

Search for LFV Higgs decays at CMS

Daniel Troendle

University of Hamburg

Outline: LFV Higgs decays @ CMS

- Short Motivation
- 8 TeV: $H \rightarrow e\mu$, $H \rightarrow e\tau$, $H \rightarrow \mu\tau$ a
- 13 TeV: Run-II update for Moriond
- 13 TeV: Tau polarization
- Summary

Why Charged Lepton Flavor Violation (CLFV)?

Constraints from low energy measurements

Channel	Coupling	Bound
$\mu ightarrow e\gamma$	$\sqrt{ Y_{\mu e} ^2 + Y_{e\mu} ^2}$	$< 3.6 \times 10^{-6}$
$\mu \rightarrow 3e$	$\sqrt{ Y_{\mu e} ^2 + Y_{e \mu} ^2}$	$\lesssim 3.1\times 10^{-5}$
electron $g-2$	$\operatorname{Re}(Y_{e\mu}Y_{\mu e})$	$-0.019 \dots 0.026$
electron EDM	$ \mathrm{Im}(Y_{e\mu}Y_{\mu e}) $	$<9.8\times10^{-8}$
$\mu \rightarrow e$ conversion	$\sqrt{ Y_{\mu e} ^2 + Y_{e \mu} ^2}$	$<4.6\times10^{-5}$
M - \overline{M} oscillations	$ Y_{\mu e}+Y^*_{e\mu} $	< 0.079
$\tau \to e \gamma$	$\sqrt{ Y_{\tau e} ^2 + Y_{e\tau} ^2}$	< 0.014
$\tau \rightarrow 3e$	$\sqrt{ Y_{\tau e} ^2 + Y_{e\tau} ^2}$	$\lesssim 0.12$
electron $g-2$	$\operatorname{Re}(Y_{e\tau}Y_{\tau e})$	$[-2.1\dots 2.9] \times 10^{-3}$
electron EDM	$ \mathrm{Im}(Y_{e au}Y_{ au e}) $	$< 1.1 \times 10^{-8}$
$\tau ightarrow \mu \gamma$	$\sqrt{ Y_{\tau\mu} ^2 + Y_{\mu\tau} ^2}$	0.016
$ au ightarrow 3\mu$	$\sqrt{ Y_{ au\mu}^2+ Y_{\mu au} ^2}$	$\lesssim 0.25$
muon $g-2$	$\operatorname{Re}(Y_{\mu\tau}Y_{\tau\mu})$	$(2.7 \pm 0.75) \times 10^{-3}$
muon EDM	$\operatorname{Im}(Y_{\mu\tau}Y_{\tau\mu})$	-0.81.0
$\mu ightarrow e\gamma$	$\left(Y_{\tau\mu}Y_{\tau e} ^2 + Y_{\mu\tau}Y_{e\tau} ^2\right)^{1/4}$	$< 3.4 \times 10^{-4}$

Harnik, Kopp, Zupan, JHEP 1303 (2013) 026 (2013-03-05) 4

Daniel Troendle, Uni Hamburg, troendle@cern.ch

Constraints from low energy measurements

Constraints from low energy measurements

$H \rightarrow \mu \tau$: Overview

- 2 channels: leptonic tau (e) and hadronic tau decays
- GGF and VBF production considered: 0,1 and 2-Jet categories
- Dilepton (eµ) and/or
 SingleMuon trigger
- Kinematic cuts to enhance S/B ratio

Variable	${ m H} ightarrow \mu au_{ m e}$			$H \rightarrow \mu \tau_h$		
[GeV]	0-jet	1-jet	2-jet	0-jet	1-jet	2-jet
$p_{\rm T}^{\mu} >$	50	45	25	45	35	30
$p_{\rm T}^{\rm e} >$	10	10	10			_
$p_{\mathrm{T}}^{ au} >$	_	_	_	35	40	40
$M_{\rm T}^{ m e} <$	65	65	25			_
$M_{ m T}^{\hat{\mu}} >$	50	40	15			
$M_{ m T}^{ au} <$	—	_	—	50	35	35
[radians]						
$\Delta \phi_{\vec{p}_{\rm T}^{\mu} - \vec{p}_{\rm T}^{\tau_{\rm h}}} >$	_	_	—	2.7	_	_
$\Delta \phi_{ec{p}_{ extsf{T}}^{ extsf{e}} - ec{E}_{ extsf{T}}^{ extsf{miss}}} < ec{2}$	0.5	0.5	0.3	—		—
$\Delta \phi_{\vec{p}_{\mathrm{T}}^{\mathrm{e}}-\vec{p}_{\mathrm{T}}^{\mu}} >$	2.7	1.0		—	—	—

