its new physics program
® KWISP detection principle




® 2| institutes, 48 authors,
| 2 countries...

® Probing the mysteries

of the Universe since
2003 !

http://cast.web.cern.ch/CAST/CAST.php
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The new CAST physics program

® CAST has terminated its solar axion search program at the
end of 2015

® while analysis of the latest vacuum data is still in progress, CAST is
still a benchmark reference for axion searches

® A new physics program for CAST has been approved by
CERN (*)

® CAST expands its horizons from Dark Matter to Dark
Energy with three new research lines

® solar Chameleon searches with KWVISP (direct coupling to matter)
® solar Chameleon searches with InGrid (two-photon coupling)

® relic axion searches with CAPP@CAST

(*) see G. Cantatore, L. Miceli, K. Zioutas, “Search for solar chameleons and relic axions with CAST”, CERN-SPSC-2015-021
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Chameleon searches at CAST

® Chameleons are a type of scalar WISPs having an effective mass dependent on the local
energy density. Solar Chameleons are Primakoff-produced inside the magnetic field of the

Sun and then stream to Earth

® Two couplings, two detection possibilities:

e inverse Primakoff conversion inside a magnetic field = photon coupling By

e force exerted at grazing incidence on a surface = direct coupling to matter B

® Photon channel: InGrid low-threshold photon detector




The InGrid based X-ray detector

2 um Mylar entrance window

Detection of photons down to
277 eV (Carbon K, line) possible
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The KWISP principle

The Sun emits a stream of
Primakoff-produced Chameleons

High-sensitivity optical techniques
detect tiny membrane displacements
due to the Chameleon wind force

An ultra-thin taut membrane flexes
as a sail under the Chameleon wind

Curious? See January-February 2016 CERN Courier http://cerncourier.com/cws/article/cern/63705
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Membn{‘ane

X-Ray Telescope on CAST
Chopper

KWISP force sensor
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The Chameleon chopper

® Why does one need a chopper!?

® the sensor detects relative displacements, thus a static displacement is not seen

® a time dependence must then be introduced in the membrane excitation

® Modulating the amplitude of something you cannot even see... the
Chamelon chopper!

® rests on the principle of grazing-angle reflection of Chameleons (see hetpi//arxivorg/
abs/1201.0079)

® key element: no detection is possible without

Principle of the Chameleon chopper

Xrazing incidence: OFF

Normal incidence: ON
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On-beam assembly

® The KWISP vacuum chamber is coupled to the
CAST beamline with xyz movements and the

membrane is alighed in the focal plane of the
XRT

® The internal optics assembly is modular: it can
accommodate different optical setups

® [he vacuum system is turbo pumped, reaching
residual pressure in the 10 mbar range
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5x5 mm?2 SisN4, 100 nm
thick membrane at 5°

ncidence angle
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KWISP bird’s eye view







® Michelson-type
interferometer setup

® equivalent to single-
pass FP

® realtively low sensitivity,
but high stability

® 5x5 mmz, |00 nm thick

membrane in one
interferometer arm,
PZT-moveable mirror
in the other arm for
calibration
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Interferometer calibration (example)

® |nh response to
externally-actuated
mirror movement,
the interferometer
output shifts from
“dark” fringe to
“light” fringe

® the measured AR IS - | interferometer output
difference in voltage 10 ULt L
corresponds to a
displacement of A/2

(A = 532 nm)

® in this example

“Dark” fringe
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Measurement procedure

® |nterference fringes in the sensor output beam are detected by
a photodiode (PD): fringe shifts follow membrane movements.

