Light DM search with AURIGA

Antonio Branca* on behalf of the AURIGA Collaboration

*INFN Padova

12th Patras Workshop @ Jeju Island

20 - 24 June 2016

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

12th AxionWIMP

- 20

1 / 22

Antonio Branca (INFN-PD)

Light DM search with AURIGA

Contents

- Light Dark Matter and matter effects
- Effects on an oscillator 2
- The AURIGA detector @ LNL 3
 - Data Analysis
- 6 Results & Conclusions

・ 同 ト ・ ヨ ト ・ ヨ ト

Light Dark Matter

- moduli (φ): scalar fields from string theory;
- mass values, m_{ϕ} , model dependent;
- good dark matter (DM) candidate:
 - Standard Halo Model assumed with $\rho_{DM} = 300 \ MeV/cm^3$ and Maxwell-Boltzmann velocity distribution;
 - heavier than $m_{\phi} \simeq 10^{-22} eV$;
 - classical wave description: lighter than $m_{\phi} \simeq 0.1 \ eV$:

$$\phi(\mathbf{x},t) = \phi_0 \cos(m_\phi t - m_\phi \mathbf{v} \cdot \mathbf{x}) + O(\mathbf{v}^2)$$

Reference: A. Arvanitaki, S. Dimopoulos, K. V. Tilburg, Phys. Rev. Lett. 116, 031102 (2016);

3 / 22

Light Dark Matter

Interaction of moduli with ordinary matter:

$$\mathcal{L} \supset \sqrt{4\pi G_{\rm N}} \phi \left[d_{m_e} m_e \bar{e} e - \frac{d_e}{4} F_{\mu\nu} F^{\mu\nu} \right]$$

effects of moduli can be absorbed by the fine structure constant (α) and electron mass (m_e):

$$\begin{aligned} \alpha(\mathbf{x},t) &= \alpha(1+d_e\sqrt{4\pi G_N}\phi(\mathbf{x},t)) \\ m_e(\mathbf{x},t) &= m_e(1+d_{m_e}\sqrt{4\pi G_N}\phi(\mathbf{x},t)) \end{aligned}$$

Consequence: oscillation of the atom's size $(a_0 = 1/\alpha m_e)$ in a body of length *L*:

$$h \equiv \frac{\delta L}{L} = -(d_e + d_{m_e})\sqrt{4\pi G_N}\phi(\mathbf{x}, t)$$

4 / 22

<ロ> (四) (四) (三) (三) (三)

Effects on an oscillator

The equation of motion is given by:

$$\ddot{x} + \frac{\omega}{Q}\dot{x} + \omega^2(x - L) = F_{ext} + F_{th}$$

Rewriting: $\xi = x - L$ (displacement) $\Rightarrow \ddot{x} = \ddot{\xi} + \delta L = \ddot{\xi} + \ddot{h}L$:

$$\ddot{\xi} + \frac{\omega}{Q}\dot{\xi} + \omega^2\xi = -\ddot{h}L + F_{ext} + F_{th}$$

similar to the one of gravitational wave antenna subject to GW tidal force.

5 / 22

4 T N 4 A N 4 F N 4

Antenna

Searching for moduli can be performed exploiting the same experimental apparatus (AURIGA @ LNL) and same analysis techniques as for the search of GW signals.

Light DM search with AURIGA

12th AxionWIMP 6 / 22

AURIGA detector: read-out scheme

System components: 3 coupled resonators (nearly same $f_R \sim 900 \text{ Hz}$):

- cylindrical bar (aluminium alloy);
- mashroom-shaped resonator;
- electrical LC circuit;

Operated at cryogenic temperature: T = 4.5 K;

AURIGA detector: sensitivity

- detector in thermal equilibrium: its fluctuations are described by the Fluctuation-Dissipation theorem
- sensitivity (set by thermal noise) within factor 2:

 $h\simeq 2\cdot 10^{-21}\,1/\sqrt{Hz}$

over a bandwidth of:

Image: A matrix

 $\triangle f \simeq 100 \ Hz$

3

8 / 22

Antonio Branca (INFN-PD)

Light DM search with AURIGA

12th AxionWIMP

Analysis Workflow

12th AxionWIMP

Signal characterization

SIGNAL SIMULATION

f_{ϕ} [Hz]	$(d_{m_e} + d_e)$	$\sigma_{\text{noise}} \left[1 / \sqrt{\text{Hz}} \right]$
~ 867	$5\cdot 10^{-4}$	$2\cdot 10^{-21}$