$H \rightarrow \mu \tau$: mass reconstruction

CMS Simulation Collinear mass approximation о. 1.0 1.0 $\begin{array}{l} gg \rightarrow H \rightarrow \mu\tau \; (m_{h} = 120 \; \text{GeV}) \\ gg \rightarrow H \rightarrow \mu\tau \; (m_{h} = 125 \; \text{GeV}) \\ gg \rightarrow H \rightarrow \mu\tau \; (m_{h} = 130 \; \text{GeV}) \\ gg \rightarrow H \rightarrow \mu\tau \; (m_{h} = 150 \; \text{GeV}) \\ gg \rightarrow H \rightarrow \mu\tau \; (m_{h} = 200 \; \text{GeV}) \end{array}$ (projection method) 0.16 Assumption: neutrinos are collinear with the tau directions and thus with 0.14 the lepton (e/μ) 0.12 RMS Mass Mean 20.37 120 119.3 Н ME 19.11 125 123.4 130 128.4 21.0 μ 150 147.6 22.48 196 25.5 200 $M_{colMass} = \frac{M_{vis}}{\sqrt{x_{\tau_e}}}, x_{\tau_e} = \frac{P_T^{\tau_e}}{P_T^{\tau_e} + MET_{proj}}$ 100 200 250 50 150 300 colinear $Mass(\tau_e,\mu)$ (GeV) $\frac{E_x^{miss} \cdot P_x^{\tau_e} + E_y^{miss} \cdot P_y^{\tau_e}}{P_x^{\tau_e}}$ MET proj

Daniel Iroendle, Uni Hamburg, troendle@cern.cn

Daniel Troendle, Uni Hamburg, troendle@cern.ch

$H \rightarrow \mu \tau$: results

Daniel Troendle, Uni Hamburg, troendle@cern.ch

$H \rightarrow \mu \tau$: results

H→μτ: Signal?

$H \rightarrow \mu \tau$: interpretation

• Limit on BR can be reinterpreted as a limit on the corresponding flavor violating yukawa coupling

$$BR(h \rightarrow l^{\alpha} l^{\beta}) = \frac{\Gamma(h \rightarrow l^{\alpha} l^{\beta})}{\Gamma(h \rightarrow l^{\alpha} l^{\beta}) + \Gamma_{SM}}$$

$$l^{lpha,eta} = e$$
 , μ , au with $l^{lpha}
eq l^{eta}$

$$\Gamma(h \rightarrow l^{\alpha} l^{\beta}) = \frac{m_h}{8 \pi} (|Y_{l^{\alpha} l^{\beta}}|^2 + |Y_{l^{\beta} l^{\alpha}}|^2)$$

Assumptions:

- SM Higgs decay width ΓSM=4MeV
- At most one of non-standard decay mode of the higgs is significant compared to SM decay width

Daniel Troendle, Uni Hamburg, troendle@cern.ch

CMS-PAS-HIG-14-040

$H \rightarrow e\tau$: overview

- Analogous to $H \rightarrow \mu \tau$ analysis:
- 2 channels: leptonic (μ) and hadronic tau decays
- GGF and VBF production channels: 0, 1 and 2-Jet categories

Variable		$H \rightarrow e \tau_{\mu}$			$H \rightarrow e \tau_h$		
		0-jet	1-jet	2-jet	0-jet	1-jet	2-jet
p_T^e	(GeV)	> 50	> 40	> 40	> 45	> 35	> 35
p_T^{μ}	(GeV)	> 15	> 15	> 15	-	-	-
$p_T^{\tau_h}$	(GeV)	-	-		> 30	> 40	> 30
$M_T(\mu)$	(GeV)	-	< 30	< 40	-	-	-
$M_T(\tau_h)$	(GeV)	-	-	-	< 70	-	< 50
$\Delta \phi_{\vec{p}_{T,e}-\vec{p}_{T,\tau_h}}$	(radians)	-	-	-	> 2.3	-	
$\Delta \phi_{\vec{p}_{T,\mu}-\vec{E}_{T}^{miss}}$	(radians)	< 0.8	< 0.8	-	-	-	-
$\Delta \phi_{\vec{p}_{T,e}-\vec{p}_{T,\mu}}$	(radians)		> 0.5		13 - 1	-	X.

