Status and plans

Done:

- > K_{s}^{0} and Λ selection comparison (A. vs Ch.) for 00 DIS sample ⇒ both codes agree (~0.5% discreapancy due to E- p_{z} cut)
- 5 *10⁶ MC (djangoh14) simulated events with K⁰_s and Λ preselection (cuts: |η(V⁰)|<1.7, p_T(V⁰)>0.1 GeV) for detector corrections

Plans:

- ➢ finish comparison ⇒ conclusions from comparing events list for 99 , 96/97 and distributions of N(Λ) and N(K⁰_s) from fits in η, p_T, x and Q²
- compare trigger efficiencies in data and MC for S61
- calculate efficiencies and correction factors, resolutions, purities, stabilities

Determination of F₂^s?

Jet distributions together with associated K_0 's constrain jet flavours and one may attempt use them to constain strange parton density function

•First step : use MC (e.g. RAPGAP,CASCADE) fragmentation functions and jet distributions and check if jet distributions associated with K_0 's are indeed sensitive to strange quark jet content determine what kind of of distributions give best constraints

•Second step (probably beyond Pawel diploma th.) fit PDF to inclusive x-section + dijet xsection + dijet-K₀ constraining strange component (tool needed), determine what kind of of distributions give best constraints

First step: FF from MC (lund string fragmentation) vs. NLO FF, parametrize as a function of λ_s , scale (jet p_T)

•Use jet+K0 data to determine FF(parton \rightarrow K₀+X)(x_{K0})

Question: what is relation of such FF to NLO FF

• using MC (e.g. RAPGAP produce table of jet x-sections with errors in bins $\Delta \eta$, Δp_T for each flavour for different processes (PM,BGF,QCDC)

•From table of "flauvored jets" and table of FF construct $\chi^{2:}$

Data : jet x-section

 $jet+K_0 x$ -section

 x_{rel} of K_0 distribution

Given : $FF \rightarrow K_0$ for all flavours parametrized as a function of λ_s

tables of jet x-sections (shapes) for all flavours

Parameters: normalisation constants for flavours; λ_s

Fit will be sensitive to relative weights of those flavours which FF strongly differ, e.g. s+d, other quarks, gluons

Dijet data with 2 K_0 should be sensitive to BGF/QCDC FF(q)*FF(g) much different from FF(q)FF(q)

•NLO (e.g.NLOJET++) + NLO FF ? Tool missing (?)

	H1-Daten	MEPS		CCFM
		$(\lambda_s = 0.3)$	$(\lambda_S = 0.2)$	$(\lambda_S = 0.2)$
$\sigma_{vis}(K_S^0)[\text{nb}]$	$20.25 \pm 0.10 \pm 1.47$	24.4	20.2	18.2
$\sigma_{vis}(\Lambda(\bar{\Lambda}))[nb]$	$6.96 \pm 0.09^{+0.64}_{-0.56}$	8.05	6.29	5.96
$\sigma_{vis}(\Lambda)[nb]$	$3.44 \pm 0.06^{+0.31}_{-0.28}$	4.01	3.14	3.00
$\sigma_{vis}(\bar{\Lambda})[\mathrm{nb}]$	$3.53 \pm 0.06^{+0.32}_{-0.28}$	4.04	3.15	2.96
$\sigma(\Lambda(\bar{\Lambda})/\sigma(K^0_S)$	0.344 ± 0.004	0.330	0.311	0.328
$\sigma(\Lambda)/\sigma(\bar{\Lambda})$	0.98 ± 0.02	0.99	1.00	0.99

Kapitel 9 Vergleich der differentiellen Wirkungsquerschnitte mit Modellen

	H1-Daten	CDM	HERWIG
		$(\lambda_S = 0.2)$	
$\sigma_{vis}(K_S^0)[\mathrm{nb}]$	$20.25 \pm 0.10 \pm 1.47$	19.21	22.15
$\sigma_{vis}(\Lambda(\bar{\Lambda}))[nb]$	$6.96 \pm 0.09^{+0.64}_{-0.56}$	6.23	20.6
$\sigma_{vis}(\Lambda)[nb]$	$3.44 \pm 0.06^{+0.31}_{-0.28}$	3.32	10.38
$\sigma_{vis}(\bar{\Lambda})[nb]$	$3.53 \pm 0.06^{+0.32}_{-0.28}$	3.31	10.22
$\sigma(\Lambda(\bar{\Lambda})/\sigma(K^0_S)$	0.344 ± 0.004	0.324	0.930
$\sigma(\Lambda)/\sigma(\bar{\Lambda})$	0.98 ± 0.02	1.00	1.02

Tabelle 9.1: Die totalen, inklusiven sichtbaren Wirkungsquerschnitte $\sigma_{vis}(ep \rightarrow [K_S^0, \Lambda(\bar{\Lambda}), \Lambda\bar{\Lambda}]X)$ der K_S^0 - und Λ -Produktion in den Daten und in den Modellen MEPS(RAPGAP), CCFM(CASCADE), CDM(DJANGO) und HERWIG.

147

MEPS, λ_s =0.3,0.25,0.2

Apparent problem in data description, especially at low x

CCFM does better job, but still at λ_s =0.25 < 0.3 expected from e⁺e⁻

MEPS looks OK. provided that we exclude QCDC (CCFM case), always λ s=0.25

Inclusive cross sections

hadronisation universal e^+e^- : $\lambda_s = 0.3$

Differential K⁰ cross section in DIS in lab frame compared with LEPTO and ARIADNE

ARIADNE with $\lambda_s = 0.3$ describes data well $\lambda_s = 0.2$ less satisfactory

LEPTO (PS+SCI) does not describe data

but... strange to light hadrons ratio

Different straneness suppresion for inclusive cross section and ratio strange to light hadrons!

ZEUS

ARIADNE with $\lambda_s = 0.22$ describes data best

Questions :

Do we have problem with universality of FF ? Unlikely, for chaqrged particle universality of FF in e⁺e⁻ vs ep has benn proven in H1 and ZEUS

Do we have problem with strange component of pdf ?? How they are constained in fits ? \rightarrow jet +K₀, statistics ? Wait for Pawel study

Inclusive 2K₀ data: could we describe incusive K₀ +inclusive 2K₀ treating QCDC/BGF as a parameter with universal λ_s =0.3 \rightarrow if yes we could conclude that it is rather strange quark see problem then FF problem