DM moduli model: stochastic process with Maxwell-Boltzmann distribution. Maximum approximately:

$$h_0 \simeq \frac{1.5 \cdot 10^{-16} (d_{m_e} + d_e)}{\left(\frac{1}{3} f_\phi \left< v^2 \right>\right)^{\frac{3}{4}} f_\phi}$$

- *f*_φ moduli frequency;
- $\langle v^2 \rangle \sim 10^{-6}$, DM halo squared velocity;
- Bandwidth: $\triangle f \sim 1 \, mHz$;

12th AxionWIMP

10 / 22

Power spectrum (PWS) estimation

SIGNAL SIMULATION

- proper spectrum resolution: *N* PWSs computed on 1h long data-streams;
- reduce noise standard deviation: the *N* PWSs are averaged;
- few weeks of data to reach sensitivity plateau: standard deviation of signal fluctuation $\sim N^{-1/4}$;

• Bandwidth: $\triangle f \sim 1 \, mHz$;

12th AxionWIMP

11 / 22

Dataset and data quality

Dataset considered for analysis: August 2015 data. Time-frequency view:

- stable detector conditions: constant mode frequency and shape;
- energetic background events (spikes at fixed time): cut-off by RMS requirement (86% detector duty-cicle);

Antonio Branca (INFN-PD)

Measured PWS

Spectrum of the measured bar relative deformation compared to theory prediction:

- one-sided power spectrum;
- from N = 400 averaged power spectrums;
- good agreement with prediction (σ_{Th} ~ 5 10%);
- spurious peaks discarded;

Test: signal injection

Comparison: full simulation vs signal injection

Signal parameters				
f_{ϕ} [Hz]	$(d_{m_e} + d_e)$			
~ 867	$5\cdot 10^{-4}$			

- signal well reconstructed;
- no reduction due to RMS cut;

14 / 22

12th AxionWIMP

Statistical analysis

Bins' spectrum statistic

f [Hz]	$\left\langle h^{2}\right\rangle \left[rac{1}{Hz} ight]$	$\sigma_{h^2}\left[\frac{1}{Hz}\right]$	χ^2/ndf
857	$1.65 \cdot 10^{-41}$	$1.11 \cdot 10^{-42}$	6.3/5

- gaussian PDF describing bin statistics;
- PDF is used to build the confidence belt in the parameter space (h_{obs}^2, h_{Th}^2) ;

Confidence belt

Reference: G. J. Feldman, R. D. Cousin, Phys. Rev. D 57, 3873-38891 (1998).

- h²_{FA}: false alarm probability threshold of 3σ from background only hypothesis;
- h²_{Exp}: observed value (for a given bin);
- *h*²_{Up}: upper limit corresponding to experimental value;

Upper Limits

Upper limits on *h* interpreted as upper limit on the DM couplings to ordinary matter: $h_0 \simeq 1.5 \cdot 10^{-16} (d_{m_e} + d_e) / (\frac{1}{3} f_{\phi} \langle v^2 \rangle)^{\frac{3}{2}} f_{\phi}$

Upper Limits: wider view

Comparison with other upper limits:

- Natural: natural parameter space (theory);
- 5F and EP: fifth force and equivalence principle tests;
- Dy: sensitivity of atomic spectroscopy in dysprosium;
- Earth: low frequency terrestrial seismology;
- Quartz: sensitivity of piezoelectric quartz resonators;

18 / 22

Antonio Branca (INFN-PD)

Light DM search with AURIGA

12th AxionWIMP

Conclusions

Search for light Dark Matter with AURIGA resonant-mass cryogenic detector:

- light dark matter effects on ordinary matter: microscopic changes of bodies size;
- effects exploited to search for effects on AURIGA detector;
- good sensitivity reached: upper limits on Dark Matter coupling in a physical interesting region of parameter space;

Backup Material

BACKUP MATERIAL

Antonio Branca (INFN-PD)

Light DM search with AURIGA

20 / 22

3

Spurious peaks

Spurious peaks not described by Fluctuation-Dissipation Theorem:

· discarded from the data analysis

Antonio Branca (INFN-PD)

Light DM search with AURIGA

12th AxionWIMP

э

21 / 22

Interferometers

Light Dark Matter moduli:

- does not affect distance between mirrors (vacuum);
- · effects only on the mirrors size themselves;

3