Forward Jets in Charm Photoproduction

Zlatka Staykova

H1 DESY, INRNE Sofia

DESY Cracow meeting 26th October 2006

Contents

- ► Motivation and Strategy
- ► Results
 - ▶ MC Studies
 - ▶ Data
- ► Outlook

Motivation

- \triangleright Forward Jets in DIS at small x_{Bj}
 - ho Upper scale Q²: $0.5 < p_t^2/Q^2 < 5$
- ▶ Use charm to:
 - ▶ select BGF
 - ▶ small x_gregion
 - ▶ Hard scale to perform pQCD in Photoproduction
 - ▶ Relatively easy to reconstruct with the meson D*
 - use the scale $\mu^2 = 4 \cdot m_{c(c \text{ meson})}^2 + p_t^2$: $0.5 < p_t^2/\mu^2 < 5$

Monte Carlo Studies

- ► Use the MC generators Rapgap and Cascade
- Photoproduction: $Q < 0.1 \text{ GeV}^2 \quad 0.1 < y < 0.8$
- ▶ D*'s: $p_t^{D^*} > 2 \text{ GeV in } |\eta^{D^*}| < 1.5$
- ▶ Mueller Jets: $p_t^{\rm jets} > 3.5$ GeV in $1.736 < \eta^{\rm jets} < 2.794$
 - $x_{iet} > 0.035$
 - $0.5 < p_t^2/\mu^2 < 5$

$$R = \frac{\sigma(D^* + Mueller jet)}{\sigma(D^*)}$$

► Cascade:

$$R = 3.082 \cdot 10^{-3}$$

- Rapgap direct: $R = 2.512 \cdot 10^{-3}$
- Rapgap direct+resolved: $R = 2.489 \cdot 10^{-3}$

Observables

► The HFS mass

$$V W^2 = \frac{M^2(Q\bar{Q})}{x_\sigma}$$

- - ▶ Rapidity range for an evolution
- - ▶ Estimate additional radiation between the D* and the forward jet
- - Sensitive to higher order gluon emission

Significant tail towards large $\Delta \eta \Rightarrow$ large rapidity range for an evolution

Δp_t

- ► Well correlated for both components of Rapgap
- ▶ Large values of $\Delta p_t \Rightarrow$ decorrelation for Cascade

$\Delta \phi$

- ightharpoonup Both components of Rapgap contribute mainly for large $\Delta \phi$
- A tail towards small $\Delta \phi$ for Cascade

Data Selection

- ► Tagged photoproduction in the region $0.29 < y_{Bj} < 0.65$ collected in 1999 and 2000
- The charmed D^* meson was reconstructed with the golden decay channel: $D^{*\pm} \to D^0 \pi_s^{\pm} \to K^{\mp} \pi^{\pm} \pi_s$
 - \triangleright use the \triangle m method
 - $ho \ p_{D^*}^t > 2 \, {
 m GeV} \ {
 m in} \ |\eta| < 1.5$

- ▶ Jets were found with the k_t inclusive algorithm
 - $p_{
 m jet}^{
 m t} > 3.5 \, {
 m GeV} \, \, {
 m in} \ -1.5 < \eta < 2.8 \, \, .$
 - ▶ For forward Jets $\eta > 1.7$
- No x_{jet} and p_t^2/μ^2 cuts were applied due to lack of statistics

Inclusive D* Sample

Δ m in bins of $\eta^{ m jet}$

Conclusions and Outlook

Conclusions:

- ▶ D*+forward Jet correlations: the relevant quantities are W, $\Delta \eta$, Δp_t and $\Delta \phi$
- ▶ Prestudies on D*+Forward Jet using data from H1
- ► The D* signal is still visible over large background
- ► The measurement is important for deeper and detailed understanding on parton dynamics
- Other decay channels or even life-time tagging of the heavy quark may be used in order to increase the statistics Next Steps:
- ► Investigate the signal and background behavior
- ► Increase the statistics with untagged photoproduction and open the phase space in y