Daniel Troendle, Uni Hamburg, troendle@cern.ch

$H \rightarrow e\tau$ results

H→eτ results

H→eµ: overview

- Dilepton trigger (e,µ)
- GGF and VBF production: 0,1 and 2 Jet category
- Split in Barrel and Endcap region (resolution)
- Low MET in the events is required
- Background: 'simple' fit of the dilepton invariant mass distribution m_{eu}=[110,160]
- Fit-Function: function with lowest 'bias' in each category is chosen

CMS-PAS-HIG-14-040

	Category	Number of jets	Lepton p _T (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	B-tag	
0	EB-MB	0	> 25	< 30	-	
1	EB-MB	1	> 22	< 30	< 0.38	
2	EB-MB	2	> 25	< 25	< 0.38, < 0.48	
3	EB-ME	0	> 20	< 30	-	
4	EB-ME	1	> 22	< 20	< 0.48	
5	EB-ME	2	> 20	< 30	< 0.51, < 0.57	
6	EE-(MB or ME)	0	> 20	< 30	. 	
7	EE-(MB or ME)	1	> 22	< 20	< 0.48	
8	EE-(MB or ME)	2	> 20	< 30	< 0.51, < 0.57	
VBF						
9	Tight	2	> 22	< 30	< 0.58, < 0.244	
10	Loose	2	> 22	< 25	< 0.62, < 0.30	

Category	Selected function	Selected order	Bias
0	Polynomial	4	$10.8\pm1.0~\%$
1	Polynomial	4	$4.6\pm1.1~\%$
2	Power law	1	7.6 ± 1.0 %
3	Polynomial	4	$4.8\pm1.1~\%$
4	Exponential	1	7.4 ± 1.0 %
5	Exponential	1	$8.4\pm1.0~\%$
6	Polynomial	4	13.8 ± 1.4 %
7	Power law	1	12.6 ± 1.0 %
8	Polynomial	4	7.7 ± 1.1 %
9	Exponential	1	< 0.1 %
10	Exponential	1	< 0.1 %

H→eµ: results

H→eµ: results

LFV Higgs @ 8TeV: summary

LFV Higgs decays @ 13 TeV

- Reload of 8 TeV analysis for Moriond (hopefully)
- No changes to the analysis strategy for the 2.1 fb⁻¹ reload (H $\rightarrow\mu\tau$ only): same cuts (except VBF category, due to statistics)

LFV Higgs decays @ 13 TeV

- Reload of 8 TeV analysis for Moriond (hopefully)
- No changes to the analysis strategy for the 2.1 fb⁻¹ reload (H→μτ only): same cuts (except VBF category, due to statistics)

Overall good agreement after baseline selection! Still blinded!

LFV Higgs decays @ 13 TeV

Expected limit is in the order of 2% on the BR($H \rightarrow \mu \tau$): 0.75% exp. (1.57% obs.) limit from Run-I!

2.1fb⁻¹ update: no gain in terms of BR limit with the Moriond update expected!

Very preliminary expected limits!

Prospects for $H \rightarrow \mu \tau$ at 13 TeV

Prospects using the tau polarization

$Y_{\mu\tau}$ vs $Y_{\tau\mu}$: extracting r= $Y_{\mu\tau}/Y_{\tau\mu}$

- If the excess is a true signal and if it will be confirmed in 13 TeV, we can do interesting physics!
- Extracting the ratio of $r=Y_{u\tau}/Y_{\tau u}!$
- How to:
 - Assume m_{higgs}=125GeV and colinearity of the tau decay products: reconstruct the full tau 4-vec
 - Extract visible energy fraction(x) of tau decay products with respect to the full tau-4vec
 - Fit templates of x for $Y_{\mu\tau}$ and $Y_{\tau\mu}$

Reconstruct full tau 4-vec

Daniel Troendle, Uni Hamburg, troendle@cern.ch

28

Daniel Troendle, Uni Hamburg, troendle@cern.ch

Daniel Troendle, Uni Hamburg, troendle@cern.ch

Summary

- All possible LFV Higgs couplings has been tested in 8 TeV
- Small excess (2.4σ) observed in the H→μτ channel.
 (ATLAS: 2 channels; 1 channel similar excess other channel no excess!)
- 13 TeV: Moriond update on track, but no surprises or answer on the excess expected.
- Various improvements (like tau polarisation as a discriminant) planned for the end-of-year update.
- High mass LFV A/H search on the list to be done.

arXiv:1508.03372

Atlas: $H \rightarrow \mu \tau$ analysis

Best Fit Point for the combination of both channels: $Br(H \rightarrow \mu \tau)=0.77\%$