Diffractive parton distributions from the analysis with higher twist

Agnieszka Łuszczak

Institute of Nuclear Physics PAN, Cracow

in collaboration with Krzysztof Golec-Biernat

DESY, October 25, 2006

Outline

- Diffractive structure functions.
- Twist-2 and twist-4 contributions.
- Reggeon contribution.
- Fit results.
- Summary and outlook

- Comprehensive analysis of diffractive structure function data from HERA.
- No global fit we fit H1 and ZEUS data sets separately.
- Elements of the analysis:
 - diffractive parton distributions
 - twist-4 contribution
 - reggeon contribution
- Predictions on longitudinal structure function.

Diffractive structure functions

In the QCD approach DSF decomposed into leading twist-2 and higher twist contributions:

$$F_{2,L}^D(x_{I\!\!P}, t, \beta, Q^2) = F_{2,L}^{D(tw2)} + F_{2,L}^{D(tw4)} + \dots$$

Twist-2 part given in terms of diffractive parton distributions (DPD):

$$F_2^{D(tw2)} = \sum_f e_f^2 \beta \left\{ q_f^D + \overline{q}_f^D \right\} + \alpha_s \cdot NLL(q_f^D, g^D)$$
$$F_L^{D(tw2)} = 0 + \alpha_s \cdot NLL(q_f^D, g^D)$$

Regge factorized form with pomeron flux $f_{I\!\!P}$ and pomeron sf $F_{2,L}^{I\!\!P}$

$$F_{2,L}^{D(tw2)}(\beta, Q^2, x_{I\!\!P}, t) = f_{I\!\!P}(x_{I\!\!P}, t) F_{2,L}^{I\!\!P}(\beta, Q^2).$$

- DPD evolve with Q^2 through DGLAP evolution equations in the NLL approximation.
- Initial DPD contain 6 fitted parameters

 $\Sigma^{I\!P}(\beta, Q_0^2) = A_S \beta^{B_S} (1-\beta)^{C_S}$ $G^{I\!P}(\beta, Q_0^2) = A_G \beta^{B_G} (1-\beta)^{C_G}$

Pomeron intercept is the 7^{th} parameter

$$f(x_{I\!\!P}) \sim x_{I\!\!P}^{1-2\alpha_{I\!\!P}}$$

Twist-4 contribution

In our analysis diffractive structure functions are of the form:

$$F_2^D = F_2^{D(tw2)} + F_{Lq\bar{q}}^{D(tw4)} + F_2^{D(R)}$$

$$F_L^D = F_L^{D(tw2)} + F_{Lq\bar{q}}^{D(tw4)}$$

- Twist-4 sf describes diffractive $q\overline{q}$ production from longitudinally polarized virtual photons important for $\beta \rightarrow 1$.
- Saturation model formula for twist-4.
- f_2 and ω reggeon exchange contributions important for $x_{IP} > 0.01$:

$$F_2^{D(R)} = f_R(x_{I\!\!P}, t) \left(A_R \beta^{-0.08} \right)$$

Fits to data

Collaboration	Data	t-range [GeV ²]	Q^2 -range	β -range	
H1 (72)	leading proton	0.08 < t < 0.5	[2.0, 50]	[0.02, 0.7]	
H1 (276)	$M_Y < 1.6 \; { m GeV}$	$ t_{min} < t < 1$	[3.5, 1600]	[0.0017, 0.8]	
ZEUS (80)	leading proton	0.075 < t < 0.35	[2.0, 100]	[0.007, 0.48]	
ZEUS (198)	$M_Y < 2.3~{ m GeV}$	$ t_{min} < t < \infty$	[2.2, 80]	[0.003, 0.975]	

Fit results for 7 parameters

Data	Fit	$\alpha_{I\!\!P}$	A_S	B_S	C_S	A_G	B_G	C_G	χ^2/N
H1	tw-2	1.05	0.64	0.31	-0.43	34.6	0.62	9.23	0.60
(lp)	tw-2+4	1.04	0.64	0.23	-0.40	20.4	0.43	8.62	0.5
H1	tw-2	1.08	1.53	1.08	0.31	3.10	0.10	0.59	1.1
	tw-2+4	1.10	2.17	1.83	0.70	1.32	-0.04	-0.48	1.29
	tw-2+reg	1.13	1.31	1.60	0.49	1.66	0.20	-0.01	0.93
	2+4+reg	1.14	2.01	2.40	0.89	0.89	0.12	-0.55	1.0

Fit quality

Diffractive PD from fits

• Large impact of twist-4 fit on gluon distribution for $\beta \rightarrow 1$.

Predictions for diffractive F_L

Large difference for F_L due to twist-4 contribution and different gluon distributions.

How important is Regge term ?

• Changes DPD up to 50%.

Summary and outlook

- **•** Twist-4 is important for $\beta > 0.7$.
- Twist-4 changes dramatically gluon distribution at $\beta \rightarrow 1$
- F_L is significantly changed due to higher twist for $\beta > 0.4$.
- Regge contribution improves fit quality through better x_{IP} -shape and changes DPD up to 50%.
- Outlook: ZEUS data analysis.
- Comparison with analyses of other groups.