® Information on membrane displacements as a function of time
is encoded in the PD output voltage

® The Chameleon chopper provides both a reference frequency
and a trigger signal for data acquisition

® A Chameleon signature should appear as a peak at the
chopper frequency in the PD signal power spectrum

® The chopper also allows for
® extended integration time (separate time records are taken in phase)

® signal ID as a function of the chopper angular position (in case of
positive signature)
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April 2016 KWISP solar run at CAST

® First run ever with a force sensor looking for solar
Chameleons

® Morning sun-trackings 21-28 April 2016

® preliminary phase (2 days, DAQ with spectrum analyzer)

e full DAQ phase with automated LabView based data daking and optimized optics
® Data taking strategy

® time domain data acquired in 100 s-long time records

® both the interferometer output signal and the trigger signal are acquired




Data samples from KWISP April 2016 run

® Full data analysis is in progress

® single-record spectra are inspected for
peaks at the chopper frequency taking
into account variations due to the CAST

magnet angUIar POSition Measuring time = 100 s
® spectra are then combined and vector— Freq. resolution = 0.00625 Hz
: SR A3 2y f
averaged to lower stochastic backgtound Sensitivity = 1.35x10 N/VHz  FFT_260420160608

® background data spectra are inspected
for spurious peak due to possbile noise
sources

Chopper frequency = 244 Hz

Measuring time = 100 5

Freg, resolution = 000625 Hx

Sensitivity = 1. 35x10 YN FFT 260420160608

Chopper frequency = 2

235 24

N Rl

Frequency [Hz]

Frogeency [Hz)
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Upcoming steps in 2016

® Detector upgrade

® upgrade IR laser temperature control
® Fabry-Perot optics

® redesign on-beam chamber
® larger volume
® vibration isolation

® provisions for cryogenic cooling
® implement homodyne detection technique

® procure new mirrors and membranes




Key KWISP technologies

® Enabling technologies
® Opto-mechanical force sensing with nano-membrane
® Double resonator concept: membrane Q and FP finesse

® Chameleon chopper: flux modulation and phase-locking for unique
particle detection and identification

® Sun-tracking and X-ray telescope
® Upgrading technologies
® direct homodyne detection
® membrane customisation
® Chameleon concentrator and recycler

® membrane cooling
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® The laser beam is split into two beam:s:
- a local oscillator beam

- a sensing beam passing through sensor and carrying the signal information

® The two beams are then combined again before detection and sent to a two-input
balanced photodetector

® This approach rejects the common mode noise from
® laser amplitude fluctuations
® frequency-locking feedback loop

® electronic noise in detection

balanced
photodetetctor

local oscllator (LO)
directly from the laser

“signal” - beam exiting the FP cavity and
carrying the information on membrane
displacements

(*) from P. Piergentili, “Optical cooling of a mechanical micro-oscillator revealed by homodyne detection”, Tesi di Laurea Magistrale, Univ. di Camerino (2013)
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Meglbra’ﬁé

ConeEN+ReToR,

- XRT cone

from discussions with K. Zioutas
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Membrane customisation

® Membrane design is flexible and can be highly
customised during the production stage at a relatively
low cost

® Key parameters
® resonant frequency

® mechanical quality factor “Q”

® equivalent spring constant
® Already working on custom prototypes with
® the company producing membranes (Norcada Inc.)

® a CERN group expert in thin-layer coatings
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Membrane cooling

® Cooling the membrane down to an as low as possible equivalent
temperature brings the sensitivity to the ultimate limit

® Cooling takes place in two stages

® cryogenic cooling: the physical temeprature of the membrane is
lowered by standard means, such as contact with a cold finger

® optical cooling: energy is transferred from thermally excited
phonons in the membrane to photons in a laser beam (*)

® Optical cooling can lower the equivalent temperature by a
factor of 1000

® the mK range is accessible starting from LHe cryo-cooling at 4 K

(*) see for instance M. Karuza et al., New Journal of Physics, 14(9) (2012)
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Conclusions

® KWISP completed the first ever solar tracking run searching
for solar Chameleons with a force sensor

® week-long run done with a stable, but reduced-sensitivity setup
® analysis is in progress
® VWe move now towards a second generation sensor

® optimized detector design optimized to adequately counter noise in
the CAST experimental hall

® better designed mechanics and vacuum enclosure
® upgraded laser and optical components

® homodyne detection technique

® CAST took a small step in DE energy territory... perhaps
giant leap is just around the corner!
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